Hermite-Hadamard-like Type Inequalities for Differentiable Harmonically Quasi-convex Functions

Jaekeun Park

Department of Mathematics
Hanseo University
Seosan, Choongnam, 356-706, Korea

Copyright © 2014 Jaekeun Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, by setting up a generalized integral identity for differentiable functions, the author obtain some new upper bounds of Hermite-Hadamard type inequalities for differentiable harmonically convex functions.

Mathematics Subject Classification: 26A51, 26D15

Keywords: Hermite-Hadamard type inequality, Hölder’s inequality, Harmonically convexity.

1 Introduction

Many inequalities have been established for convex functions but the most famous is the Hermite-Hadamard’s inequality, due to its rich geometrical significance and applications, which is stated as follows: Let $f : I \subseteq R \rightarrow R$ be a convex function and $a, b \in I$ with $a < b$. Then following double inequalities hold:

$$f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}.$$
Hermite-Hadamard’s inequalities for convex functions have received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found in [1, 2, 3, 8, 9, 18] and references therein.

Let us recall some definitions of several kinds of convex functions:

Definition 1. Let I be an interval in R. Then $f: I \to R$ is said to be convex on I if the inequality

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)$$

holds, for all $x, y \in I$ and $t \in [0,1]$.

Definition 2. Let I be an interval in $R_+ = (0, \infty)$. A function $f: I \to R$ is said to be harmonically convex on I if the inequality

$$f\left(\frac{xy}{tx + (1-t)y}\right) \leq tf(y) + (1-t)f(x)$$

holds, for all $x, y \in I$ and $t \in [0,1]$. If the inequality in (2) is reversed, then f is said to be harmonically concave.

In [4], İmdat İşcan established the following result of the Hermite-Hadamard type for harmonically convex functions:

Theorem 1.1. Let $f: I \subseteq R_+ = (0, \infty) \to R$ be a harmonically convex function on an interval I and $f \in L[a,b]$, where $a, b \in I$ with $a < b$.

$$f\left(\frac{2ab}{a+b}\right) \leq \frac{ab}{b-a} \int_a^b f(x) \frac{dx}{x^2} \leq \frac{f(a) + f(b)}{2}.$$ \hspace{1cm} (3)

Also, in [4], İmdat İşcan established some new Hermite-Hadamard type inequalities, which estimate the difference between the middle and the rightmost terms in (3), for harmonically convex functions:

Theorem 1.2. Let $f: I \subseteq R_+ = (0, \infty) \to R$ be a differentiable function on the interior I^0 of an interval I in $R_+ = (0, \infty)$ and $f' \in L[a,b]$, where $a, b \in I$ with $a < b$. If $|f'|^q$ is harmonically convex function on $[a,b]$ for $q \geq 1$, then the following inequality holds:

$$\left|\frac{f(a) + f(b)}{2} - \frac{ab}{b-a} \int_a^b f(x) \frac{dx}{x^2}\right| \leq \frac{ab(b-a)}{2} \lambda_1 \left[\lambda_2 |f'(a)|^q + \lambda_3 |f'(b)|^q\right]^\frac{1}{q},$$
where
\[
\lambda_1 = \frac{1}{ab} - \frac{2}{(b-a)^2} \ln \left(\frac{(a+b)^2}{4ab} \right),
\]
\[
\lambda_2 = -\frac{1}{b(b-a)} + \frac{3a+b}{(b-a)^3} \ln \left(\frac{(a+b)^2}{4ab} \right),
\]
\[
\lambda_3 = \frac{1}{a(b-a)} - \frac{3b+a}{(b-a)^3} \ln \left(\frac{(a+b)^2}{4ab} \right)
= \lambda_1 - \lambda_2.
\]

Definition 3. A function \(f : I \subseteq (0, \infty) \to [0, \infty) \) is said to be harmonically quasi-convex, if the inequality
\[
f \left(\frac{xy}{tx + (1-t)y} \right) \leq \sup \{ f(x), f(y) \}
\]
for all \(x, y \in I \) and \(t \in [0,1] \).

In [6], İmdat Işcan et al. established the following theorem, which gives an upper bound for the approximation of the integral average \(\frac{ab}{b-a} \int_a^b f(u) \, du \) by the value \(f(x) \) at a point \(x \in [a,b] \):

Theorem 1.3. Let \(f : I \subseteq R_+ = (0, \infty) \to R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) in \(R_+ = (0, \infty) \) and \(f' \in L[a,b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is harmonically quasi-convex on \([a,b]\) for \(q \geq 1 \), then for all \(x \in [a,b] \) the following inequality
\[
\left| f(x) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right|
\leq \frac{ab}{b-a} \left\{ (x-a)^2 \left(C_1(a, x, q, q) \sup \{ |f'(x)|^q, |f'(a)|^q \} \right)^{\frac{1}{q}}
+ (b-x)^2 \left(C_2(b, x, q, q) \sup \{ |f'(x)|^q, |f'(b)|^q \} \right)^{\frac{1}{q}} \right\},
\]
holds, where
\[
C_1(a, x, \vartheta, \rho) = \frac{\beta(\rho+1,1)}{x^{2\vartheta}} \frac{\mathcal{B}(2\vartheta, \rho+1; \rho+2; 1 - \frac{a}{x})}{\beta(\rho+1,1)}
\]
\[
C_2(b, x, \vartheta, \rho) = \frac{\beta(1, \rho+1)}{b^{2\vartheta}} \frac{\mathcal{B}(2\vartheta, 1; \rho+2; 1 - \frac{x}{b})}{\beta(1, \rho+1)}.
\]
\(\beta \) is Euler Beta function defined by
\[
\beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_0^1 t^{x-1}(1-t)^{y-1} \, dt, \quad x, y > 0,
\]
and \(_2F_1 \) is hypergeometric function defined by the power series

\[
_2F_1[a, b, c, x] = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} x^n
\]

for \(|x| < 1 \). Here \((q)_n\) is the Pochhammer symbol, which is defined by

\[
(q)_n = \begin{cases}
1, & n = 0 \\
q(q+1)\cdots(q+n-1), & n > 0.
\end{cases}
\]

In this paper, we give some generalized inequalities connected with the left and right parts of (3), as a result of this, we obtain some generalized Hermite-Hadamard-like type inequalities for differentiable harmonically quasi-convex functions by setting up an integral identity for differentiable functions.

2 Main results

In order to find some new inequalities of Hermite-Hadamard-like type inequalities connected with the left and right parts of (3) for functions whose derivatives are harmonically quasi-convex, we need the following lemma [16]:

Lemma 1. Let \(f : I \subseteq \mathbb{R}_+ = (0, \infty) \rightarrow \mathbb{R} \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(a, b \in I \) with \(a < b \). If \(f' \in L([a, b]) \), then for \(n \geq 2 \) the following identity

\[
I(f)(a, b; n)
\]

holds, for \(t \in [0, 1] \), where \(A_t(a, b) = ta + (1 - t)b \).
Now we turn our attention to establish inequalities of Hermit-Hadamard-like type for differentiable harmonically convex functions.

Theorem 2.1. Let \(f : I \subseteq \mathbb{R}_+ = (0, \infty) \to \mathbb{R} \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'| \) is harmonically quasi-convex on \([a, b] \), then, for any \(n \geq 2 \) the following inequality

\[
|I(f)(a, b; n)| \leq \frac{ab(b-a)}{n^2} \left[\left\{ \mu_{11}(a, b) \sup \{|f'(A_{\frac{1}{n}}(b, a)), |f'(a)|\} \right. \right.
\left. + \mu_{11}(b, a) \sup \{|f'(b)|, |f'(A_{\frac{1}{n}}(a, b))|\} \right]
\]

\[
+ \frac{(n-2)^2}{4} \left\{ \mu_{12}(a, b) \sup \{|f'(A_{\frac{1}{2}}(a, b))|, |f'(A_{\frac{1}{n}}(a, b))|\} \right.
\left. + \mu_{12}(b, a) \sup \{|f'(A_{\frac{1}{2}}(a, b))|, |f'(A_{\frac{1}{2}}(b, a))|\} \right] \]

holds, where

\[
\mu_{11}(a, b) = \frac{n}{a(b-a)} + \frac{n^2}{(b-a)^2} \ln \left[\frac{A_{\frac{1}{n}}(b, a)}{A_{\frac{1}{n}}(b, a)} \right];
\]

\[
\mu_{12}(a, b) = \frac{4n}{(n-2)(b-a)(a+b)}
\]

\[
+ \frac{4n^2}{(n-2)^2(b-a)^2} \ln \left[\frac{A_{\frac{1}{n}}(a, b)}{A_{\frac{1}{n}}(a, b)} \right].
\]

Proof From Lemma 1, we have

\[
I(f)(a, b; n)
\leq \frac{ab(b-a)}{n^2} \left[\left\{ \int_0^1 \frac{t}{A_t^2(a, A_{\frac{1}{n}}(b, a))} \left| f' \left(\frac{A_{\frac{1}{n}}(a, b)}{A_t(a, A_{\frac{1}{n}}(b, a))} \right) \right| dt \right. \right.
\left. + \int_0^1 \frac{1-t}{A_t^2(A_{\frac{1}{n}}(a, b), b)} \left| f' \left(\frac{bA_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(a, b), b)} \right) \right| dt \right]
\]

\[
+ \frac{(n-2)^2}{4} \left\{ \int_0^1 \frac{t}{A_t^2(A_{\frac{1}{2}}(a, b), A_{\frac{1}{n}}(a, b))} \left| f' \left(\frac{A_{\frac{1}{2}}(a, b)A_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{2}}(a, b), A_{\frac{1}{n}}(a, b))} \right) \right| dt \right.
\left. + \int_0^1 \frac{1-t}{A_t^2(A_{\frac{1}{n}}(b, a), A_{\frac{1}{2}}(a, b))} \left| f' \left(\frac{A_{\frac{1}{n}}(b, a)A_{\frac{1}{2}}(a, b)}{A_t(A_{\frac{1}{n}}(b, a), A_{\frac{1}{2}}(a, b))} \right) \right| dt \right\} \]
Since \(|f'|\) is harmonically quasi-convex on \([a, b]\), we have

\[
I(f)(a, b; n)
\leq \frac{ab(b - a)}{n^2} \left\{ \int_0^1 \frac{t}{A_n^2(a, A_n^2(b, a))} \, dt \sup \left\{ \left| f'(A_n^2(a, b)) \right|, \left| f'(a) \right| \right\} \right.
\]

\[
+ \int_0^1 \frac{1 - t}{A_n^2(a, A_n^2(b, a))} \, dt \sup \left\{ \left| f'(b) \right|, \left| f'(A_n^2(a, b)) \right| \right\}
\]

\[
+ \left(\frac{(n - 2)^2}{4} \right) \left\{ \mu_{11}(a, b) \sup \left\{ \left| f'(A_n^2(a, b)) \right|, \left| f'(a) \right| \right\} \right.
\]

\[
+ \mu_{11}(b, a) \sup \left\{ \left| f'(b) \right|, \left| f'(A_n^2(a, b)) \right| \right\}
\]

\[
+ \frac{(n - 2)^2}{4} \left\{ \mu_{12}(a, b) \sup \left\{ \left| f'(A_n^2(a, b)) \right|, \left| f'(A_n^2(b, a)) \right| \right\} \right.
\]

\[
+ \mu_{12}(b, a) \sup \left\{ \left| f'(A_n^2(a, b)) \right|, \left| f'(A_n^2(b, a)) \right| \right\}
\}

which completes the proof.

Theorem 2.2. Let \(f : I \subseteq R_+ = (0, \infty) \to R\) be a differentiable function on the interior \(I^0\) of an interval \(I\) and \(f' \in L([a, b])\), where \(a, b \in I\) with \(a < b\). If \(|f'|^q\) is harmonically quasi-convex on \([a, b]\) for \(q > 1\) with \(\frac{1}{p} + \frac{1}{q} = 1\), then, for any \(n \geq 2\) the following inequality

\[
I(f)(a, b; n)
\leq \frac{ab(b - a)}{n^2} \left\{ \left(\mu_{21} \left(\frac{1}{2} \right) \left(\sup \left\{ \left| f'(A_n^2(a, b)) \right|^q, \left| f'(a) \right|^q \right\} \right) \right)^\frac{1}{q}
\]

\[
+ \mu_{21}(a, b) \left(\sup \left\{ \left| f'(A_n^2(a, b)) \right|^q, \left| f'(b) \right|^q \right\} \right)^\frac{1}{q}
\]

\[
+ \left(\frac{(n - 2)^2}{4} \right) \left\{ \mu_{22} \left(\frac{1}{2} \right) \left(\sup \left\{ \left| f'(A_n^2(a, b)) \right|^q, \left| f'(A_n^2(b, a)) \right|^q \right\} \right) \right)^\frac{1}{q}
\]

\[
+ \mu_{22}(b, a) \left(\sup \left\{ \left| f'(A_n^2(a, b)) \right|^q, \left| f'(A_n^2(b, a)) \right|^q \right\} \right) \right)^\frac{1}{q}
\}

(4)
holds, where

\[
\begin{align*}
\mu_{21}(a, b) &= \frac{A_{n}^{-2p}(a, b)}{1 + p} \cdot 2F_1[2p, p + 1, p + 2, -\frac{b - a}{a + (n - 1)b}], \\
\mu_{22}(a, b) &= \frac{A_{n}^{-2p}(a, b)}{1 + p} \cdot 2F_1[2p, p + 1, p + 2, \frac{(n - 2)(b - a)}{2(a + (n - 1)b)}].
\end{align*}
\]

Proof From Lemma 1 and by the Hölder integral inequality, we have

\[
I(f)(a, b; n) \\
\equiv \left| \frac{1}{a + b} \left(bf(A_{n}^{1}(b, a)) + af(A_{n}^{1}(a, b)) \right) - \frac{ab}{b - a} \int_{a}^{b} \frac{f(x)}{x^2} \, dx \right| \\
\leq \frac{ab(b - a)}{n^2} \left\{ \left(\mu_{21}^{\frac{1}{2}}(b, a) \left(\int_{0}^{1} \left| f'(\frac{aA_{n}^{1}(b, a)}{A_{n}^{1}(a, (b, a))}) \right|^q \, dt \right)^{\frac{1}{q}} \right)^{\frac{1}{2}} \\
+ \mu_{21}^{\frac{1}{2}}(a, b) \left(\int_{0}^{1} \left| f'(\frac{bA_{n}^{1}(a, b)}{A_{n}^{1}(a, (b, a))}) \right|^q \, dt \right)^{\frac{1}{2}} \right\} \\
+ \frac{(n - 2)^2}{4} \left\{ \mu_{22}^{\frac{1}{2}}(a, b) \left(\int_{0}^{1} \left| f'(\frac{A_{n}^{1}(a, b)A_{n}^{1}(a, b)}{A_{n}^{1}(a, (b, a))}) \right|^q \, dt \right)^{\frac{1}{q}} \\
+ \mu_{22}^{\frac{1}{2}}(b, a) \left(\int_{0}^{1} \left| f'(\frac{A_{n}^{1}(b, a)A_{n}^{1}(a, b)}{A_{n}^{1}(a, (b, a))}) \right|^q \, dt \right)^{\frac{1}{q}} \right\}.
\]
\]

(5)
Theorem 2.3. Let $f : I \subseteq R_+ = (0, \infty) \to R$ be a differentiable function on the interior I^0 of an interval I and $f' \in L([a, b])$, where $a, b \in I$ with $a < b$. If $|f'|^q$ is harmonically quasi-convex on $[a, b]$ for $q > 1$, with $\frac{1}{p} + \frac{1}{q} = 1$, then, for any $n \geq 2$ the following inequality

$$I(f)(a,b;n) \leq \frac{ab(b-a)}{n^2} \left(\frac{1}{p+1} \right)^{\frac{2}{p}} \left\{ \mu_{31}(a,b) \sup \left\{ \left| f'(A_{\frac{1}{n}}(b,a)) \right|^q, \left| f'(a) \right|^q \right\} \right\}^{\frac{1}{q}}$$

$$+ \left(\mu_{31}(b,a) \sup \left\{ \left| f'(b) \right|^q, \left| f'(A_{\frac{1}{n}}(a,b)) \right|^q \right\} \right)^{\frac{1}{q}}$$

$$+ \frac{(n-2)^2}{4} \left\{ \left(\mu_{32}(a,b) \sup \left\{ \left| f'(A_{\frac{1}{n}}(a,b)) \right|^q, \left| f'(A_{\frac{1}{2}}(a,b)) \right|^q \right\} \right)^{\frac{1}{q}} \right\}$$

$$+ \left(\mu_{32}(b,a) \sup \left\{ \left| f'(A_{\frac{1}{2}}(a,b)) \right|^q, \left| f'(A_{\frac{1}{n}}(a,b)) \right|^q \right\} \right)^{\frac{1}{q}} \right\}. \tag{10}$$

holds, where

$$\mu_{31}(a,b) = \frac{n\{a^{1-2q} - A_{\frac{1}{n}}(b,a)\}}{(2q-1)(b-a)}$$

$$\mu_{32}(a,b) = \frac{2n\{2^{2q-1}(a+b)^{1-2q} - A_{\frac{1}{n}}^{1-2q}(a,b)\}}{(n-2)(2q-1)(b-a)}.$$
Hermite-Hadamard-like type inequalities

Proof From Lemma 1 and by the Hölder integral inequality, we have

\[I(f)(a, b; n) \leq \frac{ab(b - a)}{n^2} \left[\left(\int_0^1 t^p dt \right)^{\frac{1}{p}} \times \left(\int_0^1 \frac{1}{A_t^{2q}(a, A_{\frac{1}{n}}(b, a))} \left| f'\left(\frac{aA_{\frac{1}{n}}(b, a)}{A_t(a, A_{\frac{1}{n}}(b, a))} \right) \right|^q \frac{dt}{t} \right)^{\frac{1}{q}} + \left(\int_0^1 (1 - t)^p dt \right)^{\frac{1}{p}} \times \left(\int_0^1 \frac{1}{A_t^{2q}(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \left| f'\left(\frac{bA_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \right) \right|^q \frac{dt}{t} \right)^{\frac{1}{q}} \right] + \frac{(n - 2)^2}{4} \left(\int_0^1 t^p dt \right)^{\frac{1}{p}} \times \left(\int_0^1 \frac{1}{A_t^{2q}(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \left| f'\left(\frac{A_{\frac{1}{n}}(b, a)A_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(b, a), A_{\frac{1}{n}}(a, b))} \right) \right|^q \frac{dt}{t} \right)^{\frac{1}{q}} \right] \]

\[
= \frac{ab(b - a)}{n^2} \left(\frac{1}{p + 1} \right)^{\frac{1}{p}} \times \left\{ \left(\int_0^1 \frac{1}{A_t^{2q}(a, A_{\frac{1}{n}}(b, a))} \left| f'\left(\frac{aA_{\frac{1}{n}}(b, a)}{A_t(a, A_{\frac{1}{n}}(b, a))} \right) \right|^q \frac{dt}{t} \right)^{\frac{1}{q}} + \left(\int_0^1 (1 - t)^p dt \right)^{\frac{1}{p}} \times \left(\int_0^1 \frac{1}{A_t^{2q}(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \left| f'\left(\frac{bA_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \right) \right|^q \frac{dt}{t} \right)^{\frac{1}{q}} \right\} \]

\[+ \frac{(n - 2)^2}{4} \times \left\{ \left(\int_0^1 \frac{1}{A_t^{2q}(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \left| f'\left(\frac{A_{\frac{1}{n}}(b, a)A_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(b, a), A_{\frac{1}{n}}(a, b))} \right) \right|^q \frac{dt}{t} \right)^{\frac{1}{q}} \right\}. \quad (11) \]
Since \(|f'|^q\) is harmonically quasi-convex on \([a, b]\) for \(q > 1\), we have

\[
\begin{align*}
(a) & \quad \int_0^1 \frac{1}{A_t^{2q}(a, A_{\frac{1}{n}}(b, a))} |f'\left(\frac{a A_{\frac{1}{n}}(b, a)}{A_t(a, A_{\frac{1}{n}}(b, a))}\right)|^q \, dt \\
 & \quad \leq \mu_{31}(a, b) \sup \left\{ |f'(A_{\frac{1}{n}}(b, a))|^q, |f'(a)|^q \right\}, \\
(b) & \quad \int_0^1 \frac{1}{A_t^{2q}(A_{\frac{1}{n}}(a, b), b)} |f'\left(\frac{b A_{\frac{1}{n}}(a, b)}{A_t(a, A_{\frac{1}{n}}(a, b))}\right)|^q \, dt \\
 & \quad \leq \mu_{31}(b, a) \sup \left\{ |f'(b)|^q, |f'(A_{\frac{1}{n}}(a, b))|^q \right\}, \\
(c) & \quad \int_0^1 \frac{1}{A_t^{2q}(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(b, a))} |f'\left(\frac{A_{\frac{1}{n}}(a, b) A_{\frac{1}{2}}(a, a)}{A_t(A_{\frac{1}{n}}(a, b), A_{\frac{1}{2}}(a, a))}\right)|^q \, dt \\
 & \quad \leq \mu_{32}(a, b) \sup \left\{ |f'(A_{\frac{1}{n}}(a, b))|^q, |f'(A_{\frac{1}{2}}(a, a))|^q \right\}, \\
(d) & \quad \int_0^1 \frac{1}{A_t^{2q}(A_{\frac{1}{n}}(b, a), A_{\frac{1}{n}}(a, b))} |f'\left(\frac{A_{\frac{1}{n}}(a, b) A_{\frac{1}{2}}(a, a)}{A_t(A_{\frac{1}{n}}(b, a), A_{\frac{1}{2}}(a, a))}\right)|^q \, dt \\
 & \quad \leq \mu_{32}(b, a) \sup \left\{ |f'(A_{\frac{1}{2}}(a, b))|^q, |f'(A_{\frac{1}{n}}(a, b))|^q \right\}.
\end{align*}
\]

By substituting (12)–(15) in (11), we get the desired result (10).

Theorem 2.4. Let \(f : I \subseteq R_+ = (0, \infty) \rightarrow R\) be a differentiable function on the interior \(I^0\) of an interval \(I\) and \(f' \in L([a, b])\), where \(a, b \in I\) with \(a < b\). If \(|f'|^q\) is harmonically quasi-convex on \([a, b]\) for \(q \geq 1\) with \(\frac{1}{p} + \frac{1}{q} = 1\), then, for any \(n \geq 2\) the following inequality

\[
I(f)(a, b; n) \leq \frac{ab(b - a)}{n^2} \left[\left\{ \mu_{11}(a, b) \left(\sup \left\{ |f'(A_{\frac{1}{n}}(b, a))|^q, |f'(a)|^q \right\} \right)^{\frac{\frac{2}{p} + \frac{1}{q}}{\frac{1}{p}} + \frac{\frac{2}{q} + \frac{1}{p}}{\frac{1}{q}}} \\
+ \mu_{11}(b, a) \left(\sup \left\{ |f'(A_{\frac{1}{n}}(a, b))|^q, |f'(b)|^q \right\} \right)^{\frac{\frac{2}{p} + \frac{1}{q}}{\frac{1}{p}} + \frac{\frac{2}{q} + \frac{1}{p}}{\frac{1}{q}}} \right] + \frac{(n - 2)^2}{4} \left\{ \mu_{12}(a, b) \left(\sup \left\{ |f'(A_{\frac{1}{n}}(b, a))|^q, |f'(A_{\frac{1}{2}}(a, b))|^q \right\} \right)^{\frac{\frac{2}{q} + \frac{1}{p}}{\frac{1}{q}}} \\
+ \mu_{12}(b, a) \left(\sup \left\{ |f'(A_{\frac{1}{2}}(b, a))|^q, |f'(A_{\frac{1}{n}}(a, b))|^q \right\} \right)^{\frac{\frac{2}{p} + \frac{1}{q}}{\frac{1}{p}} + \frac{\frac{2}{q} + \frac{1}{p}}{\frac{1}{q}}} \right\} \right]\]

holds, where \(\mu_{2i}, i = 1, 2, 3, 4\) are defined in Theorem 2.1.
Proof From Lemma 1 and by the Hölder integral inequality, we have

\[I(f)(a, b; n) \leq \frac{ab(b - a)}{n^2} \left\{ \left(\int_0^1 \frac{t}{A^2_n(a, A_{2n}^l(b, a))} \left| f'(\frac{aA_{2n}^l(b, a)}{A_1(a, A_{2n}^l(b, a))}) \right| \, dt \right)^{\frac{1}{p}} \right. \\
+ \left. \left(\int_0^1 \frac{1 - t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{bA_{2n}^l(a, b)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{p}} \right\} \\
+ \frac{(n - 2)^2}{4} \left\{ \left(\frac{t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{A_{2n}^l(a, b)A_{2n}^l(b, a)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{q}} \right. \]

\[\leq \frac{ab(b - a)}{n^2} \left\{ \left(\int_0^1 \frac{t}{A^2_n(a, A_{2n}^l(b, a))} \left| f'(\frac{aA_{2n}^l(b, a)}{A_1(a, A_{2n}^l(b, a))}) \right| \, dt \right)^{\frac{1}{p}} \right. \\
+ \left. \left(\int_0^1 \frac{1 - t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{bA_{2n}^l(a, b)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{p}} \right\} \\
+ \frac{(n - 2)^2}{4} \left\{ \left(\frac{t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{A_{2n}^l(a, b)A_{2n}^l(b, a)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{q}} \right. \\
+ \left. \left(\frac{1 - t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{A_{2n}^l(a, b)A_{2n}^l(b, a)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{q}} \right\} \\
= \frac{ab(b - a)}{n^2} \left\{ \left(\frac{t}{A^2_n(a, A_{2n}^l(b, a))} \left| f'(\frac{aA_{2n}^l(b, a)}{A_1(a, A_{2n}^l(b, a))}) \right| \, dt \right)^{\frac{1}{p}} + \left(\frac{1 - t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{bA_{2n}^l(a, b)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{p}} \\
+ \frac{(n - 2)^2}{4} \left\{ \left(\frac{t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{A_{2n}^l(a, b)A_{2n}^l(b, a)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{q}} + \left(\frac{1 - t}{A^2_n(A_{2n}^l(a, b), A_{2n}^l(a, b))} \left| f'(\frac{A_{2n}^l(a, b)A_{2n}^l(b, a)}{A_1(A_{2n}^l(a, b), A_{2n}^l(a, b))}) \right| \, dt \right)^{\frac{1}{q}} \right\} \right\}.
\[
+ \mu_{11}^{\frac{1}{2}}(b, a) \left(\int_0^1 \frac{1 - t}{A_t^2(A_{\frac{1}{n}}(b, a), b)} \left| f' \left(\frac{bA_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(a, b)), b} \right) \right|^q dt \right)^{\frac{1}{q}}
+ \frac{(n - 2)^2}{4} \times \left\{ \mu_{12}^{\frac{1}{2}}(a, b) \left(\int_0^1 \frac{t}{A_t^2(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \left| f' \left(\frac{A_{\frac{1}{n}}(a, b)A_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \right) \right|^q dt \right)^{\frac{1}{q}}
+ \mu_{12}^{\frac{1}{2}}(b, a) \left(\int_0^1 \frac{1 - t}{A_t^2(A_{\frac{1}{n}}(b, a), A_{\frac{1}{n}}(b, a))} \left| f' \left(\frac{A_{\frac{1}{n}}(b, a)A_{\frac{1}{n}}(b, a)}{A_t(A_{\frac{1}{n}}(b, a), A_{\frac{1}{n}}(b, a))} \right) \right|^q dt \right)^{\frac{1}{q}} \right\}.
\]

Since \(|f'|^q \) is harmonically quasi-convex on \([a, b]\) for \(q > 1\), we have

\[(a) \int_0^1 \frac{t}{A_t^2(a, A_{\frac{1}{n}}(b, a))} \left| f' \left(\frac{aA_{\frac{1}{n}}(b, a)}{A_t(a, A_{\frac{1}{n}}(b, a))} \right) \right|^q dt \leq \mu_{11}(a, b) \sup \left\{ \left| f'(A_{\frac{1}{n}}(b, a)) \right|^q, \left| f'(a) \right|^q \right\}, \quad (18)\]

\[(b) \int_0^1 \frac{1 - t}{A_t^2(A_{\frac{1}{n}}(b, a), b)} \left| f' \left(\frac{bA_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(a, b)), b} \right) \right|^q dt \leq \mu_{11}(a, b) \sup \left\{ \left| f'(b) \right|^q, \left| f'(A_{\frac{1}{n}}(a, b)) \right|^q \right\}, \quad (19)\]

\[(c) \int_0^1 \frac{t}{A_t^2(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \left| f' \left(\frac{A_{\frac{1}{n}}(a, b)A_{\frac{1}{n}}(a, b)}{A_t(A_{\frac{1}{n}}(a, b), A_{\frac{1}{n}}(a, b))} \right) \right|^q dt \leq \mu_{12}(a, b) \sup \left\{ \left| f'(A_{\frac{1}{n}}(a, b)) \right|^q, \left| f'(A_{\frac{1}{n}}(b, b)) \right|^q \right\}, \quad (20)\]

\[(d) \int_0^1 \frac{1 - t}{A_t^2(A_{\frac{1}{n}}(b, a), A_{\frac{1}{n}}(b, a))} \left| f' \left(\frac{A_{\frac{1}{n}}(b, a)A_{\frac{1}{n}}(b, a)}{A_t(A_{\frac{1}{n}}(b, a), A_{\frac{1}{n}}(b, a))} \right) \right|^q dt \leq \mu_{12}(b, a) \sup \left\{ \left| f'(A_{\frac{1}{n}}(b, a)) \right|^q, \left| f'(A_{\frac{1}{n}}(b, a)) \right|^q \right\}. \quad (21)\]

By substituting (18)-(21) in (17), we get the desired result (16).

References

[3] V. N. Huy, N. T. Chung, Some generalizations of the Fejér and Hermite-

[7] A. P. Ji, T. Y. Zhang, F. Qi, Integral Inequalities of Hermite-
Hadamard Type for \((\alpha,m)\)-GA-Convex Functions, *Journal of Function

[10] Meihui Qu, Wenjun Liu, J. Park, Some new Hermite-Hadamard-type in-
equalities for geometric-arithmetically \(s\)-convex functions, Presented

[12] C. P. Niculescu, Convexity according to the geometric mean, *Math. In-

inequalities for functions whose second derivatives are convex and \(m\)-\kern.5pt convex, *Miskolc Mathematical Notes*, **13**(2) (2012), 441-457.

Received: June 5, 2014