Weakly Hull Number of a Graph

Kezza P. Noguerra

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, Iligan City, Philippines

Sergio R. Canoy, Jr. and Helen M. Rara

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, Iligan City, Philippines

Copyright © 2014 Kezza P. Noguerra, Sergio R. Canoy, Jr., and Helen M. Rara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Given a connected graph G, a subset C of $V(G)$ is called a weakly convex set of G if for every two vertices $u, v \in C$, there exists a u-v geodesic whose vertices belong to C or equivalently, if for every two vertices $u, v \in C$, $d_{(C)}(u, v) = d_{G}(u, v)$. Let S be a subset of $V(G)$. A weakly convex hull of S is a weakly convex set of minimum order containing S.

In this paper, we introduce the concepts of weakly convex hull and weakly hull number of a graph. Moreover, we determine the weakly hull numbers of some special graphs and graphs resulting from some binary operations.

Mathematics Subject Classification: 05C12

Keywords: weakly convex set, weakly convex hull, weakly hull number

1 This research is partially funded by DOST-ASTHRDP.
1 Introduction

Let $G = (V(G), E(G))$ be a simple connected graph. Let $u, v \in V(G)$. Then the distance $d_G(u, v)$ between u and v, is the length of the shortest u-v path $(P(u, v))$ in G. A u-v path of length $d_G(u, v)$ is called u-v geodesic. The set of all u-v geodesics is denoted by $g_{u,v}$. The diameter $\text{diam}(G)$ of G is $\max_{u,v \in V(G)} d_G(u, v)$. If G is disconnected, then $\text{diam}(G) = +\infty$. A subset C of $V(G)$ is called a weakly convex set of G if for every two vertices $u, v \in C$, there exists $P(u, v) \in g_{u,v}$ whose elements belong to C or equivalently, if for every two vertices $u, v \in C$, $d_{\langle C \rangle}(u, v) = d_G(u, v)$. This concept is introduced and studied in [4] and [5].

Let S be a subset of $V(G)$. A weakly convex hull of S is a weakly convex set of minimum order containing S. If C is a convex subset of $V(G)$, then C is a weakly convex set of G. Note that a weakly convex hull need not be unique. To see this, consider the graph G in Figure 1. Let $S = \{a, c\}$. Then the sets $A_1 = \{a, b, c\}$ and $A_2 = \{a, d, c\}$ are weakly convex hulls of S with $A_1 \neq A_2$.

![Figure 1: A graph G with two weakly convex hulls](image)

In case where the weakly convex hull of a set S is unique, we denote the weakly convex hull of S by $[S]_G^w$. A set $S \subseteq V(G)$ is called a weakly hull set if $[S]_G^w = V(G)$. A weakly hull set of G of minimum cardinality is a minimum weakly hull set and its cardinality is the weakly hull number of G denoted by $\text{wh}(G)$.

2 Weakly Hull Number of Special Graphs

Lemma 2.1 Let G be a connected graph and $S \subseteq V(G)$. Then S is weakly convex if and only if $[S]_G^w = S$.

Lemma 2.2 Let G be a connected graph. Then $\text{wh}(G) = 1$ if and only if $G = K_1$.

Lemma 2.3 Let G be a connected graph of order $n \geq 2$. Then $\text{wh}(G) = 2$ if and only if $G = P_n$.
Proof: Suppose \(wh(G) = 2 \), say \(S = \{a, b\} \), is a weakly hull set of \(G \). If \(n = 2 \), then \(G = P_2 \). Suppose \(n \geq 3 \). Then, \(S \) is not weakly convex, hence \(ab \notin E(G) \). Let \(c \in V(G) \setminus S \). Then \(c \) is in some \(a-b \) geodesic \([a_1, a_2, \ldots, a_k] \) where \(a_1 = a \), \(a_k = b \) and \(c = a_j \) for some \(j, 1 < j < k \). Since \(\{a_1, a_2, \ldots, a_k\} \) is weakly convex, by Lemma 2.1, \([S]_G^w = \{a_1, a_2, \ldots, a_k\} \). By assumption, it follows that \(V(G) = \{a_1, a_2, \ldots, a_k\} \) and \(k = n \). Thus, \(G = P_n \).

Conversely, suppose \(G = P_n = \{a_1, a_2, \ldots, a_n\} \). Take \(S = \{a_1, a_n\} \). Then \([S]_G^w = V(P_n) \). Thus, \(wh(G) = 2 \). \(\square \)

Theorem 2.4 Let \(n \geq 3 \). Then

\[
wh(C_n) = \begin{cases} 4 & \text{if } n = 4 \\ 3 & \text{if } n \neq 4 \end{cases}
\]

Proof: Let \(C_n = [x_1, x_2, \ldots, x_n, x_1] \). By Lemma 2.2 and Lemma 2.3, \(wh(C_n) \neq 1, 2 \). We consider the following cases:

Case 1: Suppose \(n \) is odd.

Consider \(S = \{x_1, x_n, x_{n+1}\} \). Then \([S]_G^w = V(C_n) \).

Case 2: Suppose \(n \) is even and \(n \neq 4 \).

Take \(S = \{x_1, x_{n-1}, x_{n+1}\} \). Hence, \([S]_G^w = V(C_n) \). In either case, we have \([S]_G^w = V(C_n) \). Therefore, \(wh(C_n) = |S| = 3 \).

Consider \(C_4 = [a, b, c, d, a] \). Note that the sets \(\{a, b, c\}, \{b, c, d\}, \{c, d, a\} \) and \(\{d, a, b\} \) are all weakly convex. By Lemma 2.1, \(\{[a, b, c]\}_C^w = \{a, b, c\} \), \(\{[b, c, d]\}_C^w = \{b, c, d\} \), \(\{[c, d, a]\}_C^w = \{c, d, a\} \) and \(\{[d, a, b]\}_C^w = \{d, a, b\} \). Hence, \(wh(C_4) \neq 3 \). Therefore, \(wh(C_4) = 4 \). \(\square \)

The following result gives a characterization of a graph \(G \) with \(wh(G) = |V(G)| \).

Theorem 2.5 Let \(G \) be a connected graph of order \(n \). Then \(wh(G) = |V(G)| = n \) if and only if \(G = K_n \) or \(|g_{x,y}| \geq 2 \) for all \(x, y \in V(G) \) such that \(xy \notin E(G) \).

Proof: Let \(G \) be a connected graph of \(n \) vertices with \(wh(G) = n \). Suppose \(G \neq K_n \). Then, there exist distinct vertices \(u, v \in G \) such that \(uv \notin E(G) \). Assume \(|g_{u,v}| = 1 \). Then, there exists a unique \(u-v \) geodesic \(P_k = [a_1, a_2, \ldots, a_k] \) where \(a_1 = u, a_k = v \) and \(k \geq 3 \). It follows that there exists at least one vertex, say \(c \in P_k \) such that \(c = a_i, 1 < i < k \). Consider \(S = V(G) \setminus \{c\} \). Then, \([S]_G^w = V(G) \) and

\[
wh(G) \leq |S| = |V(G)| - 1 = n - 1 \neq n,
\]

a contradiction to the above assumption. Thus, \(|g_{x,y}| \geq 2 \) for all \(x, y \in V(G) \) such that \(xy \notin E(G) \).
Conversely, let $G = K_n$. Then for every subset of $V(G)$, its weakly hull set is itself. Hence, $V(G)$ is the only weakly hull set in G and $wh(G) = n$. Suppose $G \neq K_n$. Let $S \subseteq V(G)$. Then there exists $c \in V(G) \setminus S$. Take $S^* = V(G) \setminus \{c\}$. Then $S \subset S^*$. Let $a, b \in S^*, a \neq b$. If there exists no a-b geodesic containing c, then every vertex of an a-b geodesic belongs to S^*. Suppose there exists an a-b geodesic $[x_1, x_2, \ldots, x_k]$ such that $x_1 = a$, $x_k = b$ and $c = x_i, 1 < i < k$. By assumption, there exists $[x_{i-1}, y, x_{i+1}] \in g_{x_{i-1}, x_{i+1}}$ such that $y \neq c$. Hence, $[x_1, x_2, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_k]$ is an a-b geodesic whose vertices are contained in S^*. Therefore, S^* is a weakly convex set. Since $S \subseteq S^*$, it follows that $[S]_G^w \subseteq S^*$. Consequently, $V(G)$ is the only weakly hull set in G. Therefore, $wh(G) = n$.

Lemma 2.6 If S is a weakly hull set of G, then $Ext(G) \subseteq S$.

Proof: Let S be a weakly hull set of G. Suppose there exists $a \in Ext(G) \setminus S$. Since a cannot be in any x-y geodesic, where $x \neq a$ and $y \neq a$, it follows that $a \notin [S]_G^w$. This implies that $[S]_G^w \neq V(G)$, a contradiction to our assumption. Therefore, $Ext(G) \subseteq S$.

The next corollaries follow from Lemma 2.6 since every vertex of a complete graph is extreme and every leaf is an extreme vertex.

Corollary 2.7 If $n \geq 1$, then $wh(K_n) = n$.

Corollary 2.8 If S is a weakly hull set of G, then $L(G) \subseteq S$ where $L(G)$ is the set of leaves of G.

Theorem 2.9 Let T_n be a tree of order $n \geq 1$. Then $wh(T_n) = |L(T_n)|$.

Proof: Clearly, $L(T_n)$ is a weakly hull set of T_n. By Corollary 2.8, it follows that $L(T_n)$ is the minimum hull set of T_n. Therefore, $wh(T_n) = |L(T_n)|$.

3 A Realization Problem

Let G be a connected graph and S be a subset of $V(G)$. The convex hull of S, denoted by $[S]_G$ is the smallest convex set in G containing S. A set $S \subseteq V(G)$ is called a hull set if $[S]_G = V(G)$. A hull set of G of minimum cardinality is a minimum hull set and its cardinality is the hull number denoted by $h(G)$. These concepts are investigated in [1], [2], and [3].

Theorem 3.1 [3] If G is a connected graph with n vertices, then $h(G) = n$ if and only if G is complete.
Theorem 3.2 Let G be a connected graph. Then $h(G) \leq wh(G)$.

Proof: Let $S \subseteq V(G)$. The convex hull $[S]_G$ of S is the smallest convex set containing S. It follows that $[S]_G$ is a weakly convex set containing S. Consequently, if S_1 is a weakly convex hull of S, then $S_1 \subseteq [S]_G$. Thus, in particular, if S is a weakly hull set of G, then $V(G) = [S]_G^{wh} \subseteq [S]_G$. This implies that S is a hull set of G. Therefore, $h(G) \leq wh(G)$. \qed

The next result shows that every pair of positive integers are realizable as values of the parameters hull number and weakly hull number.

Theorem 3.3 Let a and b be positive integers such that $2 \leq a \leq b$. Then there exists a connected graph G with $h(G) = a$ and $wh(G) = b$.

Proof: Consider the following cases:
Case 1: Suppose $a = b$.
Consider $G_1 = K_a$. By Theorem 3.1 and Corollary 2.7, it follows that $h(G_1) = wh(G_1) = a$.
Case 2: Suppose $2 = a < b$.
Let G_2 be a graph obtained from the path $[x, z, y]$ by adding paths $[x, v_i, z]$ for $1 \leq i \leq b - a$ (see Figure 2).

![Figure 2: The graph G_2](image)

The sets $S_1 = \{x, y\}$ and $S_2 = S_1 \cup \{v_i : i = 1, 2, \ldots, b-a\}$ are, respectively, the minimum hull and minimum weakly hull sets of G_2. Thus, $h(G_2) = |S_1| = 2 = a$ and $wh(G_2) = a + (b-a) = b$.
Case 3: Suppose $2 < a < b$.
Consider the graph G_3 obtained from G_2 in Figure 2 by adding the edges $x_i x$ for $i = 1, 2, \ldots, a - 1$ (see Figure 3).
Let $S_3 = \{x_i : i = 1, 2, \ldots, a-1\} \cup \{y\}$ and $S_4 = S_3 \cup \{v_j : j = 1, 2, \ldots, b-a\}$. Then S_3 is a minimum hull set and S_4 is a minimum weakly hull set of G. Therefore $h(G) = |S_3| = a$ and $wh(G) = a + (b - a) = b$. □

The following corollaries follows directly from Theorem 3.3.

Corollary 3.4 Given a positive integer n, there exists a connected graph G such that $wh(G) - h(G) = n$, that is, the difference $wh - h$ can be made arbitrarily large.

Corollary 3.5 For every pair of positive integers a and b with $2 \leq a < b$, the smallest possible order of a connected graph G^* such that $wh(G^*) = a$ and $h(G^*) = b$ is $b + 2$.

4 Weakly Hull Number of the Join of Graphs

Let A and B be sets which are not necessarily disjoint. The disjoint union of A and B, denoted by $A \cup B$, is the set obtained by taking the union of A and B treating each element in A as distinct from each element in B. The join of two graphs G and H is the graph $G + H$ with $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$.

Theorem 4.1 Let G be a nontrivial graph of order n. Then

$$wh(K_1 + G) = \begin{cases} n + 1 & \text{if } diam(G) \leq 2 \\ n & \text{if otherwise} \end{cases}$$

Proof: Let $v \in V(K_1)$. Suppose $diam(G) \leq 2$. If $diam(G) = 1$, then G is complete. Hence, by Theorem 2.5, $wh(K_1 + G) = |V(K_1 + G)| = n + 1$. Assume $diam(G) = 2$. Then there exist $x, y \in V(G)$ such that $d_G(x, y) = 2$, that
is, \([x, z, y] \in g_{x,y}\) for some \(z \in V(G)\). By definition of a join, it follows that \([x, v, y] \in g_{x,y}\). Thus, \(|g_{x,y}| \geq 2\). By Theorem 2.5, \(wh(K_1 + G) = n + 1\). Suppose \(diam(G) \geq 3\). Let \(S\) be a minimum weakly hull set of \(K_1 + G\). Suppose \(v \in S\). Suppose further that \(V(G) \setminus S \neq \emptyset\). Then, since \(S = \{v\} \cup (V(G) \cap S)\) is weakly convex, it follows that a weakly convex hull of \(S\) is \(S\), contrary to our assumption. Thus, \(V(G) \cap S = V(G)\) and \(S = V(K_1 + G)\). This, however, is not possible because \(V(G)\) is also a weakly hull set of \(K_1 + G\). Thus, \(v \notin S\). This implies that \(S \subseteq V(G)\). Assume \(S \setminus V(G) \neq \emptyset\). Since \(\{v\} \cup S\) is a weakly convex hull in \(K_1 + G\), it follows that \([S]_G^w = S \cup \{v\} \neq V(G)\). This is a contradiction. Therefore, \(S = V(G)\) and \(wh(K_1 + G) = n\). □

The following corollary is a direct consequence of the above theorem.

Corollary 4.2 Let \(n\) be a positive integer.

(i) \[wh(F_n) = \begin{cases} n + 1 & \text{if } 1 \leq n \leq 3 \\ n & \text{if } n \geq 4 \end{cases}\]

(ii) \[wh(W_n) = \begin{cases} n + 1 & \text{if } 3 \leq n \leq 5 \\ n & \text{if } n \geq 6 \end{cases}\]

(iii) If \(n \geq 2\), then \(wh(K_{1,n}) = n\).

Theorem 4.3 Let \(G\) and \(H\) be nontrivial graphs of orders \(m \geq 2\) and \(n \geq 2\), respectively. Then, \(wh(G + H) = m + n\).

Proof: If \(G + H\) is a complete graph, then by Theorem 2.5, \(wh(G + H) = |V(G + H)| = m + n\).

Suppose \(G + H \neq K_{m+n}\). Then there exist \(x, y \in V(G + H)\) such that \(xy \notin E(G + H)\). Since \(x\) and \(y\) are not adjacent in \(G + H\), it follows that \(x, y\) belong to the same vertex set, say \(V(G)\) or \(V(H)\). Otherwise, if \(x \in V(G)\) and \(y \in V(H)\), then \(xy \in E(G + H)\), a contradiction. Suppose \(x, y \in V(G)\). Since \(H\) is nontrivial, there exist \(w, z \in V(H)\) such that \([x, w, y], [x, z, y] \in g_{x,y}\). Thus, \(|g_{x,y}| \geq 2\). By Theorem 2.5, \(wh(G + H) = m + n\). Similarly, if \(x, y \in V(H)\), it follows that \(wh(G + H) = m + n\). □

The following corollary follows directly from Theorem 4.3.

Corollary 4.4 Let \(m\) and \(n\) be positive integers greater than 1. Then \(wh(K_{m,n}) = m + n\).
References

Received: June 6, 2014