Secure Domination and Secure Total
Domination in the Composition $G[K_n]$

Elmer C. Castillano, 1 Rose Ann L. Ugbinada

Department of Mathematical Sciences
College of Arts and Sciences
Mindanao University of Science and Technology
Cagayan de Oro City, Philippines

Sergio R. Canoy, Jr. 2

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, Iligan City, Philippines

Carmelito C. Go

Department of Mathematics
Mindanao State University-Main Campus
Marawi City, Philippines

Copyright © 2014 Elmer C. Castillano, Rose Ann L. Ugbinada, Sergio R. Canoy, Jr. and
Carmelito C. Go. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Abstract

In this paper we consider the concepts of secure domination and
secure total domination in a graph. We rectify a bit an interesting result
obtained by Benecke et al. and then state some consequences which

1This research is funded by the Mindanao University of Science and Technology (MUST),
Cagayan de Oro City, Philippines.

2This research is funded by the Mindanao University of Science and Technology (MUST),
Cagayan de Oro City, Philippines, and the Commission on Higher Education.
are due them. Also, we characterize the secure dominating and secure total dominating sets in the composition $G[K_n]$, where G is a connected graph and K_n is the complete graph of order n, and gave upper bounds of the secure domination and secure total domination numbers of this graph.

Mathematics Subject Classification: 05C69

Keywords: domination, total domination, secure domination, secure total domination, composition

1 Introduction

Recently, Benecke et al. in [1] and Cockayne et al. in [3] introduced new strategies for placing guards in order to protect a system or network. These strategies give rise to new variants of the standard domination concept. A number of interesting results are found in [1] and [3] concerning the concepts and parameters. Other variants of the domination can be found in [2] and [4].

Let $G = (V(G), E(G))$ be a connected graph and $v \in V(G)$. The neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\}$. If $X \subseteq V(G)$, then the open neighborhood of X is the set $N_G[X] = N[X] = \bigcup_{v \in X} N_G(v)$. The closed neighborhood of X is $N_G[X] = N[X] = X \cup N(X)$.

A subset X of $V(G)$ is a dominating set in G if for every $v \notin (V(G) \setminus X)$, there exists $x \in X$ such that $xv \in E(G)$, i.e., $N[X] = V(G)$. It is a total dominating set (a tds) if $N(X) = V(G)$. A (total) dominating set X is a secure (total) dominating set if for every $u \in V(G) \setminus X$, there exists $v \in X$ such that $uv \in E(G)$ and $[X \setminus \{v\}] \cup \{u\}$ is a (total) dominating set. In this case, we say that v X-defends u or u is X-defended by v. The domination number $\gamma(G)$ (total domination number $\gamma_t(G)$ and secure (total) domination number $\gamma_{st}(G)$ ($\gamma_{st}(G)$)) of G is the smallest cardinality of a dominating (resp., total dominating and secure (total) dominating) set in G.

A vertex $u \in X$, where $X \subseteq V(G)$, is an X-internal private neighbor (X-ipn) of $v \in X$ if $N_G(u) \cap X = \{v\}$. A vertex $w \in V(G) \setminus X$ is an X-external private neighbor (X-epn) of $v \in X$ if $N_G(w) \cap X = \{v\}$. The set of all the X-ipns (respectively X-epns) of v is denoted by $ipn(v, X)$ (respectively $epn(v, X)$).

In this paper we try to rectify a bit a result obtained by Benecke et al. in [1] and then state some quick consequences of the result by the authors. We also study secure (total) dominating sets in composition of G and K_n, and gave an upper bound for the secure (total) domination number of this graph.
Secure Domination in the Composition $G[K_n]$

The composition $G[H]$ of two graphs G and H is the graph with $V(G[H]) = V(G) \times V(H)$ and $(u, u')(v, v') \in E(G[H])$ if and only if either $uv \in E(G)$ or $u = v$ and $u'v' \in E(H)$.

Observe that any non-empty subset C of $V(G) \times V(H)$ (in fact, any set of ordered-pairs) can be written as $C = \cup_{x \in S}\{x\} \times T_x$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$. Henceforth, we shall use this form to denote any subset C of $V(G) \times V(H)$.

The following result characterizes secure dominating sets in the composition $G[K_n]$.

Theorem 2.1 Let G be a connected graph and $n \geq 2$. Then $C = \cup_{x \in S}\{x\} \times T_x$, where $S \subseteq V(G)$ and $T_x \subseteq V(K_n)$ for each $x \in S$, is a secure dominating set in $G[K_n]$ if and only if either

(i) S is a secure dominating set in G or

(ii) S is a dominating set in G satisfying the following property:

(a) $|T_x| \geq 2$ for every $x \in S$ such that $epn(x; S) \neq \emptyset$ and $\langle epn(x; S) \rangle$ is not complete; and

(b) there exists $w \in N_G(z) \cap S$ with $|T_w| \geq 2$ for every $z \in V(G) \setminus S$ such that $epn(y; S)$ is not contained in $N_G[z]$ for every $y \in N_G(z) \cap S$.

Proof: Suppose $C = \cup_{x \in S}\{x\} \times T_x$ is a secure dominating set in $G[K_n]$. Let $u \in V(G) \setminus S$ and pick $b \in V(K_n)$. Since C is a dominating set in $G[K_n]$, there exists $(x, c) \in C$ such that $(x, c)(u, b) \in E(G[K_n])$. This implies that $x \in S$ and $u \in N_G(x)$. This shows that S is a dominating set in G. If S is a secure dominating set, then we are done. Suppose now that S is not a secure dominating set in G. Let $x \in S$ such that $\langle epn(x; S) \rangle$ is not complete. Then there exist distinct vertices $y, z \in epn(x; S)$ such that $yz \notin E(G)$. Let $a \in V(K_n)$. Then $(y, a), (z, a) \notin C$ and $(y, a)(z, a) \notin E(G[K_n])$. Since C is a secure dominating set of $G[K_n]$, there exists $(x, p) \in C$ such that $(y, a)(x, p) \in E(G[K_n])$ and $C_1 = [(y, a)] \cup \{(x, a)\}$ is dominating in $G[K_n]$. Thus, since $(y, a) \notin C_1$ and $z \in epn(x; S)$, there exists $q \in T_x \setminus \{p\}$ such that $(x, q)(z, a) \in E(G[K_n])$. This shows that $|T_x| \geq 2$. Next, let $z \in V(G) \setminus S$ such that $epn(y; S)$ is not contained in $N_G(z)$ for every $y \in N_G(z) \cap S$. Pick $t \in V(K_n)$. Since C is a secure dominating set and $(z, t) \notin C$, there exists $(w, c) \in C$ such that $(z, t)(w, c) \in E(G[K_n])$ and $C^* = [(z, t)] \cup \{(z, t)\}$ is dominating set in $G[K_n]$. By assumption, $epn(w; S)$ is not contained in $N_G[z]$. Hence there exists $u \in epn(w; S) \setminus N_G[z]$. This implies that $u \neq z$ and $uz \notin E(G)$. Since C^* is a dominating set in $G[K_n]$, $(u, t) \notin C_1$, and
Let G be a connected graph and $n \geq 2$. Then

$$\gamma_s(G[K_n]) \leq \min\{2\gamma(G), \gamma_s(G)\}.$$

Proof: Suppose S is a minimum dominating set in G. Let $a, b \in V(K_n)$, where $a \neq b$ and set $T_x = \{a, b\}$ for every $x \in S$. Then, by Theorem 3.1, $C = \cup_{x \in S} \{x\} \times T_x$ is a secure dominating set in $G[K_n]$. Thus, $\gamma_s(G[K_n]) \leq |C| = 2|S| = 2\gamma(G)$. If S is a minimum secure dominating set in G, set $T_x = \{a\}$ for each $x \in S$. Then again, by Theorem 3.1, $C = \cup_{x \in S} \{x\} \times T_x$ is a secure dominating set in $G[K_n]$. Thus, $\gamma_s(G[K_n]) \leq |C| = |S| = \gamma_s(G)$. Therefore,

$$\gamma_s(G[K_n]) \leq \min\{2\gamma(G), \gamma_s(G)\}.$$

This proves the result. □
Example 2.3 \(\gamma_s(P_3[K_n]) = 2 = \gamma_s(P_3) = 2\gamma(P_3) \) and \(\gamma_s(P_4[K_n]) = \gamma_s(P_4) = 2 \neq 4 = 2\gamma(P_4) \) for each \(n \geq 2 \).

The first result is due to Benecke et al. [1].

Proposition 2.4 Let \(X \) be a total dominating set in graph \(G \). A vertex \(v \) \(X \)-defends \(u \) if and only if

(i) \(epn(v, X) = \emptyset \), and

(ii) \(ipn(v, X) \subseteq N_G(u) \).

The following simple example will show that (i) is not the correct condition:

![Graph Image]

Let \(X = \{x, y, v\} \). Clearly, \(X \) is a total dominating set in \(G \). Also, \(uv \in E(G) \) and \([X\setminus\{v\}] \cup \{u\} = \{x, y, u\} \) is a total dominating set in \(G \). It follows that \(v \) \(X \)-defends \(u \). However, \(epn(v, X) = \{w\} \neq \emptyset \).

The following result gives the correct characterization.

Theorem 2.5 Let \(X \) be a total dominating set in a connected graph \(G \), \(v \in X \), and \(u \in V(G) \setminus X \). Then \(v \) \(X \)-defends \(u \) if and only if \(epn(v, X) \) and \(ipn(v, X) \) are contained in \(N_G(u) \).

Proof: Suppose \(v \) \(X \)-defends \(u \). Let \(Y = [X\setminus\{v\}] \cup \{u\} \). Suppose first that \(epn(v, X) \not\subseteq N_G(u) \), say \(w \in epn(v, X) \setminus N_G(u) \). If \(u = w \), then there exists no \(y \in Y \) such that \(yw \in E(G) \) since \(N_G(w) \cap X = \{v\} \). It follows that \(Y \) is not a total dominating set. If \(u \neq w \), then there exists no \(y \in Y \) such that \(yw \in E(G) \) since \(N_G(w) \cap X = \{v\} \) and \(w \notin N_G(u) \). This implies that \(Y \) is not a total dominating set. Thus, in either case, we obtain a contradiction. Therefore \(epn(v, X) \subseteq N_G(u) \).

Next, suppose that \(ipn(v, X) \not\subseteq N_G(u) \), say \(z \in ipn(v, X) \setminus N_G(u) \). Since \(N_G(z) \cap X = \{v\} \), there exists no \(a \in Y \) such that \(az \in E(G) \). This implies that \(Y \) is not a total dominating set, contrary to our assumption. Therefore \(ipn(v, X) \subseteq N_G(u) \).
For the converse, suppose X is a tds in G and $epn(v,X)$ and $ipn(v,X)$ are contained in $N_G(u)$. Let $z \in V(G) \setminus Y$, where $Y = [X \setminus \{v\} \cup \{u\}]$. If $z = v$, then $zu \in E(G)$. So suppose $z \neq v$. Then $z \notin X$ and $z \neq u$. Since X is a dominating set, $N_G(z) \cap X \neq \emptyset$. If $z \in epn(v,X)$, then $uz \in E(G)$ by assumption. If $z \notin epn(v,X)$, then $N_G(z) \cap X \neq \{v\}$; hence there exists $y \in X \setminus \{v\} \subset Y$ such that $xy \in E(G)$. In any of the above cases, we find that Y is a dominating set in G.

Finally, let $w \in Y$. If $w = u$, then there exists $b \in X \setminus \{v\} \subset Y$ such that $bw \in E(G)$ since X is a dominating set and $u \notin epn(v,X)$. Suppose $w \neq u$. Then $w \in X$. If $w \in ipn(v,X)$, then $xw \in E(G)$ for some $x \in X \setminus \{v\} \subset Y$. This shows that Y is a total dominating set in G. Therefore, v X-defends u. \square

The following results of Benecke et al. will still be immediate.

Corollary 2.6 If $u \in epn(v,X)$ for some $v \in X$, then u is not X-defended.

Corollary 2.7 Let X be a total dominating set in G. Then X is a secure total dominating set if and only if

(i) $epn(v,X) = \emptyset$ for all $v \in X$, and

(ii) For each $u \in V(G) \setminus X$, there exists $v \in X \cap N(u)$ such that $ipn(v,X) \subseteq N(u)$.

3 Secure Total Domination in the Composition $G[K_n]$

The following result characterizes secure total dominating sets in the composition $G[K_n]$.

Theorem 3.1 Let G be a connected graph and $n \geq 2$. Then $C = \cup_{x \in S}\{x\} \times T_x$, where $S \subseteq V(G)$ and $T_x \subseteq V(K_n)$ for each $x \in S$, is a secure total dominating set in $G[K_n]$ if and only if either

(i) S is a secure total dominating set in G or

(ii) S is a dominating set in G satisfying the following properties:

(a) $|T_x| \geq 2$ for every $x \in S$ with $x \notin N_G(y)$ for all $y \in S$ or there exists $z \in N_G(x) \setminus S$ such that $z \notin N_G(w)$ for all $w \in (S \setminus \{x\})$; and

(b) for every $u \in V(G) \setminus S$ with $|N_G(u) \cap S| \geq 2$, there exists $z \in N_G(u) \cap S$ such that $|T_z| \geq 2$ or $|T_z| = 1$ and for every $q \in N_G(z) \cap S$, $uq \in E(G)$ or $|T_q| \geq 2$ or $q \in N_G(y)$ for some $y \in S \setminus \{z\}$.
Proof: Suppose $C = \bigcup_{x \in S}(\{x\} \times T_x)$ is a secure total dominating set in $G[K_n]$. Let $u \in V(G)\setminus S$ and pick $b \in V(K_n)$. Since C is a dominating set in $G[K_n]$, then there exists $(x, c) \in C$ such that $(x, c)(u, b) \in E(G[K_n])$. This implies that $x \in S$ and $u \in N_{G}(x)$. This shows that S is a dominating set in G. If S is a secure total dominating set, then we are done. Suppose now that S is not a secure total dominating set in G. Let $x \in S$ and consider the following cases:

Case 1. Suppose $x \notin N_{G}(y)$ for all $y \in S$.

Let $a \in T_x$. Since $(x, a) \in C$ and C is a total dominating set, there exists $b \in T_x \setminus \{a\}$ such that $(x, a)(x, b) \in E(G[K_n])$. It follows that $|T_x| \geq 2$.

Case 2. Suppose there exists $z \in N_{G}(x) \setminus S$ such that $z \notin N_{G}(y)$ for all $y \in S \setminus \{x\}$.

Pick $a \in T_x$. If $|T_x| = 1$, then $[C \setminus \{(x, a)\}] \cup \{(z, a)\}$ cannot be a total dominating set in $G[K_n]$, contrary to our assumption that C is a secure total dominating set. Thus, $|T_x| \geq 2$.

This shows that property (a) holds.

Next, let $u \in V(G) \setminus S$ with $|N_{G}(u) \cap S| \geq 2$. Pick $v \in V(K_n)$. Since C is a secure total dominating set, there exists $(z, a) \in C$ such that $(u, v)(z, a) \in E(G[K_n])$ and $C^* = [C \setminus \{(z, a)\}] \cup \{(u, v)\}$ is a total dominating set in $G[K_n]$. Suppose $|T_z| = 1$ and let $q \in N_{G}(z) \cap S$. Suppose $|T_q| = 1$, say $t \in T_q$. Since C^* is a total dominating set, there exists $(y, d) \in C^*$ such that $(q, t)(y, d) \in E(G[K_n])$. Clearly, $y \in (S \setminus \{z\}) \cup \{u\}$. Consequently, $qu \in E(G)$ or $q \in N_{G}(y)$, where $y \in S$. This shows that property (b) also holds.

For the converse, suppose first that (i) holds, that is, S is a secure total dominating set in G. Let $(x, y) \in V(G[K_n])$. By assumption, there exists $v \in S$ such that $xv \in E(G)$. Let $a \in T_v$. Then $(x, y)(v, a) \in E(G[K_n])$, showing that C is a total dominating set in $G[K_n]$. Now let $(u, b) \in V(G[K_n]) \setminus C$ and consider the following cases:

Case 1. Suppose $u \in S$.

Then, clearly, $b \notin T_u$. Pick $c \in T_u$. Then $(u, b)(u, c) \in E(G[K_n])$ and $[C \setminus \{(u, c)\}] \cup \{(u, b)\}$ is a total dominating set in $G[K_n]$.

Case 2. Suppose $u \notin S$.

By assumption, there exists $v \in S$ such that $uv \in E(G)$ and $(S \setminus \{v\}) \cup \{u\}$ is a total dominating set in G. Choose $d \in T_y$. Then $(u, b)(v, d) \in E(G[K_n])$ and $[C \setminus \{(v, d)\}] \cup \{(u, b)\}$ is a total dominating set in $G[K_n]$.

In both cases, C is a secure total dominating set in $G[K_n]$.

Suppose now that (ii) holds. Let $(x, a) \in V(G[K_n])$. If $x \notin S$, then there exists $z \in S$ such that $xz \in E(G)$. Pick $b \in T_z$. Then $(z, b) \in C$ and $(z, b)(x, a) \in E(G[K_n])$. Suppose $x \in S$. If $|T_x| \geq 2$, then there exists $c \in T_x \setminus \{a\}$ such that $(x, c)(x, c) \in E(G[K_n])$. If $|T_x| = 1$, then by (b), there exists $y \in S$ such that $xy \in E(G)$. Let $d \in T_y$. Then $(y, d) \in C$ and $(y, d)(x, a) \in E(G[K_n])$. Therefore, C is a total dominating set in $G[K_n]$.

Finally, let \((u, t) \in V(G[K_n]) \setminus C\) and consider the following cases:

Case 1. Suppose \(u \in S\).

Pick \(a \in T_u\). Then \((u, a) \in C\), \((u, t)(u, a) \in E(G[K_n])\), and \([C \setminus \{(u, a)\}] \cup \{(u, t)\}\) is a total dominating set in \(G[K_n]\).

Case 2. Suppose \(u \notin S\).

If \(|N_G(u) \cap S| = 1\), say \(x \in N_G(u) \cap S\), then \(|T_x| \geq 2\) by (a). Let \(a, b \in T_x\), where \(a \neq b\). Then \((x, a), (x, b) \in C\), \((u, t)(x, a) \in E(G[K_n])\), and \([C \setminus \{(x, a)\}] \cup \{(u, t)\}\) is a total dominating set in \(G[K_n]\).

So suppose \(|N_G(u) \cap S| \geq 2\). Let \(z \in N_G(u) \cap S\) as described in (b). First, suppose that \(|T_z| \geq 2\). Let \(c \in T_z\). Then \((z, c) \in C\), \((u, t)(z, c) \in E(G[K_n])\), and \([C \setminus \{(z, c)\}] \cup \{(u, t)\}\) is a total dominating set in \(G[K_n]\). Suppose now that \(|T_z| = 1\). Let \(k \in T_z\). Then \((z, k) \in C\) and \((z, k)(u, t) \in E(G[K_n])\). Since for each \(q \in N_G(z) \cap S\), \(uq \in E(G)\) or \(|T_q| \geq 2\) or \(q \in N_G(y)\) for some \(y \in S \setminus \{z\}\), it follows that \([C \setminus \{(z, k)\}] \cup \{(u, t)\}\) is a total dominating set in \(G[K_n]\).

Therefore, \(C\) is a secure total dominating set in \(G[K_n]\). \(\square\)

The following is a quick consequence of the above theorem.

Corollary 3.2 Let \(G\) be a connected graph and \(n \geq 2\). Then

\[\gamma_{st}(G[K_n]) \leq \min\{2\gamma(G), \gamma_{st}(G)\}.\]

Proof: Suppose \(S\) is a minimum dominating set in \(G\). Let \(a, b \in V(K_n)\), where \(a \neq b\) and set \(T_x = \{a, b\}\) for every \(x \in S\). Then, by Theorem 3.1, \(C = \bigcup_{x \in S} (\{x\} \times T_x)\) is a secure total dominating set in \(G[K_n]\). Thus, \(\gamma_{st}(G[K_n]) \leq |C| = 2|S| = 2\gamma(G)\). If \(S\) is a minimum secure total dominating set in \(G\), set \(T_x = \{a\}\) for each \(x \in S\). Then again, by Theorem 3.1, \(C = \bigcup_{x \in S} (\{x\} \times T_x)\) is a secure total dominating set in \(G[K_n]\). Thus, \(\gamma_{st}(G[K_n]) \leq |C| = |S| = \gamma_{st}(G)\). Therefore,

\[\gamma_{st}(G[K_n]) \leq \min\{2\gamma(G), \gamma_{st}(G)\}.

The authors were unable to find a graph \(G\) such that strict inequality in Corollary 3.2 holds. Thus, the authors conjectured that the upper bound is actually the exact value of the parameter.

References

Received: July 5, 2014