Polynomial Representation and Degree Sequence of a Graph

Sergio R. Canoy, Jr. and Mhelmar A. Labendia

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, Iligan City, Philippines

Abstract

If $G = (V(G), E(G))$ is a graph and $\Delta(G)$ is the maximum degree of G, the polynomial $f_G(x) = \sum_{i=1}^{n} a_i x^i$, where a_i is the number of vertices of G having degree i for each $i = 1, 2, \cdots n = \Delta(G)$, is called the polynomial representation of G. If $\langle d_1, d_2, \cdots, d_p \rangle$ is the degree sequence of graph G, where $d_1 \leq d_2 \leq \cdots \leq d_p$ and p is the order of G, then $f_G(x) = \sum_{i=1}^{p} x^{d_i}$. In this paper we give the polynomial representation and describe the degree sequence of the join, corona, lexicographic product, Cartesian product, and Tensor product of two graphs.

Mathematics Subject Classification: 05C12

Keywords: polynomial representation, degree sequence, join, lexicographic product, Cartesian product

1 Introduction

Let $G = (V(G), E(G))$ be a connected graph and $v \in V(G)$. The neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\}$. The degree of $v \in V(G)$, denoted by $deg_G(v)$, is equal to the cardinality of $N_G(v)$. The
maximum degree of G, denoted by $\Delta(G)$, is equal to $\max \{deg_G(v) : v \in V(G) \}$. Suppose $\Delta(G) = n$. For each $i = 1, 2, \cdots, n$, let a_i be the number of vertices of G with degree $i \geq 0$. Then the polynomial $f_G(x) = \sum_{i=1}^{n} a_i x^i$ is called the polynomial representation of G. Equivalently, $f_G(x) = \sum_{v \in V(G)} x^{N_G(v)}$. While every graph G has a polynomial representation, it is not true that a polynomial is always a polynomial representation of some simple graph (e.g. there is no simple graph G with $f_G(x) = 2x^3 + 1$). A polynomial $f(x)$ is said to be graphic if there exists a simple graph G such that $f_G(x) = f(x)$.

Now, if p is the order of G and d_1, d_2, \cdots, d_p are degrees of the vertices G, where $d_1 \geq d_2 \geq \cdots \geq d_p$, then we refer to the sequence $\langle d_1, d_2, \cdots, d_p \rangle$ as the degree sequence of G. It is easy to see that $f_G(x) = \sum_{i=1}^{p} x^{d_i}$. As defined in [2], a sequence $\langle d_1, d_2, \cdots, d_p \rangle$ of nonnegative integers, where $d_1 \geq d_2 \geq \cdots \geq d_p$, is graphic if there exists a simple graph G with degree sequence $\langle d_1, d_2, \cdots, d_p \rangle$. The degree sequence of a graph had been extensively studied and investigated by various authors (see [1], [3], [4], [5], and [6]). In particular, some characterizations had been obtained as to when a given non-increasing sequence of non-negative integers graphical.

This paper introduces for the first time the concept of polynomial representation of a graph. As shown in this paper, the polynomial representation of a graph makes it easier to describe the degree sequence of the join, corona, lexicographic product, Cartesian product, and Tensor product of two graphs. We also state, as a direct consequence of the characterization obtained by Erdős and Gallai in [3], necessary and sufficient condition for a given polynomial to be graphic.

2 Graphical Polynomials

We first state the following known result on the degree sequence of a graph.

Theorem 2.1 ([3]) A sequence $\langle d_1, d_2, \cdots, d_p \rangle$ of nonnegative integers, where $d_1 \geq d_2 \geq \cdots \geq d_p$, is graphic (or graphic) if and only if its sum is even and for all $k = 1, 2, \cdots, p$, we have

$$\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{p} \min \{k, d_i\}.$$

Consider a polynomial $f(x) = \sum_{i=1}^{q} a_i x^{k_i}$, where a_i and k_i are positive integers for all $i = 1, 2, \cdots, q$ and $k_1 > k_2 > \cdots > k_q$. For each j, with
Polynomial representation and degree sequence

$1 \leq j \leq \sum_{i=1}^{q} a_i = p$, let $d_j = k_i$ whenever $\sum_{r=0}^{i-1} a_r < j \leq \sum_{r=0}^{i} a_r$ for $i = 1, 2, \ldots, q$, where $a_0 = 0$. Clearly, $\langle d_1, d_2, \ldots, d_p \rangle$ is a sequence of positive integers and $f(x) = \sum_{i=1}^{p} x^{d_i}$. Henceforth, the sequence $\langle d_1, d_2, \ldots, d_p \rangle$ will be referred to as the sequence induced by f. The first result characterizes all graphical polynomials. The proof follows from the definition of graphical polynomial and Theorem 2.1 by Erdős and Gallai in [3].

Theorem 2.2 Let $f(x) = \sum_{i=1}^{q} a_i x^{k_i}$ be a polynomial, where a_i and k_i are positive integers for all $i = 1, 2, \ldots, q$ and $k_1 > k_2 > \cdots > k_q$, and let $\langle d_1, d_2, \ldots, d_p \rangle$ be the sequence induced by f. Then the following statements are equivalent:

(a) The polynomial $f(x)$ is graphic.

(b) $\sum_{i=1}^{k} d_i$ is even and for all $k = 1, 2, \ldots, p$, we have

$$
\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{p} \min\{k, d_i\}.
$$

3 Join of Graphs

The join $G + H$ of two graphs G and H is the graph with vertex set

$$
V(G + H) = V(G) \cup V(H)
$$

and edge set

$$
E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}.
$$

Theorem 3.1 Let G and H be graphs with polynomial representations $f_G(x)$ and $f_H(x)$ and orders p and q, respectively. Then

$$
f_{G+H}(x) = x^p f_G(x) + x^q f_H(x).
$$

Proof: Let $v \in V(G + H)$. If $v \in V(G)$, then $N_{G+H}(v) = N_G(v) \cup V(H)$. If $v \in V(H)$, then $N_{G+H}(v) = N_H(v) \cup V(G)$. It follows that
\[
\begin{align*}
f_{G+H}(x) &= \sum_{v \in V(G+H)} x^{\left|N_{G+H}(v)\right|} \\
&= \sum_{v \in V(G)} x^{\left|N_{G+H}(v)\right|} + \sum_{v \in V(H)} x^{\left|N_{G+H}(v)\right|} \\
&= \sum_{v \in V(G)} x^{\left|N_G(v)\right|+\left|V(H)\right|} + \sum_{v \in V(H)} x^{\left|N_H(v)\right|+\left|V(G)\right|} \\
&= x^q \sum_{v \in V(G)} x^{\left|N_G(v)\right|} + x^p \sum_{v \in V(H)} x^{\left|N_H(v)\right|} \\
&= x^q f_G(x) + x^p f_H(x).
\end{align*}
\]

The following results are immediate from the above result:

Corollary 3.2 Let \(G \) and \(H \) be graphs of orders \(p \) and \(q \), respectively. If \(H \) is \(r \)-regular, then
\[
f_{G+H}(x) = x^q f_G(x) + qx^{p+r}.
\]
In particular, \(f_{G+K_q}(x) = x^q f_G(x) + qx^{p+q-1} \).

Corollary 3.3 Let \(m \) and \(n \) be positive integers. Then
\[
f_{K_{m,n}}(x) = mx^n + nx^m.
\]

\(|V(H)| = n \) and \(f_G(x) = m \), and \(f_H(x) = n \). The desired result now follows from Theorem 3.1.

Theorem 3.4 Let \(G \) and \(H \) be connected graphs with degree sequences \(\langle d_1, d_2, \cdots, d_p \rangle \) and \(\langle r_1, r_2, \cdots, r_q \rangle \), respectively. Then the terms of the degree sequence of \(G + H \) are the elements of the set \(\{q + d_i : 1 \leq i \leq p\} \cup \{p + r_i : 1 \leq i \leq q\} \).

Proof: The polynomial representations of \(G \) and \(H \) are, respectively, \(f_G(x) = \sum_{i=1}^{p} x^{d_i} \) and \(f_H(x) = \sum_{i=1}^{q} x^{r_i} \). By Theorem 3.1,
\[
f_{G+H}(x) = x^q \sum_{i=1}^{p} x^{d_i} + x^p \sum_{i=1}^{q} x^{r_i} \\
= \sum_{i=1}^{p} x^{q+d_i} + \sum_{i=1}^{q} x^{p+r_i}.
\]
It follows that the terms of the degree sequence of \(G + H \) are the elements of the set \(\{q + d_i : 1 \leq i \leq p\} \cup \{p + r_i : 1 \leq i \leq q\} \).
4 Corona of Graphs

The corona $G \circ H$ of two graphs G and H is the graph obtained by taking one copy of G of order n and n copies of H, and then joining the ith vertex of G to every vertex in the ith copy of H. For every $v \in V(G)$, denote by H^v the copy of H whose vertices are attached one by one to the vertex v. Subsequently, denote by $v + H^v$ the subgraph of the corona $G \circ H$ corresponding to the join $\langle \{v\} \rangle + H^v$, $v \in V(G)$.

Theorem 4.1 Let G be a connected graph of order p and H any graph of order q. Then

$$f_{G \circ H}(x) = x^q f_G(x) + px f_H(x).$$

Proof: Let $v \in V(G \circ H)$. If $v \in V(G)$, then $N_{G \circ H}(v) = N_G(v) \cup V(H^v)$. If $v \in V(H^u)$ for some $u \in V(G)$, then $N_{G \circ H}(v) = N_{H^u}(v) \cup \{u\}$. It follows that

$$f_{G \circ H}(x) = \sum_{v \in V(G \circ H)} x^{|N_{G \circ H}(v)|}$$

$$= \sum_{v \in V(G)} x^{|N_{G \circ H}(v)|} + \sum_{v \in V(G \circ H) \setminus V(G)} x^{|N_{G \circ H}(v)|}$$

$$= \sum_{v \in V(G)} x^{|N_G(v)|+q} + \sum_{v \in V(G \circ H) \setminus V(G)} x^{|N_{H^v}(v)|+1}$$

$$= x^q \sum_{v \in V(G)} x^{|N_G(v)|} + px \sum_{v \in V(H)} x^{|N_{H^v}(v)|}$$

$$= x^q f_G(x) + px f_H(x).$$

The following result is immediate from the above result:

Corollary 4.2 Let G be a connected graph of order p and H an r-regular graph of order q. Then

$$f_{G \circ H}(x) = x^q f_G(x) + pq x^{r+1}.$$

In particular, $f_{G \circ K_q}(x) = x^q (f_G(x) + pq)$.

Theorem 4.3 Let G be a connected graph and H a graph with degree sequences $\langle d_1, d_2, \ldots, d_p \rangle$ and $\langle r_1, r_2, \ldots, r_q \rangle$, respectively. Then the terms of the degree sequence of $G \circ H$ are the elements of the set $\{q + d_i : 1 \leq i \leq p\} \cup \{1 + r_i : 1 \leq i \leq q\}$, where p consecutive terms of the degree sequence are $1 + r_i$ for each i with $1 \leq i \leq q$.
Proof: The polynomial representations of \(G \) and \(H \) are, respectively,
\[
 f_G(x) = \sum_{i=1}^{p} x^{d_i} \quad \text{and} \quad f_H(x) = \sum_{i=1}^{q} x^{r_i}.
\]
By Theorem 3.1,
\[
 f_{G \circ H}(x) = x^q \sum_{i=1}^{p} x^{d_i} + px \sum_{i=1}^{q} x^{r_i} = \sum_{i=1}^{p} x^{q+d_i} + p \sum_{i=1}^{q} x^{1+r_i}.
\]
It follows that the terms of the degree sequence of \(G \circ H \) are the elements of the set \(\{q + d_i : 1 \leq i \leq p\} \cup \{1 + r_i : 1 \leq i \leq q\} \). Moreover, \(p \) consecutive terms of the degree sequence are \(1 + r_i \) for each \(i \) with \(1 \leq i \leq q \).

5 Lexicographic Product of Graphs

The lexicographic \(G[H] \) of two graphs \(G \) and \(H \) is the graph with \(V(G[H]) = V(G) \times V(H) \) and \((u, u')(v, v') \in E(G[H])\) if and only if either \(uv \in E(G) \) or \(u = v \) and \(u'v' \in E(H) \).

Theorem 5.1 Let \(G \) and \(H \) be connected graphs of orders \(m \) and \(n \), respectively. Then

\[
 f_{G[H]}(x) = f_G(x^n)f_H(x).
\]

Proof: Let \((a, b) \in V(G[H])\). Then \(N_{G[H]}((a, b)) = D \cup E \), where \(D = \{(u, v) \in V(G[H]) : au \in E(G)\} \) and \(E = \{(u, v) \in V(G[H]) : a = u \ \text{and} \ bv \in E(H)\} \). Thus

\[
 |N_{G[H]}((a, b))| = |D| + |E| = |V(H)||N_G(a)| + |N_H(b)|.
\]
Therefore
Polynomial representation and degree sequence

1451

\[f_{G[H]}(x) = \sum_{(a,b) \in V(G[H])} x^{\left| N_{G[H]}((a,b)) \right|} \]

\[= \sum_{(a,b) \in V(G[H])} x^{\left| V(H) \right| N_{G}(a) + \left| N_{H}(b) \right|} \]

\[= \sum_{a \in V(G)} \sum_{b \in V(H)} x^{\left| V(H) \right| N_{G}(a)} \sum_{b \in V(H)} x^{\left| N_{H}(b) \right|} \]

\[= f_{G}(x^{\left| V(H) \right|}) f_{H}(x) \]

\[= f_{G}(x^{n}) f_{H}(x). \]

The following result is a direct consequence of Theorem 5.1:

Corollary 5.2 Let \(G \) be a connected graph of order \(m \) and \(K_n \) the complete graph of order \(n \). Then

\[f_{G[K_n]}(x) = n x^{n-1} f_{G}(x^{n}). \]

Theorem 5.3 Let \(G \) and \(H \) be connected graphs with degree sequences \(\langle d_1, d_2, \cdots, d_p \rangle \) and \(\langle r_1, r_2, \cdots, r_q \rangle \), respectively. Then the terms of the degree sequence of \(G[H] \) are the elements of the set \(\{ qd_i + r_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q \} \).

Proof: The polynomial representations of \(G \) and \(H \) are, respectively, \(f_{G}(x) = \sum_{i=1}^{p} x^{d_i} \) and \(f_{H}(x) = \sum_{i=1}^{q} x^{r_i} \). By Theorem 4.1,

\[f_{G[H]}(x) = \sum_{i=1}^{p} (x^{q})^{d_i} \sum_{i=1}^{q} x^{r_i} \]

\[= \sum_{i=1}^{p} \sum_{j=1}^{q} x^{qd_i + r_j}. \]

It follows that the terms of the degree sequence of \(G[H] \) are the elements of the set \(\{ qd_i + r_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q \} \).

Corollary 5.4 Let \(G \) be connected graph with degree sequence \(\langle d_1, d_2, \cdots, d_p \rangle \) and \(K_q \) the complete graph of order \(q \). Then the degree sequence of \(G[K_q] \) is \(\langle qd_1 + q - 1, qd_1 + q - 1, \cdots, qd_1 + q - 1, \]

\[qd_2 + q - 1, \cdots, qd_2 + q - 1, \cdots, qd_p + q - 1, \cdots, qd_p + q - 1 \rangle. \]
6 Cartesian Product of Graphs

The Cartesian product \(G \times H \) of two graphs \(G \) and \(H \) is the graph with \(V(G \times H) = V(G) \times V(H) \) and \((u, u')(v, v') \in E(G \times H) \) if and only if either \(uv \in E(G) \) and \(u' = v' \) or \(u = v \) and \(u'v' \in E(H) \).

Theorem 6.1 Let \(G \) and \(H \) be connected graphs. Then

\[
f_{G \times H}(x) = f_G(x)f_H(x).
\]

Proof: Let \((a, b) \in V(G \times H)\). Then \(N_{G \times H}((a, b)) = D \cup E \), where \(D = \{(u, v) \in V(G \times H) : b = v \text{ and } au \in E(G) \} \) and \(E = \{(u, v) \in V(G \times H) : a = u \text{ and } bv \in E(H) \} \). Thus

\[
|N_{G \times H}((a, b))| = |D| + |E| = |N_G(a)| + |N_H(b)|.
\]

Therefore

\[
f_{G \times H}(x) = \sum_{(a, b) \in V(G \times H)} x^{|N_{G \times H}((a, b))|} = \sum_{(a, b) \in V(G \times H)} x^{|N_G(a)| + |N_H(b)|} = \sum_{a \in V(G)} \sum_{b \in V(H)} x^{|N_G(a)|} x^{|N_H(b)|} = f_G(x)f_H(x).
\]

Theorem 6.2 Let \(G \) and \(H \) be connected graphs with degree sequences \(\langle d_1, d_2, \cdots, d_p \rangle \) and \(\langle r_1, r_2, \cdots, r_q \rangle \), respectively. Then the terms of the degree sequence of \(G \times H \) are the elements of the set \(\{d_i + r_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\} \).

Proof: The polynomial representations of \(G \) and \(H \) are, respectively, \(f_G(x) = \sum_{i=1}^{p} x^{d_i} \) and \(f_H(x) = \sum_{i=1}^{q} x^{r_i} \). By Theorem 5.1, \(f_{G \times H}(x) = \sum_{i=1}^{p} x^{d_i} \sum_{i=1}^{q} x^{r_i} = \sum_{i=1}^{p} \sum_{j=1}^{q} x^{d_i + r_j} \). It follows that the terms of the degree sequence of \(G \times H \) are the elements of the set \(\{d_i + r_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\} \).
Corollary 6.3 Let G be connected graph with degree sequence (d_1, d_2, \ldots, d_p) and K_q the complete graph of order q. Then the degree sequence of $G \times K_q$ is $\langle d_1 + q - 1, d_1 + q - 1, \ldots, d_1 + q - 1, d_2 + q - 1, \ldots, d_p + q - 1, d_p + q - 1 \rangle$.

7 Tensor Product of Graphs

The Tensor product of graphs G and H is the graph $G \otimes H$ with $V(G \otimes H) = V(G) \times V(H)$ and $(a, b)(u, v) \in E(G \otimes H)$ if and only if $au \in E(G)$ and $bv \in E(H)$.

Theorem 7.1 Let G and H be connected graphs with polynomial representations $f_G(x)$ and $f_H(x)$ and orders p and q, respectively. Then

$$f_{G \otimes H}(x) = \sum_{a \in V(G)} f_H(x^{\left|N_G(a)\right|}) = \sum_{b \in V(H)} f_G(x^{\left|N_H(b)\right|}).$$

Proof: Let $(a, b) \in V(G \otimes H)$. By definition,

$$N_{G \otimes H}((a, b)) = \{(u, v) : au \in E(G) \text{ and } bv \in E(H)\}.$$

In other words,

$$N_{G \otimes H}((a, b)) = V(G \otimes H) \setminus (D \cup E),$$

where $D = \{(u, v) : au \notin E(G)\}$ and $E = \{(u, v) : bv \notin E(H)\}$. Note that $|D| = q(p - |N_G(a)|)$ and $|E| = p(q - |N_H(b)|)$. Now, since $((V(G) \setminus N_G(a)) \times (V(H) \setminus N_H(b))) = D \cap E$, it follows that

$$|N_{G \otimes H}((a, b))| = pq - [q(p - |N_G(a)|) + p(q - |N_H(b)|) - (p - |N_G(a)|)(q - |N_H(b)|)],$$

i.e., $|N_{G \otimes H}((a, b))| = |N_G(a)| \cdot |N_H(b)|$. By definition,

$$f_{G \otimes H}(x) = \sum_{(a, b) \in V(G \otimes H)} x^{\left|N_G(a)\right| \cdot \left|N_H(b)\right|} = \sum_{a \in V(G)} \sum_{b \in V(H)} (x^{\left|N_G(a)\right| \cdot \left|N_H(b)\right|}).$$

Therefore

$$f_{G \otimes H}(x) = \sum_{a \in V(G)} f_H(x^{\left|N_G(a)\right|}) = \sum_{b \in V(H)} f_G(x^{\left|N_H(b)\right|}).$$
Corollary 7.2 Let G be a connected graph with polynomial representation $f_G(x)$. If H is an r-regular connected graph ($r \geq 1$) of order q, then

$$f_{G \otimes H}(x) = qf_G(x^r).$$

In particular, if $H = K_q$, then $f_{G \otimes H}(x) = qf_G(x^{q-1})$.

Theorem 7.3 Let G and H be connected graphs with degree sequences $\langle d_1, d_2, \cdots, d_p \rangle$ and $\langle r_1, r_2, \cdots, r_q \rangle$, respectively. Then the terms of the degree sequence of $G \otimes H$ are the elements of the set $\{d_ir_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\}$.

Proof: The polynomial representations of G and H are, respectively, $f_G(x) = \sum_{i=1}^{p} x^{d_i}$ and $f_H(x) = \sum_{i=1}^{q} x^{r_i}$. By Theorem 7.1,

$$f_{G \otimes H}(x) = \sum_{i=1}^{p} \sum_{j=1}^{q} (x^{d_i})^{r_j} = \sum_{i=1}^{p} \sum_{j=1}^{q} x^{d_ir_j}.$$

It follows that the terms of the degree sequence of $G \otimes H$ are the elements of the set $\{d_ir_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\}$.

The following result follows from Theorem 7.3 (also from Corollary 7.2).

Corollary 7.4 Let G be a connected graph with degree sequence $\langle d_1, d_2, \cdots, d_p \rangle$. If H is an r-regular connected graph ($r \geq 1$) of order q, then the degree sequence of $G \otimes H$ is $\langle rd_1, rd_1, \cdots, rd_1, \underbrace{rd_2, rd_2, \cdots, rd_2}_{\text{q terms}}, \underbrace{rd_p, rd_p, \cdots, rd_p}_{\text{q terms}} \rangle$.

References

Received: June 6, 2014