Structure of the Zeros
of the Twisted q-Tangent Polynomials

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2014 C. S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In [3], we introduced the twisted q-tangent numbers $T_{n,q,w}(x)$ and polynomials $T_{n,q,w}(x)$. In this paper, using computer, we observe the structure of complex roots of the twisted q-tangent polynomials $T_{n,q,w}(x)$. Finally, we give a table for the solutions of the twisted q-tangent polynomials $T_{n,q,w}(x)$.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: tangent numbers and polynomials, twisted q-tangent numbers and polynomials, complex roots

1 Introduction

In [1], we introduce the tangent numbers T_n and polynomials $T_n(x)$. The tangent numbers T_n are defined by the generating function:

$$\frac{2}{e^{2t} + 1} = \sum_{n=0}^{\infty} \frac{T_n t^n}{n!}.$$ \hspace{1cm} (1.1)

We introduce the tangent polynomials $T_n(x)$ as follows:

$$\left(\frac{2}{e^{2t} + 1}\right) e^{xt} = \sum_{n=0}^{\infty} T_{n,q}(x) \frac{t^n}{n!}.$$ \hspace{1cm} (1.2)
In [3], we introduced the twisted \(q \)-tangent numbers \(T_{n,q,w}(x) \) and polynomials \(T_{n,q,w}(x) \). By using these numbers and polynomials, we investigated some interesting properties. In order to study the twisted \(q \)-tangent numbers \(T_{n,q,w} \) and polynomials \(T_{n,q,w}(x) \), we must understand the structure of the twisted \(q \)-tangent numbers \(T_{n,q,w} \) and polynomials \(T_{n,q,w}(x) \). Therefore, by using computer, a realistic study for the twisted \(q \)-tangent numbers \(T_{n,q,w}(x) \) and polynomials \(T_{n,q,w}(x) \) is very interesting. It is the aim of this paper to observe an interesting phenomenon of ‘scattering’ of the zeros of the twisted \(q \)-tangent polynomials \(T_{n,q,w}(x) \) in complex plane.

2 The twisted \(q \)-tangent polynomials

Throughout this paper, we always make use of the following notations: \(\mathbb{N} \) denotes the set of natural numbers, \(\mathbb{N}_0 \) denotes the set of nonnegative integers, \(\mathbb{Z} \) denotes the set of integers, \(\mathbb{R} \) denotes the set of real numbers, and \(\mathbb{C} \) denotes the set of complex numbers.

In this section, we introduce the twisted \(q \)-tangent numbers \(T_{n,q,w}(x) \) and polynomials \(T_{n,q,w}(x) \) and investigate their properties. Let \(q \) be a complex number with \(|q| < 1 \) and \(w \) be the \(p \mathbb{N} \)-th root of unity. By the meaning of (1.1) and (1.2), let us define the twisted \(q \)-tangent numbers \(T_{n,q,w} \) and polynomials \(T_{n,q,w}(x) \) as follows:

\[
F_q(t) = \frac{2}{wqe^{2t} + 1} = \sum_{n=0}^{\infty} T_{n,q,w} \frac{t^n}{n!},
\]

(2.1)

\[
F_q(x, t) = \left(\frac{2}{wqe^{2t} + 1} \right) e^{xt} = \sum_{n=0}^{\infty} T_{n,q,w}(x) \frac{t^n}{n!}.
\]

(2.2)

Observe that if \(q \to 1 \) and \(w = 1 \), then \(T_{n,q,w}(x) = T_n(x) \) and \(T_{n,q,w} = T_n \) (see [1]). By using computer, the twisted \(q \)-tangent numbers \(T_{n,q,w} \) can be determined explicitly. A few of them are

\[
T_{0,q,w} = \frac{2}{1 + wq}, \quad T_{1,q,w} = -\frac{4wq}{(1 + wq)^2}, \quad T_{2,q,w} = \frac{16w^2q^2}{(1 + wq)^3} - \frac{8wq}{(1 + wq)^2},
\]

\[
T_{3,q,w} = -\frac{96w^3q^3}{(1 + wq)^4} + \frac{96w^2q^2}{(1 + wq)^3} - \frac{16wq}{(1 + wq)^2}.
\]

The following elementary properties of twisted \(q \)-tangent polynomials \(T_{n,q,w}(x) \) are readily derived from (2.1) and (2.2). Therefore we choose to omit the details involved. More studies and results in this subject we may see references [1]-[3].
Theorem 2.1 For any positive integer n, we have
$$T_{n,q,w}(x) = (-1)^n w^{-1} q^{-1} T_{n,q^{-1},w^{-1}}(2-x).$$

Theorem 2.2 For any positive integer $m (=\text{odd})$, we have
$$T_{n,q,w}(x) = m^n \sum_{i=0}^{m-1} (-1)^i w^i q^i T_{n,q^m,w^m} \left(\frac{2i + x}{m} \right), \quad n \in \mathbb{N}_0.$$

Theorem 2.3 For $n \in \mathbb{N}_0$, we have
$$T_{n,q,w}(x) = \sum_{l=0}^{n} \binom{n}{l} T_{l,q,w} x^{n-l}.$$

By Theorem 2.3, after some elementary calculations, we have
$$\int_a^b T_{n,q,w}(x) dx = \sum_{l=0}^{n} \binom{n}{l} T_{l,q,w} \int_a^b x^{n-l} dx$$
$$= \sum_{l=0}^{n} \binom{n}{l} T_{l,q,w} \frac{x^{n-l+1}}{n-l+1} \bigg|_a^b$$
$$= \frac{1}{n+1} \sum_{l=0}^{n+1} \binom{n+1}{l} T_{l,q,w} x^{n-l+1} \bigg|_a^b.$$

By Theorem 2.3, we get
$$\int_a^b T_{n,q,w}(x) dx = \frac{T_{n+1,q,w}(b) - T_{n+1,q,w}(a)}{n+1}. \quad (2.3)$$

Since $T_{n,q,w}(0) = T_{n,q,w}$, by (2.3), we have the following theorem.

Theorem 2.4 For $n \in \mathbb{N}$, we have
$$T_{n,q,w}(x) = T_{n,q,w} + n \int_0^x T_{n-1,q,w}(t) dt.$$

Then, it is easy to deduce that $T_{n,q,w}(x)$ are polynomials of degree n. Here is the list of the first twisted q-tangent’s polynomials.

$$T_{0,q,w}(x) = \frac{2}{1+wq},$$
$$T_{1,q,w}(x) = \frac{-4wq}{(1+wq)^2} + \frac{2x}{1+wq},$$
$$T_{2,q,w}(x) = \frac{16q^2 w^2}{(1+qw)^3} - \frac{8qw}{(1+qw)^2} - \frac{8qw x}{(1+qw)^2} + \frac{2x^2}{1+qw},$$
$$T_{3,q,w}(x) = -\frac{96q^3 w^3}{(1+qw)^4} + \frac{96q^2 w^2}{(1+qw)^3} - \frac{16qw}{(1+qw)^2}$$
$$+ \frac{48q^2 w^2 x}{(1+qw)^3} - \frac{24qw x}{(1+qw)^2} - \frac{12qw x^2}{(1+qw)^2} + \frac{2x^3}{1+qw}.$$
3 Location of zeros of twisted q-tangent polynomials

In this section, we investigate the location of the zeros of the twisted q-tangent polynomials $T_{n,q,w}(x)$. Let $w = e^{2\pi i}$ in \mathbb{C}. By using a computer, we investigate the beautiful zeros of the $T_{n,q,w}(x)$. We plot the zeros of the twisted q-tangent polynomials $T_{n,q,w}(x)$ for $n = 30$, $q = 1/5$ and $x \in \mathbb{C}$ (Figure 1). In Figure 1(top-left), we choose $w = e^{2\pi i}$. In Figure 1(top-right), we choose $w = e^{\pi i}$. In Figure 1(bottom-left), we choose $w = e^{\frac{2\pi}{3}}$. In Figure 1(bottom-right), we choose $w = e^{\frac{\pi}{2}}$. Stacks of zeros of $T_{n,q,w}(x)$ for $1 \leq n \leq 30$, $q = 1/5$, $w = e^{\frac{\pi}{2}}$ from a 3-D structure are presented (Figure 2). Our numerical results for approximate solutions of real zeros of $T_{n,q,w}(x)$ are displayed (Tables 1, 2).
Zeros of the twisted q-tangent Polynomials

Figure 2: Stacks of zeros of $T_{n,q,w}(x)$ for $1 \leq n \leq 30$

<table>
<thead>
<tr>
<th>degree n</th>
<th>$q = 1/5, w = e^{2\pi i}$</th>
<th>$q = 1/5, w = e^{\pi i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>real zeros</td>
<td>complex zeros</td>
<td>real zeros</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

We observe a remarkably regular structure of the complex roots of the twisted q-tangent polynomials $T_{n,q,w}(x)$. We hope to verify a remarkably regular structure of the complex roots of the twisted q-tangent polynomials $T_{n,q,w}(x)$ (Table 1). In Figures 1-3, $T_{n,q,w}(x)$ has not $Re(x) = 0$ and $Im(x) = 0$ reflection symmetry. Plot of real zeros of $T_{n,q,w}(x)$ for $1 \leq n \leq 30, q = 1/5$ structure is presented (Figure 3). Next, we calculated an approximate solution satisfying
Figure 3: Real zeros of $T_{n,q,w}(x)$ for $w = e^{\pi i}$ and $1 \leq n \leq 30$

$T_{n,q,w}(x) = 0$, $q = 1/5$, $w = e^{\pi i}$, and $x \in \mathbb{R}$. The results are given in Table 2.

Table 2. Approximate solutions of $T_{n,q,w}(x) = 0$, $x \in \mathbb{R}$

<table>
<thead>
<tr>
<th>degree n</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.5000</td>
</tr>
<tr>
<td>3</td>
<td>-1.3412</td>
</tr>
<tr>
<td>5</td>
<td>-2.099</td>
</tr>
<tr>
<td>7</td>
<td>-2.833</td>
</tr>
<tr>
<td>9</td>
<td>-3.56</td>
</tr>
</tbody>
</table>

Prove or disprove: $T_{n,q,w}(x) = 0$ has n distinct solutions. Find the numbers of complex zeros $C_{T_{n,q,w}(x)}$ of $T_{n,q,w}(x)$, $Im(x) \neq 0$. Since n is the degree of the polynomial $T_{n,q,w}(x)$, the number of real zeros $R_{T_{n,q,w}(x)}$ lying on the real plane $Im(x) = 0$ is then $R_{T_{n,q,w}(x)} = n - C_{T_{n,q,w}(x)}$, where $C_{T_{n,q,w}(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{T_{n,q,w}(x)}$ and $C_{T_{n,q,w}(x)}$.

References

Received: April 5, 2014