Symmetry Identities for the Generalized
Higher-Order q-Bernoulli Polynomials
under S_3

Yu Seon Jang
Department of Applied Mathematics
Kangnam University
Yongin 446-702, Republic of Korea

Taekyun Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea

Seog-Hoon Rim
Department of Mathematics Education
Kyungpook National University
Taegu 702-701, Republic of Korea

Jong Jin Seo
Department of Applied Mathematics
Pukyong National University
Pusan 698-737, Republic of Korea

Copyright © 2014 Yu Seon Jang, Taekyun Kim, Seog-Hoon Rim and Jong Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

In this paper, we study the identities of symmetry for the generalized higher-order \(q \)-Bernoulli polynomials under \(S_3 \).

1. Introduction

Let \(p \) be a fixed prime number. Throughout this paper, \(\mathbb{Z}_p \), \(\mathbb{Q}_p \) and \(\mathbb{C}_p \) denote the ring of \(p \)-adic integers, the field of \(p \)-adic rational numbers and the completion of algebraic closure of \(\mathbb{Q}_p \), respectively. The \(p \)-adic norm \(| \cdot |_p \) is normalized as \(| \cdot |_p = 1/p \). Let \(UD(\mathbb{Z}_p) \) be the space of all uniformly differentiable functions on \(\mathbb{Z}_p \) and the \(q \)-number of \(x \) is defined by \([x]_q = (1 - q^x)/(1 - q) \). Note that \(\lim_{q \to 1} [x]_q = x \). For \(f \in UD(\mathbb{Z}_p) \), the \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) is defined by Kim to be

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x) q^x, \quad \text{(see [12, 13])}. \tag{1}
\]

For \(d \in \mathbb{N} \) with \((d, p) = 1\), we set \(\lim_{N \to \infty} \mathbb{Z}/dp^N\mathbb{Z} \rightarrow X^* = \bigcup_{0 < a < dp \atop (a, p) = 1} (a + dp\mathbb{Z}_p) \)

and

\[
a + dp^N\mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^N} \},
\]

where \(a \in \mathbb{Z} \) lies \(0 \leq a < dp^N \).

Let \(\chi \) be a primitive Dirichlet character with conductor \(d \in \mathbb{N} \). Then the generalized Carlitz’s \(q \)-Bernoulli polynomials attached to \(\chi \) are given by Kim to be

\[
\beta_{n, \chi, q}(x) = \int_X \chi(y)[x + y]_q^n d\mu_q(y), \quad (n \geq 0), \quad \text{(see [1 – 20])}. \tag{2}
\]

When \(x = 0 \), \(\beta_{n, \chi, q} = \beta_{n, \chi, q}(0) \) are called the generalized Carlitz \(q \)-Bernoulli numbers, (see [1-20]).

In this paper, we consider the generalized higher-order \(q \)-Bernoulli polynomials attached to \(\chi \) and give symmetric identities of those polynomials in three variables under \(S_3 \).

2. Symmetry identities of generalized higher-order \(q \)-Bernoulli polynomials

For \(r \in \mathbb{N} \), let us consider the generalized higher-order \(q \)-Bernoulli polynomials attached to \(\chi \) as follows:

\[
\int_X \cdots \int_X \prod_{\ell=1}^{r} (\chi(x_\ell)) e^{\sum_{i=1}^{r} x_\ell + x_\ell^t} d\mu_q(x_1) \cdots d\mu_q(x_r) = \sum_{n=0}^{\infty} \beta_{n, \chi, q}^{(r)}(x) \frac{t^n}{n!}. \tag{3}
\]
Symmetry identities for generalized q-Bernoulli polynomials

By (3), we get

$$
\int_X \cdots \int_X \prod_{\ell=1}^r (\chi(x_\ell))[x_1 + \cdots + x_r + x]^n q \, d\mu_q(x_1) \cdots d\mu_q(x_r) = \beta^{(r)}_{n,\chi,q}(x), \quad (n \geq 0).
$$

(4)

When $x = 0$, $\beta^{(r)}_{n,\chi,q} = \beta^{(r)}_{n,\chi,q}(0)$ are called the generalized higher-order q-Bernoulli numbers attached to χ.

Let $w_1, w_2, w_3 \in \mathbb{N}$. Then, we have

$$
\int_X \cdots \int_X \prod_{\ell=1}^r (\chi(x_\ell))
\times e^{[w_2 w_3 \sum_{\ell=1}^r x_\ell + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^r i_\ell + w_1 w_2 \sum_{\ell=1}^r j_\ell] q t} \, d\mu_{q w_2 w_3}(x_1) \cdots d\mu_{q w_2 w_3}(x_r)

= \lim_{N \to \infty} \left(\frac{1}{[w_1 dq^N]_{q w_2 w_3}} \right)^r \sum_{x_1, \ldots, x_r = 0}^{dN-1} \left(\prod_{\ell=1}^r \chi(x_\ell) \right) q^{w_2 w_3 \sum_{\ell=1}^r x_\ell + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^r i_\ell + w_1 w_2 \sum_{\ell=1}^r j_\ell} t

\times e^{[w_2 w_3 \sum_{\ell=1}^r (k_\ell + w_1 x_\ell) + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^r i_\ell + w_1 w_2 \sum_{\ell=1}^r j_\ell] q t}.
$$

(5)

From (5), we have

$$
\left(\frac{1}{[w_2 w_3]_q} \right)^r \sum_{i_1, \ldots, i_r = 0}^{dN-1} \sum_{j_1, \ldots, j_r = 0}^{dN-1} \left(\prod_{\ell=1}^r \chi(i_\ell) \chi(j_\ell) \right) q^{w_1 w_3 \sum_{\ell=1}^r i_\ell + w_1 w_2 \sum_{\ell=1}^r j_\ell} t

\times \int_X \cdots \int_X \left(\prod_{\ell=1}^r (\chi(x_\ell)) \right) e^{[w_2 w_3 \sum_{\ell=1}^r x_\ell + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^r i_\ell + w_1 w_2 \sum_{\ell=1}^r j_\ell] q t} \, d\mu_{q w_2 w_3}(x_1) \cdots d\mu_{q w_2 w_3}(x_r)

= \lim_{N \to \infty} \left(\frac{1}{[dw_1 w_2 w_3 p^N]_q} \right)^r \sum_{i_1, \ldots, i_r = 0}^{dwN-1} \sum_{j_1, \ldots, j_r = 0}^{dwN-1} \sum_{k_1, \ldots, k_r = 0}^{dpN-1} \left(\prod_{\ell=1}^r \chi(i_\ell) \chi(j_\ell) \chi(k_\ell) \right)

\times q^{w_1 w_3 \sum_{\ell=1}^r i_\ell + w_1 w_2 \sum_{\ell=1}^r j_\ell + w_1 w_3 \sum_{\ell=1}^r k_\ell} \, d\mu_{q w_1 w_2 w_3} \sum_{\ell=1}^N x_\ell

\times e^{[w_2 w_3 \sum_{\ell=1}^r (k_\ell + w_1 x_\ell) + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^r i_\ell + w_1 w_2 \sum_{\ell=1}^r j_\ell] q t}.
$$

(6)

As this expression is invariant under any permutation $\sigma \in S_3$, we have the following theorem.
Theorem 2.1. For $d, w_1, w_2, w_3 \in \mathbb{N}$, the following expressions

$$
\left(\frac{1}{w_{\sigma(2)} w_{\sigma(3)}} \right)_q \sum_{i_1 \ldots i_r = 0}^{r} \sum_{j_1 \ldots j_r = 0}^{r} \left(\prod_{\ell=1}^{r} \chi(i_\ell) \chi(j_\ell) \right)
\times q^{w_{\sigma(1)} w_{\sigma(3)} \sum_{\ell=1}^{r} i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^{r} j_\ell} \int_{X} \ldots \int_{X} \left(\prod_{\ell=1}^{r} \chi(x_\ell) \right)
\times d\mu_{q^{w_{\sigma(2)} w_{\sigma(3)}}} (x_1) \cdots d\mu_{q^{w_{\sigma(2)} w_{\sigma(3)}}} (x_r)
$$

are the same for any permutation $\sigma \in S_3$.

From (4), we can derive the following equation:

$$
\int_{X} \ldots \int_{X} \left(\prod_{\ell=1}^{r} \chi(x_\ell) \right) e^{[w_{\sigma(2)} w_{\sigma(3)} \sum_{\ell=1}^{r} i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^{r} j_\ell] q} \int_{X} \ldots \int_{X} \left(\prod_{\ell=1}^{r} \chi(x_\ell) \right)
\times d\mu_{q^{w_{\sigma(2)} w_{\sigma(3)}}} (x_1) \cdots d\mu_{q^{w_{\sigma(2)} w_{\sigma(3)}}} (x_r)
\times \sum_{n=0}^{\infty} \frac{n!}{n^{n}}
$$

Therefore, by (7) and Theorem 1, we obtain the following corollary.

Corollary 2.2. For $n \in \mathbb{N} \cup \{0\}, d, w_1, w_2, w_3 \in \mathbb{N}$, the following expressions

$$
\left(\frac{1}{w_{\sigma(2)} w_{\sigma(3)}} \right)_q \sum_{i_1 \ldots i_r = 0}^{r} \sum_{j_1 \ldots j_r = 0}^{r} \left(\prod_{\ell=1}^{r} \chi(i_\ell) \chi(j_\ell) \right)
\times q^{w_{\sigma(1)} w_{\sigma(3)} \sum_{\ell=1}^{r} i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^{r} j_\ell} \beta^{(r)}_{n, \chi, q^{w_{\sigma(2)} w_{\sigma(3)}}} (w_{\sigma(1)} x + w_{\sigma(2)} \sum_{\ell=1}^{r} i_\ell + w_{\sigma(3)} \sum_{\ell=1}^{r} j_\ell)
$$

are the same for any $\sigma \in S_3$.

By (4), we get
\[
\int_X \cdots \int_X \left(\prod_{\ell=1}^{r} \chi(x_{\ell}) \right) \left[\sum_{\ell=1}^{r} x_{\ell} + w_1 x + w_1 \sum_{\ell=1}^{r} i_{\ell} + w_1 \sum_{\ell=1}^{r} j_{\ell} \right]^{n} \times d\mu_{q^{w_2}w_3}(x_1) \cdots d\mu_{q^{w_2}w_3}(x_r)
\]
\[
= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{[w_1]}{[w_2w_3]} \right)^{n-k} \left[w_3 \sum_{\ell=1}^{r} i_{\ell} + w_2 \sum_{\ell=1}^{r} j_{\ell} \right]^{n-k} q^{k(w_1 w_3 \sum_{\ell=1}^{r} i_{\ell} + w_1 w_2 \sum_{\ell=1}^{r} j_{\ell})} q^{w_1} \times \int_X \cdots \int_X \left(\prod_{\ell=1}^{r} \chi(x_{\ell}) \right) \left[\sum_{\ell=1}^{r} x_{\ell} + w_1 x + w_1 \sum_{\ell=1}^{r} i_{\ell} + w_1 \sum_{\ell=1}^{r} j_{\ell} \right]^{n} \times d\mu_{q^{w_2}w_3}(x_1) \cdots d\mu_{q^{w_2}w_3}(x_r)
\]
\[
= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{[w_1]}{[w_2w_3]} \right)^{n-k} \left[w_3 \sum_{\ell=1}^{r} i_{\ell} + w_2 \sum_{\ell=1}^{r} j_{\ell} \right]^{n-k} q^{k(w_1 w_3 \sum_{\ell=1}^{r} i_{\ell} + w_1 w_2 \sum_{\ell=1}^{r} j_{\ell})} q^{w_1} \times \beta_{k,r}^{(r)}(w_1 x).
\]

From (7) and (8), we have
\[
\frac{[w_2w_3]_q^{n}}{[w_2w_3]_q^{r}} \sum_{i_1, \cdots, i_r=0}^{d\mu_{q^{w_2}w_3}} \sum_{j_1, \cdots, j_r=0}^{d\mu_{q^{w_2}w_3}} \left(\prod_{\ell=1}^{r} \chi(i_{\ell})\chi(j_{\ell}) \right) q^{w_1 w_3 \sum_{\ell=1}^{r} i_{\ell} + w_1 w_2 \sum_{\ell=1}^{r} j_{\ell}} q^{w_1} \times \int_X \cdots \int_X \left(\prod_{\ell=1}^{r} \chi(x_{\ell}) \right) \left[\sum_{\ell=1}^{r} x_{\ell} + w_1 x + w_1 \sum_{\ell=1}^{r} i_{\ell} + w_1 \sum_{\ell=1}^{r} j_{\ell} \right]^{n} \times d\mu_{q^{w_2}w_3}(x_1) \cdots d\mu_{q^{w_2}w_3}(x_r)
\]
\[
= \sum_{k=0}^{n} \binom{n}{k} \frac{[w_2w_3]_q^{k/r}}{[w_2w_3]_q^{r}} \frac{[w_1]}{[w_2w_3]}_q^{n-k} \beta_{k,r}^{(r)}(w_1 x) S_{n, k, q^{w_2}w_3}(w_2, w_3 : d|\chi),
\]

where \(n \geq 0 \).

Therefore, by (9) and (10), we obtain the following theorem.

Theorem 2.3. For \(n \in \mathbb{N} \cup \{0\}, d, w_1, w_2, w_3 \in \mathbb{N} \), the following expressions
\[
\sum_{k=0}^{n} \binom{n}{k} \frac{[w_2]_q^{k/r}}{[w_2]_q} \frac{[w_3]_q^{k}}{[w_3]_q} \beta_{k,r}^{(r)}(w_1^{w_2}w_3^{w_3}, \chi(w_1^{w_2}w_3, \chi(w_1^{w_2}w_3 : d|\chi))}
\]
are the same for any permutation $\sigma \in S_3$.

References

Received: July 1, 2014