Additive and Quadratic Functional in Equalities in Non-Archimedean Normed Spaces

Jung Rye Lee
Department of Mathematics
Daejin University
Kyeonggi 487-711, Korea

Choonkil Park
Department of Mathematics
Hanyang University
Seoul 133-791, Korea

Dong Yun Shin
Department of Mathematics
University of Seoul
Seoul 130-743, Korea

Copyright © 2014 Jung Rye Lee, Choonkil Park and Dong Yun Shin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In this paper, we solve the additive functional inequality
\[\|f(x + y) - f(x) - f(y)\| \leq \left\| f\left(\frac{x + y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y)\right\| \quad (1) \]
and the quadratic functional inequality
\[\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \leq \left\| f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y)\right\| \quad (2) \]
in normed spaces.
Moreover, we prove the Hyers-Ulam stability of the functional inequalities (1) and (2) in Banach spaces.

Furthermore, we investigate the additive functional inequality

$$\|f\left(\frac{x+y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y)\| \leq \|f(x+y) - f(x) - f(y)\|$$

(3)

and the quadratic functional inequality

$$\|f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y)\|$$

$$\leq \|f(x+y) + f(x-y) - 2f(x) - 2f(y)\|$$

(4)

in non-Archimedean normed spaces.

Moreover, we prove the Hyers-Ulam stability of the functional inequalities (3) and (4) in non-Archimedean Banach spaces.

Mathematics Subject Classification: 46S10, 39B62, 39B52, 47S10, 12J25

Keywords: Jordan-von Neumann functional equation; non-Archimedean normed space; Banach space; Hyers-Ulam stability; functional inequality

*Corresponding author: Dong Yun Shin

1 Introduction and preliminaries

A valuation is a function \(| \cdot |\) from a field \(K\) into \([0, \infty)\) such that 0 is the unique element having the 0 valuation, \(|rs| = |r| \cdot |s|\) and the triangle inequality holds, i.e.,

$$|r + s| \leq |r| + |s|, \quad \forall r, s \in K.$$

A field \(K\) is called a valued field if \(K\) carries a valuation. The usual absolute values of \(\mathbb{R}\) and \(\mathbb{C}\) are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

$$|r + s| \leq \max\{|r|, |s|\}, \quad \forall r, s \in K,$$

then the function \(| \cdot |\) is called a non-Archimedean valuation, and the field is called a non-Archimedean field. Clearly \(|1| = |1| = 1\) and \(|n| \leq 1\) for all \(n \in \mathbb{N}\). A trivial example of a non-Archimedean valuation is the function \(| \cdot |\) taking everything except for 0 into 1 and \(|0| = 0\).

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it simply a field.
Definition 1.1 ([8]) Let X be a vector space over a field K with a non-Archimedean valuation $|·|$. A function $∥·∥ : X → [0, ∞)$ is said to be a non-Archimedean norm if it satisfies the following conditions:

(i) $∥x∥ = 0$ if and only if $x = 0$;
(ii) $∥rx∥ = |r∥x∥$ ($r ∈ K, x ∈ X$);
(iii) the strong triangle inequality

$$∥x + y∥ ≤ \max\{∥x∥, ∥y∥\}, \quad ∀x, y ∈ X$$

holds. Then $(X, ∥·∥)$ is called a non-Archimedean normed space.

Definition 1.2 (i) Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\{x_n\}$ is called Cauchy if for a given $ε > 0$ there is a positive integer N such that

$$∥x_n - x_m∥ ≤ ε$$

for all $n, m ≥ N$.

(ii) Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\{x_n\}$ is called convergent if for a given $ε > 0$ there are a positive integer N and an $x ∈ X$ such that

$$∥x_n - x∥ ≤ ε$$

for all $n ≥ N$. Then we call $x ∈ X$ a limit of the sequence $\{x_n\}$, and denote by $\lim_{n→∞} x_n = x$.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space.

The functional equation

$$f(x + y) = f(x) + f(y)$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias [10] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [4] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.
The functional equation
\[f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y) \]
is called the Jensen equation.

The functional equation
\[f(x+y) + f(x-y) = 2f(x) + 2f(y) \]
is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [12] for mappings \(f : E_1 \to E_2 \), where \(E_1 \) is a normed space and \(E_2 \) is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain \(E_1 \) is replaced by an Abelian group.

The functional equation
\[f\left(\frac{x+y}{2}\right) + \left(\frac{x-y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y) \]
is called a Jensen type quadratic equation.

In [5], Gilányi showed that if \(f \) satisfies the functional inequality
\[\|2f(x) + 2f(y) - f(xy^{-1})\| \leq \|f(xy)\| \] (5)
then \(f \) satisfies the Jordan-von Neumann functional equation
\[2f(x) + 2f(y) = f(xy) + f(xy^{-1}). \]

In Section 2, we solve the additive functional inequality (1) and prove the Hyers-Ulam stability of the additive functional inequality (1) in Banach spaces.

In Section 3, we solve the quadratic functional inequality (2) and prove the Hyers-Ulam stability of the quadratic functional inequality (2) in Banach spaces.

In Section 4, we solve the additive functional inequality (3) and prove the Hyers-Ulam stability of the additive functional inequality (3) in non-Archimedean Banach spaces.

In Section 5, we solve the quadratic functional inequality (4) and prove the Hyers-Ulam stability of the quadratic functional inequality (4) in non-Archimedean Banach spaces.
2 Additive functional inequalities in Banach spaces

Throughout this section, assume that X is a normed space with norm $\| \cdot \|$ and that Y is a Banach space with norm $\| \cdot \|$.

Lemma 2.1 A mapping $f : X \to Y$ satisfies

$$\| f(x + y) - f(x) - f(y) \| \leq \| f\left(\frac{x + y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y) \|$$

(6)

for all $x, y \in X$ if and only if $f : X \to Y$ is additive.

Proof. Assume that $f : X \to Y$ satisfies (6).

Letting $x = y = 0$ in (6), we get $\| f(0) \| \leq 0$. So $f(0) = 0$.

Letting $y = -x$ in (6), we get $\| f(x) + f(-x) \| \leq \frac{1}{2} \| f(x) + f(-x) \|$ for all $x \in X$. Hence $f(-x) = -f(x)$ for all $x \in X$.

Letting $y = x$ in (6), we get $\| f(2x) - 2f(x) \| \leq 0$ and so $f(2x) = 2f(x)$ for all $x \in X$. Thus $f\left(\frac{x}{2}\right) = \frac{1}{2}f(x)$ for all $x \in X$.

It follows from (6) that $\| f(x+y) - f(x) - f(y) \| \leq \frac{1}{2} \| f(x+y) - f(x) - f(y) \|$ and so $f(x+y) = f(x) + f(y)$ for all $x, y \in X$.

The converse is obviously true.

Corollary 2.2 A mapping $f : X \to Y$ satisfies

$$f(x + y) = f\left(\frac{x + y}{2}\right) + \frac{1}{2}f(x) + \frac{1}{2}f(y)$$

for all $x, y \in X$ if and only if $f : X \to Y$ is additive.

Now, we prove the Hyers-Ulam stability of the additive functional inequality (6) in Banach spaces.

Theorem 2.3 Let $r > 1$ and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping such that

$$\| f(x + y) - f(x) - f(y) \| \leq \| f\left(\frac{x + y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y) \| + \theta(\|x\|^r + \|y\|^r)$$

(7)

for all $x, y \in X$. Then there exists a unique additive mapping $h : X \to Y$ such that

$$\| f(x) - h(x) \| \leq \frac{2\theta}{2^r - 2} \|x\|^r$$

(8)

for all $x \in X$.
Proof. Letting $y = x$ in (7), we get
\[\|f(2x) - 2f(x)\| \leq 2\|x\|^r \] (9)
for all $x \in X$. So $\|f(x) - 2f\left(\frac{x}{2}\right)\| \leq \frac{2}{2^2}\|x\|^r$ for all $x \in X$. Hence
\[
\left\|2^lf\left(\frac{x}{2^l}\right) - 2^mf\left(\frac{x}{2^m}\right)\right\| \leq \sum_{j=l}^{m-1} \left\|2^lf\left(\frac{x}{2^j}\right) - 2^{j+1}f\left(\frac{x}{2^{j+1}}\right)\right\|
\leq \frac{2}{2^r} \sum_{j=l}^{m-1} 2^j \|x\|^r
\] (10)
for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (10) that the sequence $\{2^nf\left(\frac{x}{2^n}\right)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{2^nf\left(\frac{x}{2^n}\right)\}$ converges. So one can define the mapping $h : X \to Y$ by $h(x) := \lim_{n \to \infty} 2^nf\left(\frac{x}{2^n}\right)$ for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (10), we get (8).

It follows from (7) that
\[
\|h(x + y) - h(x) - h(y)\|
= \lim_{n \to \infty} 2^n \left\|f\left(\frac{x+y}{2^n}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right)\right\|
\leq \lim_{n \to \infty} 2^n \left\|f\left(\frac{x+y}{2^{n+1}}\right) - \frac{1}{2} f\left(\frac{x}{2^n}\right) - \frac{1}{2} f\left(\frac{y}{2^n}\right)\right\| + \lim_{n \to \infty} \frac{2^n \theta}{2^r} (\|x\|^r + \|y\|^r)
= \left\|h\left(\frac{x+y}{2}\right) - \frac{1}{2} h(x) - \frac{1}{2} h(y)\right\|
\] for all $x, y \in X$. So
\[
\|h(x + y) - h(x) - h(y)\| \leq \left\|h\left(\frac{x+y}{2}\right) - \frac{1}{2} h(x) - \frac{1}{2} h(y)\right\|
\]
for all $x, y \in X$. By Lemma 2.1, the mapping $h : X \to Y$ is additive.

Now, let $T : X \to Y$ be another additive mapping satisfying (8). Then we have
\[
\|h(x) - T(x)\| = 2^n \left\|h\left(\frac{x}{2^n}\right) - T\left(\frac{x}{2^n}\right)\right\|
\leq 2^n \left(\left\|h\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right)\right\| + \left\|T\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right)\right\|\right)
\leq \frac{4 \cdot 2^n}{(2^r - 2)2^r \theta} \|x\|^r,
\]
which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that $h(x) = T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h : X \to Y$ is a unique additive mapping satisfying (8).
Theorem 2.4 Let $r < 1$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying (7). Then there exists a unique additive mapping $h : X \to Y$ such that

$$\| f(x) - h(x) \| \leq \frac{2\theta}{2 - 2^r} \| x \|^r$$

for all $x \in X$.

Proof. It follows from (9) that $\| f(x) - \frac{1}{2}f(2x) \| \leq \theta \| x \|^r$ for all $x \in X$. Hence

$$\left\| \frac{1}{2^m} f(2^m x) - \frac{1}{2^l} f(2^l x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^j} f(2^j x) - \frac{1}{2^{j+1}} f(2^{j+1} x) \right\|$$

for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (12) that the sequence $\left\{ \frac{1}{2^m} f(2^m x) \right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{ \frac{1}{2^m} f(2^m x) \right\}$ converges. So one can define the mapping $h : X \to Y$ by $h(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$ for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (12), we get (11).

The rest of the proof is similar to the proof of Theorem 2.3.

3 Quadratic functional inequalities in Banach spaces

Throughout this section, assume that X is a normed space with norm $\| \cdot \|$ and that Y is a Banach space with norm $\| \cdot \|$.

Lemma 3.1 A mapping $f : X \to Y$ satisfies

$$\| f(x + y) + f(x - y) - 2f(x) - 2f(y) \| \leq \left\| f \left(\frac{x + y}{2} \right) + f \left(\frac{x - y}{2} \right) - \frac{1}{2} f(x) - \frac{1}{2} f(y) \right\|$$

for all $x, y \in X$ if and only if $f : X \to Y$ is quadratic.

Proof. Assume that $f : X \to Y$ satisfies (13).

Letting $x = y = 0$ in (13), we get $\| 2f(0) \| \leq \| f(0) \|$. So $f(0) = 0$.

Letting $y = x$ in (13), we get $\| f(2x) - 4f(x) \| \leq 0$ and so $f(2x) = 4f(x)$ for all $x \in X$. Thus $f \left(\frac{x}{2} \right) = \frac{1}{4} f(x)$ for all $x \in X$.
It follows from (13) that
\[
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\|
\leq \frac{1}{4}\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\|
\]
and so \(f(x + y) + f(x - y) = 2f(x) + 2f(y)\) for all \(x, y \in X\).
The converse is obviously true.

Corollary 3.2 A mapping \(f : X \rightarrow Y\) satisfies

\[
f(x + y) + f(x - y) = f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) + \frac{3}{2}f(x) + \frac{3}{2}f(y)
\]
for all \(x, y \in X\) if and only if \(f : X \rightarrow Y\) is quadratic.

Now, we prove the Hyers-Ulam stability of the quadratic functional inequality (13) in Banach spaces.

Theorem 3.3 Let \(r > 2\) and \(\theta\) be nonnegative real numbers, and let \(f : X \rightarrow Y\) be a mapping such that

\[
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \leq \left\| f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y) \right\| + \theta(||x||^r + ||y||^r)
\]
for all \(x, y \in X\). Then there exists a unique quadratic mapping \(h : X \rightarrow Y\) such that

\[
\|f(x) - h(x)\| \leq \frac{2\theta}{2r - 4}||x||^r
\]
for all \(x \in X\).

Proof. Letting \(x = y = 0\) in (14), we get \(\|2f(0)\| \leq ||f(0)||\). So \(f(0) = 0\).
Letting \(y = x\) in (14), we get

\[
\|f(2x) - 4f(x)\| \leq 2\theta||x||^r
\]
for all \(x \in X\). So \(\|f(x) - 4f\left(\frac{x}{2}\right)\| \leq \frac{\theta}{2}||x||^r\) for all \(x \in X\). Hence

\[
\left\| 4^lf\left(\frac{x}{2^l}\right) - 4^mf\left(\frac{x}{2^m}\right) \right\| \leq \sum_{j=l}^{m-1} \left\| 4^j f\left(\frac{x}{2^j}\right) - 4^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|
\leq \frac{2}{2^r} \sum_{j=l}^{m-1} \frac{4^j}{2^{rj}} \theta||x||^r
\]
for all \(x \in X\), \(l \leq m\).
for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (17) that the sequence $\{4^nf(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{4^nf(\frac{x}{2^n})\}$ converges. So one can define the mapping $h : X \to Y$ by $h(x) := \lim_{n \to \infty} 4^nf(\frac{x}{2^n})$ for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (17), we get (15).

It follows from (14) that

$$\|h(x + y) + h(x - y) - 2h(x) - 2h(y)\|$$

$$= \lim_{n \to \infty} 4^n \left\| f \left(\frac{x + y}{2^n} \right) + f \left(\frac{x - y}{2^n} \right) - 2f \left(\frac{x}{2^n} \right) - 2f \left(\frac{y}{2^n} \right) \right\|$$

$$\leq \lim_{n \to \infty} 4^n \left\| f \left(\frac{x + y}{2^{n+1}} \right) + f \left(\frac{x - y}{2^{n+1}} \right) - \frac{1}{2} f \left(\frac{x}{2^n} \right) - \frac{1}{2} f \left(\frac{y}{2^n} \right) \right\|$$

$$+ \lim_{n \to \infty} \frac{4^n\theta}{2^{nr}} (\|x\|^r + \|y\|^r)$$

$$= \left\| h \left(\frac{x + y}{2} \right) + h \left(\frac{x - y}{2} \right) - \frac{1}{2} h(x) - \frac{1}{2} h(y) \right\|$$

for all $x, y \in X$. So

$$\|h(x + y) + h(x - y) - 2h(x) - 2h(y)\|$$

$$\leq \left\| h \left(\frac{x + y}{2} \right) + h \left(\frac{x - y}{2} \right) - \frac{1}{2} h(x) - \frac{1}{2} h(y) \right\|$$

for all $x, y \in X$. By Lemma 3.1, the mapping $h : X \to Y$ is quadratic.

Now, let $T : X \to Y$ be another quadratic mapping satisfying (15). Then we have

$$\|h(x) - T(x)\| = 4^n \left\| h \left(\frac{x}{2^n} \right) - T \left(\frac{x}{2^n} \right) \right\|$$

$$\leq 4^n \left(\left\| h \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right) \right\| + \| T \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right) \| \right)$$

$$\leq \frac{4 \cdot 4^n}{(2^r - 4)2^{nr}} \theta \|x\|^r,$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that $h(x) = T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h : X \to Y$ is a unique quadratic mapping satisfying (15).

Theorem 3.4 Let $r < 2$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying (14). Then there exists a unique quadratic mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\| \leq \frac{2\theta}{4 - 2^r} \|x\|^r$$

(18)

for all $x \in X$.
Proof. It follows from (16) that \(\|f(x) - \frac{1}{4}f(2x)\| \leq \frac{\theta}{2}\|x\|^r \) for all \(x \in X \). Hence
\[
\left\| \frac{1}{4^l}f(2^lx) - \frac{1}{4^m}f(2^mx) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{4^j}f(2^jx) - \frac{1}{4^{j+1}}f(2^{j+1}x) \right\|
\leq \sum_{j=l}^{m-1} \frac{2^j \theta}{4^{j+1}} \|x\|^r
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (19) that the sequence \(\{\frac{1}{4^n}f(2^nx)\} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{\frac{1}{4^n}f(2^nx)\} \) converges. So one can define the mapping \(h : X \to Y \) by \(h(x) := \lim_{n \to \infty} \frac{1}{4^n}f(2^nx) \) for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (19), we get (18).

The rest of the proof is similar to the proof of Theorem 3.3.

4 Additive functional inequalities in non-Archimedean Banach spaces

Throughout this section, assume that \(X \) is a non-Archimedean normed space and that \(Y \) is a non-Archimedean Banach space. Assume that \(|2| \neq 1 \).

Lemma 4.1 An odd mapping \(f : X \to Y \) satisfies
\[
\left\| f \left(\frac{x+y}{2} \right) - \frac{1}{2}f(x) - \frac{1}{2}f(y) \right\| \leq \|f(x + y) - f(x) - f(y)\| \quad (20)
\]
for all \(x, y \in X \) if and only if \(f \) is additive.

Proof. Letting \(y = 0 \) in (20), we get \(\|f \left(\frac{x}{2} \right) - \frac{1}{2}f(x)\| \leq 0 \) and so \(f \left(\frac{x}{2} \right) = \frac{1}{2}f(x) \) for all \(x \in X \). Thus
\[
\frac{1}{|2|} \|f(x) - f(x) - f(y)\| = \left\| \frac{1}{2}(f(x + y) - f(x) - f(y)) \right\|
= \left\| f \left(\frac{x+y}{2} \right) - \frac{1}{2}f(x) - \frac{1}{2}f(y) \right\|
\leq \|f(x + y) - f(x) - f(y)\|
\]
for all \(x, y \in X \). Since \(|2| < 1 \), \(f(x + y) = f(x) + f(y) \) for all \(x, y \in X \).

The converse is obviously true.

Corollary 4.2 An odd mapping \(f : X \to Y \) satisfies
\[
f \left(\frac{x+y}{2} \right) + \frac{1}{2}f(x) + \frac{1}{2}f(y) = f(x + y)
\]
for all \(x, y \in X \) if and only if \(f : X \to Y \) is additive.
We prove the Hyers-Ulam stability of the additive functional inequality (20) in non-Archimedean Banach spaces.

Theorem 4.3 Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be an odd mapping such that
\[
\| f \left(\frac{x + y}{2} \right) - \frac{1}{2} f(x) - \frac{1}{2} f(y) \| \leq \| f(x) - f(y) \| + \theta (\|x\|^r + \|y\|^r) \tag{21}
\]
for all \(x, y \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that
\[
\| f(x) - A(x) \| \leq |2\theta| |x|^r \tag{22}
\]
for all \(x \in X \).

Proof. Letting \(y = 0 \) in (21), we get
\[
\| f \left(\frac{x}{2} \right) - \frac{1}{2} f(x) \| \leq \theta \|x\|^r \tag{23}
\]
for all \(x \in X \). So \(\| f(x) - 2f \left(\frac{x}{2} \right) \| \leq |2\theta| |x|^r \) for all \(x \in X \). Hence
\[
\| 2^l f \left(\frac{x}{2^l} \right) - 2^m f \left(\frac{x}{2^m} \right) \| \leq \max \left\{ \| 2^l f \left(\frac{x}{2^l} \right) - 2^{l+1} f \left(\frac{x}{2^{l+1}} \right) \|, \cdots, \| 2^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 2^m f \left(\frac{x}{2^m} \right) \| \right\} \tag{24}
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (24) that the sequence \(\{2^k f \left(\frac{x}{2^k} \right) \} \) is Cauchy for all \(x \in X \). Since \(Y \) is a non-Archimedean Banach space, the sequence \(\{2^k f \left(\frac{x}{2^k} \right) \} \) converges. So one can define the mapping \(A : X \to Y \) by \(A(x) := \lim_{k \to \infty} 2^k f \left(\frac{x}{2^k} \right) \) for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (24), we get (22).

Now, let \(T : X \to Y \) be another additive mapping satisfying (22). Then we have
\[
\| A(x) - T(x) \| = \| 2^m A \left(\frac{x}{2^m} \right) - 2^q T \left(\frac{x}{2^q} \right) \|
\leq \max \left\{ \| 2^m A \left(\frac{x}{2^m} \right) - 2^{m+1} f \left(\frac{x}{2^{m+1}} \right) \|, \cdots, \| 2^{q-1} T \left(\frac{x}{2^{q-1}} \right) - 2^q f \left(\frac{x}{2^q} \right) \| \right\}
\leq \frac{|2|}{|2| (r-1) \theta \|x\|^r},
\]
which tends to zero as \(q \to \infty \) for all \(x \in X \). So we can conclude that \(A(x) = T(x) \) for all \(x \in X \). This proves the uniqueness of \(A \).

It follows from (21) that

\[
\left\| A \left(\frac{x + y}{2} \right) - \frac{1}{2} A(x) - \frac{1}{2} A(y) \right\| \\
= \lim_{n \to \infty} 2^n \left(f \left(\frac{x + y}{2^{n+1}} \right) - \frac{1}{2} f \left(\frac{x}{2^n} \right) - \frac{1}{2} f \left(\frac{y}{2^n} \right) \right) \\
\leq \lim_{n \to \infty} 2^n \left(f \left(\frac{x + y}{2^n} \right) - f \left(\frac{x}{2^n} \right) - f \left(\frac{y}{2^n} \right) \right) \\
= \|A(x + y) - A(x) - A(y)\|
\]

for all \(x, y \in X \). So

\[
\left\| A \left(\frac{x + y}{2} \right) - \frac{1}{2} A(x) - \frac{1}{2} A(y) \right\| \leq \|A(x + y) - A(x) - A(y)\|
\]

for all \(x, y \in X \). By Lemma 4.1, the mapping \(A : X \to Y \) is additive.

Theorem 4.4 Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be an odd mapping satisfying (21). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\|f(x) - A(x)\| \leq |2|^r \theta \|x\|^r
\]

for all \(x \in X \).

Proof. It follows from (23) that \(\|f(x) - \frac{1}{2} f(2x)\| \leq |2|^r \theta \|x\|^r \) for all \(x \in X \).

The rest of the proof is similar to the proof of Theorem 4.3.

5 Quadratic functional inequalities in non-Archimedean Banach spaces

Throughout this section, assume that \(X \) is a non-Archimedean normed space and that \(Y \) is a non-Archimedean Banach space. Assume that \(|2| \neq 1 \).

Lemma 5.1 An even mapping \(f : X \to Y \) satisfies

\[
\left\| f \left(\frac{x + y}{2} \right) + f \left(\frac{x - y}{2} \right) - \frac{1}{2} f(x) - \frac{1}{2} f(y) \right\| \\
\leq \|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \tag{25}
\]

for all \(x, y \in X \) if and only if \(f \) is quadratic.
Proof. Letting \(x = y = 0 \) in (25), we get \(\|f(0)\| \leq \|2f(0)\| = |2|\|f(0)\| \). So \(f(0) = 0 \).

Letting \(y = 0 \) in (25), we get \(\|2f\left(\frac{x}{2}\right) - \frac{1}{2}f(x)\| \leq 0 \) and so \(f\left(\frac{x}{2}\right) = \frac{1}{2}f(x) \) for all \(x \in X \). Thus

\[
\frac{1}{|2|^2} \|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \\
= \left\| \frac{1}{4}(f(x + y) + f(x - y) - 2f(x) - 2f(y)) \right\| \\
= \left\| f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y) \right\| \\
\leq \|f(x + y) + f(x - y) - 2f(x) - 2f(y)\|
\]

for all \(x, y \in X \). Since \(|2| < 1 \), \(f(x + y) + f(x - y) = 2f(x) + 2f(y) \) for all \(x, y \in X \).

The converse is obviously true.

Corollary 5.2 An even mapping \(f : X \to Y \) satisfies

\[
f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) + 3 \frac{1}{2}f(x) + 3 \frac{1}{2}f(y) = f(x + y) + f(x - y)
\]

for all \(x, y \in X \) if and only if \(f : X \to Y \) is quadratic.

Now, we prove the Hyers-Ulam stability of the quadratic functional inequality (25) in non-Archimedean Banach spaces.

Theorem 5.3 Let \(r < 2 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be an even mapping such that

\[
\left\| f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) - \frac{1}{2}f(x) - \frac{1}{2}f(y) \right\| \\
\leq \|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| + \theta(\|x\|^r + \|y\|^r)
\]

for all \(x, y \in X \). Then there exists a unique quadratic mapping \(Q : X \to Y \) such that

\[
\|f(x) - Q(x)\| \leq |2|\theta\|x\|^r
\]

for all \(x \in X \).

Proof. Letting \(x = y = 0 \) in (26), we get \(\|f(0)\| \leq \|2f(0)\| = |2|\|f(0)\| \). So \(f(0) = 0 \).

Letting \(y = 0 \) in (26), we get

\[
\left\| 2f\left(\frac{x}{2}\right) - \frac{1}{2}f(x) \right\| \leq \theta\|x\|^r
\]

(28)
for all $x \in X$. So $\|f(x) - 4f(x/2)\| \leq |2\theta\|x\|^r$ for all $x \in X$. Hence

$$\|4^lf(x/2) - 4^m f(x/2^m)\| \leq \max\left\{\|4^lf(x/2) - 4^{l+1} f(x/2^{l+1})\|, \ldots, \|4^{m-1} f(x/2^{m-1}) - 4^m f(x/2^m)\|\right\}$$

$$\leq \max\left\{|4|^l\|f(x/2) - 4f(x/2^{l+1})\|, \ldots, |4|^{m-1}\|f(x/2^{m-1}) - 4f(x/2^m)\|\right\}$$

$$\leq \max\left\{|\frac{|4|^l}{2^{l+1}}, \ldots, \frac{|4|^{m-1}}{2^{r(m-1)}}\right\}|2\theta\|x\|^r = \frac{|2|}{|2|^{r-2}}\theta\|x\|^r$$

for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (29) that the sequence $\{4^k f(x/2^k)\}$ is Cauchy for all $x \in X$. Since Y is a non-Archimedean Banach space, the sequence $\{4^k f(x/2^k)\}$ converges. So one can define the mapping $Q : X \rightarrow Y$ by $Q(x) := \lim_{k \rightarrow \infty} 4^k f(x/2^k)$ for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \rightarrow \infty$ in (29), we get (27).

The rest of the proof is similar to the proof of Theorem 4.3.

Theorem 5.4 Let $r > 2$ and θ be nonnegative real numbers, and let $f : X \rightarrow Y$ be an even mapping satisfying (26). Then there exists a unique quadratic mapping $Q : X \rightarrow Y$ such that

$$\|f(x) - Q(x)\| \leq |2|^{r-1}\theta\|x\|^r$$

for all $x \in X$.

Proof. It follows from (28) that $\|f(x) - \frac{1}{7} f(2x)\| \leq |2|^{r-1}\theta\|x\|^r$ for all $x \in X$.

The rest of the proof is similar to the proofs of Theorems 4.3 and 5.3.

Acknowledgements. C. Park and D. Y. Shin were supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299) and (NRF-2010-0021792), respectively.

References

Received: April 11, 2014