Differentiating Total Dominating Sets in the Join, Corona and Composition of Graphs

Benjamin N. Omamalin

Bohol Island State University-Balilihan Campus
College of Technology and Allied Sciences
Magsiija, Balilihan, Bohol, Philippines

Sergio R. Canoy Jr. and Helen M. Rara

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, Iligan City, Philippines

Abstract

Let $G = (V(G), E(G))$ be a connected graph. A subset S of $V(G)$ is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The set $N_G[v]$ is the set of all vertices of G adjacent to v including v. A subset S of $V(G)$ is a differentiating set of G if $N_G[u] \cap S \neq N_G[v] \cap S$ for every two distinct vertices u and v in $V(G)$. A differentiating subset S of $V(G)$ which is also total dominating is called a differentiating total dominating set of G. The minimum cardinality of a differentiating total dominating set of G is called the differentiating total domination number of G. In this paper we characterize the differentiating total dominating sets in the join, corona and composition of graphs.

Mathematics Subject Classification: 05C69

Keywords: domination, differentiating set, strictly differentiating set, total domination, join, corona, composition

1This research is partially funded by the Commission on Higher Education, Philippines under Faculty Development Program Phase II
1 Introduction

Let $G = (V(G), E(G))$ be a simple connected graph. The neighborhood of $v \in V(G)$ is the set $N_G(v) = \{x \in V(G) : xv \in E(G)\}$. The set $N_G[u] = N_G(u) \cup \{u\}$. The degree of $v \in V(G)$, denoted by $\deg_G(v)$, is equal to the cardinality of $N_G(v)$ and the maximum degree of G is $\Delta(G) = \max \{\deg(x) : x \in V(G)\}$. A connected graph G of order $n \geq 3$ is point distinguishing if for any two distinct vertices u and v of G, $N_G[u] \neq N_G[v]$. It is totally point determining if for any two distinct vertices u and v of G, $N_G(u) \neq N_G(v)$ and $N_G[u] \neq N_G[v]$. These concepts are studied in [3,7].

A subset S of $V(G)$ is a total dominating set in G if for every $v \in V(G)$, there exists $x \in S$ such that $xv \in E(G)$. It is a differentiating set in G if $N_G[u] \cap S \neq N_G[v] \cap S$ for every two distinct vertices u and v of G. Set S is said to be strictly differentiating if it is a differentiating set and $N_G[u] \cap S \neq S$ for all $u \in V(G)$. A differentiating (resp. strictly differentiating) subset S of $V(G)$ which is also a total dominating set is called a differentiating total dominating (resp. strictly differentiating total dominating) set in a connected graph G. The minimum cardinality of a differentiating (resp. strictly differentiating) set in G, denoted by $dn(G)$ (resp. $sdn(G)$), is called the differentiating (resp. strictly differentiating) number of G. The minimum cardinality of a differentiating total dominating (resp. strictly differentiating total dominating) set in G, denoted by $\gamma_{DT}(G)$ (resp. $\gamma_{SDT}(G)$) is called the differentiating total domination (resp. strictly differentiating total domination) number of G.

Let G be a connected graph and suppose that there exist (distinct) adjacent vertices u and v such that $N_G[u] = N_G[v]$. Then $N_G[u] \cap S = N_G[v] \cap S$ for any subset S of $V(G)$. This implies that G cannot have a differentiating set. Thus, unless otherwise stated, throughout this paper any graph considered is a point distinguishing graph.

The concepts of differentiating set, strictly differentiating set, differentiating total dominating set and the associated parameters are studied in [1,2,4,5,6]

Remark 1.1 Let G be a connected graph of order $n \geq 3$.

Then $3 \leq \gamma_{DT}(G) \leq n$.

Remark 1.2 Let G be a connected graph of order $n \geq 3$ with $\Delta(G) \leq n - 2$.

Then $dn(G) \leq \gamma_D(G) \leq \gamma_{DT}(G) \leq \gamma_{SDT}(G)$ and $dn(G) \leq sdn(G) \leq \gamma_{SDT}(G)$.

Lemma 1.3 [?] Let G be connected graph of order $n \geq 3$ such that $dn(G) < \gamma_D(G)$. Then $1 + dn(G) = \gamma_D(G)$
2 Differentiating Total Domination in the Join of Graphs

Let A and B be sets which are not necessarily disjoint. The \textit{disjoint union} of A and B, denoted by $A \cup B$, is the set obtained by taking the union of A and B treating each element in A as distinct from each element in B. The \textit{join} of two graphs G and H is the graph $G + H$ with $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$.

Theorem 2.1 Let G and H be point distinguishing graphs of orders $m \geq 3$ and $n \geq 3$, respectively, with $\Delta(G) \leq m - 2$ and $\Delta(H) \leq n - 2$. Then $S \subseteq V(G + H)$ is a differentiating total dominating set in $G + H$ if and only if $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$ are differentiating sets in G and H, respectively, where S_1 or S_2 is strictly differentiating.

Proof: Let $S \subseteq V(G + H)$ be a differentiating total dominating set in $G + H$. Let $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$. Suppose $S_1 = \emptyset$. Pick distinct vertices u and v of G. Then $N_{G+H}[u] \cap S = S = N_{G+H}[v] \cap S$, contrary to our assumption of S. Thus, $S_1 \neq \emptyset$. Similarly, $S_2 \neq \emptyset$. Suppose now that one of S_1 and S_2 is not a differentiating set, say S_1 is not a differentiating set in G. Then there exist distinct vertices $a, b \in V(G)$ such that $N_G[a] \cap S_1 = N_G[b] \cap S_1$. Since $S_2 \subseteq N_{G+H}[a]$ and $S_2 \subseteq N_{G+H}[b]$, it follows that $N_{G+H}[a] \cap S = (N_G[a] \cap S_1) \cup S_2 = (N_G[b] \cap S_1) \cup S_2 = N_{G+H}[b] \cap S$. This, again, contradicts our assumption of S. Therefore, S_1 and S_2 are differentiating sets in G and H, respectively.

Next, suppose that both S_1 and S_2 are not strictly differentiating sets in G and H, respectively. Then there exist $z \in V(G)$ and $w \in V(H)$ such that $N_G[z] \cap S_1 = S_1$ and $N_H[w] \cap S_2 = S_2$. It follows that $N_{G+H}[z] \cap S = (N_G[z] \cap S_1) \cup S_2 = S_1 \cup (N_H[w] \cap S_2) = N_{G+H}[w] \cap S$, contrary to the fact that S is a differentiating set in $G + H$. Thus, S_1 is a strictly differentiating set in G or S_2 is a strictly differentiating set in H.

For the converse, suppose $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$ are differentiating sets in G and H, respectively, where S_1 or S_2 is a strictly differentiating set. Let x and y be distinct vertices in $V(G + H)$. If $x, y \in V(G)$, then $N_G[x] \cap S_1 \neq N_G[y] \cap S_1$ since S_1 is a differentiating set in G. It follows that $N_{G+H}[x] \cap S = (N_G[x] \cap S_1) \cup S_2 \neq (N_G[y] \cap S_1) \cup S_2 = N_{G+H}[y] \cap S$. Similarly, $N_{G+H}[x] \cap S \neq N_{G+H}[y] \cap S$ if $x, y \in V(H)$. Suppose $x \in V(G)$ and $y \in V(H)$. Assume, without loss of generality, that S_1 is a strictly differentiating set in G. Then S_1 is not contained in $N_{G+H}[x]$. Since $S_1 \subseteq N_{G+H}[y]$, it follows that $N_{G+H}[x] \cap S \neq N_{G+H}[y] \cap S$. Accordingly, S is a differentiating set in $G + H$. Let $v \in V(G + H)$. Then either $v \in V(G)$ or $v \in V(H)$. If $v \in V(G)$, then $vs \in E(G + H)$ for all $s \in S \cap V(H)$ and if $v \in V(H)$, then $va \in E(G + H)$.
for all \(a \in S \cap V(G) \). Hence, \(S \) is a total dominating set in \(G+H \). Therefore, \(S \) is a differentiating total dominating set in \(G+H \). \(\square \)

Corollary 2.2 Let \(G \) and \(H \) be point distinguishing graphs of orders \(m \geq 3 \) and \(n \geq 3 \), respectively, with \(\Delta(G) \leq m-2 \) and \(\Delta(H) \leq n-2 \).

Then \(\gamma_{DT}(G+H) = \min\{sdn(H) + dn(G), sdn(G) + dn(H)\} \).

Proof: Let \(S \) be a minimum differentiating total dominating set in \(G+H \). Let \(S_1 = V(G) \cap S \) and \(S_2 = V(H) \cap S \). By Theorem 2.1, \(S_1 \) and \(S_2 \) are differentiating sets in \(G \) and \(H \), respectively, and \(S_1 \) or \(S_2 \) is a strictly differentiating set. Assume first that \(S_1 \) is a strictly differentiating set in \(G \). Then \(sdn(G) + dn(H) \leq |S_1| + |S_2| = S = \gamma_{DT}(G+H) \). If \(S_2 \) is a strictly differentiating set in \(H \), then \(sdn(H) + dn(G) \leq |S_1| + |S_2| = S = \gamma_{DT}(G+H) \).

Thus, \(\gamma_{DT}(G+H) \geq \min\{sdn(H) + dn(G), sdn(G) + dn(H)\} \).

Now suppose that \(sdn(G) + dn(H) \leq sdn(H) + dn(G) \). Let \(S^*_1 \) be a minimum strictly differentiating set in \(G \) and \(S^*_2 \) be a minimum differentiating set in \(H \). Then \(S^* = S^*_1 \cup S^*_2 \) is a differentiating total dominating set in \(G+H \) by Theorem 2.1. Thus, \(\gamma_{DT}(G+H) \leq |S^*| = |S^*_1| + |S^*_2| = sdn(G) + dn(H) \). This proves the desired equality. \(\square \)

Theorem 2.3 Let \(G \) be a point distinguishing graph of order \(n \geq 3 \) and such that \(\Delta(G) \leq n-2 \). Then \(S \subseteq V(G+K_1) \) is a differentiating total dominating set in \(G+K_1 \) if and only if for \(v \in V(K_1) \) either \(S = S_1 \cup \{v\} \), where \(S_1 \) is a strictly differentiating set in \(G \), or \(v \notin S \) and \(S \) is a strictly differentiating total dominating set in \(G \).

Proof: Suppose \(S \) is a differentiating total dominating set in \(G+K_1 \) and \(v \in V(K_1) \). Suppose \(v \notin S \). Let \(S_1 = V(G) \cap S \). Since \(S \) is differentiating, \(S_1 \neq \emptyset \). Also, since \(N_{G+K_1}[v] \cap S = S_1 \), \(V(G) \cap S = S_1 \) must be strictly differentiating set in \(G \). Suppose now that \(v \notin S \). Then \(S \subseteq V(G) \) must be a total dominating set in \(G \). Since \(N_{G+K_1}[u] \cap S = N_G[u] \cap S \) for every \(u \in V(G) \) and \(N_{G+K_1}[v] \cap S = S \) and \(S \) is a differentiating set in \(G+K_1 \), \(N_G[u] \cap S \neq N_{G+K_1}[v] \cap S \) implying that \(N_G[u] \cap S \neq S \). Thus, \(S \) is a strictly differentiating set in \(H \). Hence, \(S \) is a strictly differentiating total dominating set in \(G \).

For the converse, assume first that \(S = S_1 \cup \{v\} \), where \(S_1 \) is a strictly differentiating set in \(G+K_1 \). Let \(x, y \in V(G+K_1) \), where \(x \neq y \). If either \(x \) or \(y \) is \(v \), say \(x = v \), then \(N_{G+K_1}[x] \cap S = S \neq N_G[y] \cap S_1 = N_{G+K_1}[y] \cap S_1 \), since \(S_1 = V(G) \cap S \) is a strictly differentiating set in \(G \). Suppose \(x, y \in V(G) \). Then since \(S_1 = V(G) \cap S \) is a differentiating set in \(G \), \(N_{G+K_1}[x] \cap S \neq N_{G+K_1}[y] \cap S \). This shows that \(S \) is a differentiating total dominating set in \(G+H \).

Finally, suppose \(v \notin S \) and \(S \) is a strictly differentiating total dominating
set in G. Then S is a total dominating set in $G + K_1$. Let $x, y \in V(G + K_1)$. If $x, y \in V(G)$, then $N_{G+H}[v] \cap S = N_G[x] \cap S \neq N_G[y] \cap S = N_{G+H}[y] \cap S$. Suppose $x \in V(G)$ and $y = v$. Then $N_{G+H}[v] \cap S = S$. Since S is a strictly differentiating set in G, $N_G[x] \cap S \neq S$. Thus,
\[N_{G+H}[v] \cap S \neq N_G[x] \cap S = N_{G+H}[x] \cap S.\]
This shows that S is a differentiating total dominating set in $G + H$. \hfill \Box

Corollary 2.4 Let G be a connected non-trivial graph with
\[\Delta(G) \leq |V(G)| - 2.\] Then $\gamma_{DT}(G + K_1) = \min \{\gamma_{SDT}(G), \text{sdn}(G) + 1\}$.

Corollary 2.5 Let G be a connected non-trivial graph with
\[\Delta(G) \leq |V(G)| - 2.\] If every strictly differentiating set in G is total dominating, then $\gamma_{DT}(G + K_1) = \text{sdn}(G) + 1$

3 Differentiating Total Domination in the Corona of Graphs

Let G and H be graphs of orders m and n, respectively. The corona of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G and m copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H. For every $v \in V(G)$, denote H^v the copy of H whose vertices are attached one by one to the vertex v. Denote by $v + H^v$ the subgraph of the corona $G \circ H$ corresponding the join $(\{v\} + H^v)$.

Theorem 3.1 Let G and H be non-trivial connected graphs of orders $m \geq 3$ and $n \geq 3$, respectively such that $\Delta(H) \leq n - 2$. Then $S \subseteq G \circ H$ is a differentiating total dominating set in $G \circ H$ if and only if for every $v \in V(G)$, one of the following is true:

(i) $v \in S$, $N_G(v) \cap S \neq \emptyset$, and $S_1 = S \cap V(H^v)$ is a differentiating set in H^v;

(ii) $v \in S$, $N_G(v) \cap S = \emptyset$, and $S_1 = S \cap V(H^v)$ is a strictly differentiating set in H^v;

(iii) $v \notin S$, $N_G(v) \cap S \neq \emptyset$, and $S_1 = S \cap V(H^v)$ is a differentiating total dominating set in H^v;

(iv) $v \notin S$, $N_G(v) \cap S = \emptyset$, and $S_1 = S \cap V(H^v)$ is a strictly differentiating total dominating set in H^v.
Suppose first that \(v \) is differentiating in \(G \). Let \(v \in V(G) \), \(S = S \cap V(H^v) \), and let \(x, y \in V(H^v) \), where \(x \neq y \). Then

\[
N_{G \circ H}[x] \cap S = (N_{H^v}[x] \cap S_1) \cup (S \cap \{v\}), \\
N_{G \circ H}[y] \cap S = (N_{H^v}[y] \cap S_1) \cup (S \cap \{v\}),
\]

and \(N_{G \circ H}[v] \cap S = (N[v] \cap S_2) \cup (N_{v-H^v}[v] \cap S_1) \), where \(S_2 = S \cap V(G) \). Suppose first that \(v \in S \). If \(N_G(v) \cap S \neq \emptyset \), then, since \(S \) is differentiating, it follows that \((N_{H^v}[x] \cap S_1) \cup \{v\} = N_{G \circ H}[x] \cap S \neq N_{G \circ H}[y] \cap S = (N_{H^v}[y] \cap S_1) \cup \{v\} \). Implying that \(N_{H^v}[x] \cap S_1 \neq N_{H^v}[y] \cap S_1 \). Thus, \(S_1 \) is differentiating in \(H^v \), that is, \((i)\) holds. Suppose \(N_G(v) \cap S = \emptyset \). Then, \(N_G[v] \cap S = \{v\} \). Since \(S \) is differentiating, \(S_1 \) is differentiating in \(H^v \). Moreover, since

\[
N_{G \circ H}[v] \cap S = \{v\} \cup N_{v-H^v}[v] \cap S_1 = \{v\} \cup S_1,
\]

\(S_1 \) must be strictly differentiating in \(H^v \). Hence \((ii)\) holds.

Next, suppose that \(v \notin S \). If \(N_G(v) \cap S \neq \emptyset \), then since \(S \) is differentiating, \(N_{H^v}[x] \cap S_1 = N_{G \circ H}[x] \cap S \neq N_{G \circ H}[y] \cap S = N_{H^v}[y] \cap S_1 \). This implies that \(S_1 \) is a differentiating set in \(H^v \). Since \(v \notin S \) and \(S \) is total dominating, \(S_1 \) is a total dominating set in \(H^v \). Therefore, \((iii)\) holds. Suppose that \(N_G(v) \cap S = \emptyset \). Since \(S \) is a differentiating total dominating set, \(v \notin S \) and \(N_{G \circ H}[v] = S_1 \), it follows that \(S_1 \) is a strictly differentiating total dominating set in \(H^v \), that is, \((iv)\) holds.

For the converse, suppose that \(S \) satisfies either \((i)\), \((ii)\), \((iii)\) or \((iv)\) for every \(v \in V(G) \). Let \(x \in V(G \circ H) \) and \(v \in V(G) \) such that \(x \in V(v + H^v) \). If \(x \neq v \) and \(v \in S \), then \(xv \in E(G \circ H) \). If \(v \notin S \), then, by \((iii)\), or \((iv)\), \(S_1 = V(H^v) \cap S \) is a total dominating set in \(H^v \). Hence, there exists \(y \in V(H^v) \cap S_1 \) such that \(xy \in E(H^v) \subseteq E(G \circ H) \). Therefore, \(S \) is a total dominating set in \(G \circ H \).

Next, let \(a, b \in V(G \circ H) \) with \(a \neq b \). Let \(u, v \in V(G) \) such that \(a \in V(u + H^v) \) and \(b \in V(v + H^v) \). Consider the following cases:

Case 1: Suppose that \(u = v \).
If \(a, b \in V(H^v) \), then \(N_{H^v}[a] \cap S_1 \neq N_{H^v}[b] \cap S_1 \) since \(S_1 \) is differentiating in \(H^v \) by \((i)\), \((ii)\), \((iii)\), and \((iv)\). Therefore,

\[
(N_{G \circ H}[a] \cap S) = (N_{H^v}[a] \cap S_1) \cup (S \cap \{v\}) \neq (N_{H^v}[b] \cap S_1) \cup (S \cap \{v\})
\]

Suppose \(a = v \) and \(b \in V(H^v) \). If \(N_G(v) \cap S \neq \emptyset \), say \(z \in N_G(v) \cap S \), then \(z \in [N_{G \circ H}[a] \cap S] \setminus [N_{G \circ H}[b] \cap S] \). Thus, \((N_{G \circ H}[a] \cap S) \neq (N_{G \circ H}[b] \cap S) \) implying that \(S \) is a differentiating set. If \(N_G(v) \cap S = \emptyset \), then \(V(H^v) \cap S \) is strictly differentiating in \(H^v \) by \((ii)\) and \((iv)\). Hence, there exists \(w \in V(H^v) \cap S \) such that \(w \notin N_{G \circ H}[b] \cap S \). Since \(w \in N_{G \circ H}[a] \cap S \), it follows that
Let \(G \) be a non-trivial connected graph, and \(H \) a point distinguishing graph of order \(n \geq 3 \) such that \(\Delta(H) \leq n - 2 \). Then

\[
|V(G)| \gamma_D(H) \leq \gamma_{DT}(G \circ H) \leq |V(G)| \gamma_{SDT}(H).
\]

Proof: Let \(S \) be a minimum differentiating total dominating set in \(G \circ H \). Then

\[
\gamma_{DT}(G \circ H) = |S| = \sum_{v \in V(G) \cap S} (1 + |V(H^v) \cap S|) + \sum_{v \in V(G) \setminus S} |V(H^v) \cap S|.
\]

From Theorem 3.1 (i) and (ii) and Lemma 1.3,

\[
(1 + |V(H^v) \cap S|) \geq 1 + dn(H) \geq \gamma_D(H)
\]

for every \(v \in V(G) \cap S \). From Theorem 3.1 (iii) and (iv) and Remark 1.2

\[
|V(H^v) \cap S| \geq \gamma_{DT}(H) \geq \gamma_D(H) \text{ for every } v \in V(G) \setminus S.
\]

Thus, \(\gamma_{DT}(G \circ H) = |S| \geq |V(G)| \gamma_D(H) \).

Now let \(S \) be a minimum strictly differentiating total dominating set in \(H \). For each \(v \in V(G) \), pick \(S_v \subseteq V(H^v) \), where \(\langle S_v \rangle \cong \langle S \rangle \). Then \(S = \bigcup_{v \in V(G)} S_v \) is a differentiating total dominating set in \(G \circ H \) by Theorem 3.1. Hence, \(\gamma_{DT}(G \circ H) \leq |S| = |V(G)| \gamma_{SDT}(H) \).

\[\square\]

4 Differentiating Total Domination in the Composition of Graphs

The composition of two graphs \(G \) and \(H \) is the graph \(G[H] \) with vertex-set \(V(G[H]) = V(G) \times V(H) \) and edge-set \(E(G[H]) \) satisfying the following conditions: \((x, u)(y, v) \in E(G[H]) \) if and only if either \(xy \in E(G) \) or \(x = y \) and \(uv \in E(H) \). Observe that a non-empty subset \(C \) of \(V(G[H]) \) can be written as \(C = \bigcup_{x \in S} (\{x\} \times T_x) \), where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for every \(x \in S \).

Theorem 4.1 Let \(G \) and \(H \) be point distinguishing graph of order \(n \geq 3 \) with \(\Delta(H) \leq n - 2 \). Then
\[C = \bigcup_{x \in \mathcal{S}} (\{x\} \times T_x), \]

where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \) is a differentiating total dominating set in \(G[H] \) if and only if

(i) \(S = V(G) \);

(ii) \(T_x \) is a differentiating set in \(H \) for every \(x \in V(G) \);

(iii) \(T_x \) or \(T_y \) is strictly differentiating in \(H \) whenever \(x \) and \(y \) are adjacent vertices of \(G \) with \(N_G[x] = N_G[y] \); and

(iv) \(T_x \) or \(T_y \) is (differentiating) dominating in \(H \) whenever \(x \) and \(y \) are distinct non-adjacent vertices of \(G \) with \(N_G(x) = N_G(y) \).

Proof: Suppose \(C \) is a differentiating total dominating set in \(G[H] \). Suppose there exists \(x \in V(G) \) \(\setminus \) \(S \). Choose \(a, b \in V(H) \), where \(a \neq b \). Then \((x, a), (x, b) \notin C \) and \((x, a) \neq (x, b) \). Since \(\{(x, c) : c \in V(H)\} \cap C = \emptyset \), it follows that

\[N_{G[H]}[(x, a)] \cap C = N_{G[H]}[(x, b)] \cap C. \]

This means that \(C \) is not a differentiating set in \(G[H] \), a contradiction to the assumption. Thus, \(S = V(G) \).

Now, let \(x \in V(G) \) and suppose that \(T_x \) is not a differentiating set in \(H \). Then there exist distinct vertices \(p \) and \(q \) in \(V(H) \) such that

\[N_H[p] \cap T_x = N_H[q] \cap T_x. \]

Let \(D_x = N_H[p] \cap T_x \). Then \(\{(x) \times D_x\} \subseteq C \).

Since \(N_{G[H]}[(x, p)] \cap C = \bigcup \{(y) \times T_y : y \in N_G[x]\} \cup \{(x) \times D_x\} = N_{G[H]}[(x, q)] \cap C \), it follows that \(C \) is not a differentiating set in \(G[H] \). This gives a contradiction to the assumption. Hence, \(T_x \) is a differentiating set in \(H \).

Let \(x \) and \(y \) be adjacent vertices in \(G \) with \(N_G[x] = N_G[y] \). Suppose that \(T_x \) and \(T_y \) are not strictly differentiating in \(H \). Then there exist \(c \in V(H) \) and \(d \in V(H) \) such that \(N_H(c) \cap T_x = T_x \) and \(N_H(d) \cap T_y = T_y \). It follows that \(\{(x) \times T_x\} \cup \{(y) \times T_y\} \subseteq N_{G[H]}[(x, c)] \cap N_{G[H]}[(y, d)] \). Since \(N_G[x] = N_G[y] \), it follows that \(N_{G[H]}[(x, c)] \cap C = N_{G[H]}[(y, d)] \cap C \), that is, \(C \) is not a differentiating set in \(G[H] \). This contradicts our assumption. Therefore \(T_x \) or \(T_y \) is a strictly differentiating set in \(H \).

Let \(x \) and \(y \) be distinct non-adjacent vertices of \(G \) with \(N_G(x) = N_G(y) \). If \(T_x = V(H) \) or \(T_y = V(H) \), then we are done. So suppose \(T_x \neq V(H) \) and \(T_y \neq V(H) \). If \(T_x \) is not a dominating set in \(H \), then
there exists \(a \in V(H) \setminus T_x \) such that \(ab \notin E(H) \) for all \(b \in T_x \). It follows that \((x,a) \notin C \) and \(N_{G[H]}((x,a)) \cap C = \bigcup \{ \{ z \} \times T_z : z \in N_G(x) \} \). Let \(c \in V(H) \setminus T_y \). Then \((y,c) \notin C \). Since \(N_G(x) = N_G(y) \), it follows that \(\bigcup \{ \{ z \} \times T_z : z \in N_G(x) \} \subseteq N_{G[H]}((y,c)) \cap C \). Since \(C \) is a differentiating set in \(G[H] \), \(N_{G[H]}[x,a] \cap C \neq N_{G[H]}[y,c] \cap C \). This implies that there exists \((y,d) \in \{ y \} \times T_y \) such that \((y,d)(y,c) \in E(G[H]) \). This means that \(d \in T_y \) and \(cd \in E(H) \). Thus, \(T_y \) is a dominating set in \(H \).

For the converse, suppose that the conditions \((i),(ii),(iii)\) and \((iv)\) hold. Let \((x,a) \in V(G[H]) \). Since \(G \) is non-trivial and connected, there exists \(y \in V(G) \) such that \(xy \in E(G) \). Now, since \(S = V(G) \), there exists \(b \in V(H) \) such that \((y,b) \in C \). Thus, \((x,a)(y,b) \in E(G[H]) \). Therefore, \(C \) is a total dominating set in \(G[H] \). Now let \((x,a),(y,b) \in V(G[H]) \) with \((x,a) \neq (y,b) \). We consider the following cases. Case 1: Suppose \(x = y \). Then \(a \neq b \). By \((ii)\), \(T_x \) is a differentiating set in \(H \), hence, \(N_H[a] \cap T_x = A \neq B = N_H[b] \cap T_y \). Suppose that \(c \in A \setminus B \). Then \((x,c) \in N_{G[H]}[x,a] \setminus N_{G[H]}[y,b] \). Consequently \(N_{G[H]}[(x,a)] \cap C \neq N_{G[H]}[(y,b)] \cap C \). Therefore \(C \) is a differentiating set in \(G[H] \).

Case 2: Suppose \(x \neq y \). Consider the following subclaims.

Subclaim 1: Suppose \(xy \notin E(G) \).

If \(N_G[x] \neq N_G[y] \), then \(N_{G[H]}[x,a] \cap C \neq N_{G[H]}[y,b] \cap C \). Suppose \(N_G(x) = N_G(y) \). By \((iv)\), \(T_x \) or \(T_y \) is a dominating set in \(H^* \). Assume without loss of generality that \(T_x \) is a dominating set in \(H^* \). Then for every \(a \in V(H) \setminus T_x \) there exists \(c \in T_x \) such that \(ac \in E(H) \). It follows that \((x,c) \in C \) and \((x,a)(x,c) \in E(G[H]) \). Since \(xy \notin E(G) \), \((x,c)(y,b) \notin E(G[H]) \). It follows that

\[
N_{G[H]}[(x,a)] \cap C \neq N_{G[H]}[(y,b)] \cap C.
\]

Subclaim 2: Suppose \(xy \in E(G) \).

If \(N_G[x] \neq N_G[y] \), then \(N_{G[H]}[x,a] \cap C \neq N_{G[H]}[y,b] \cap C \). Suppose \(N_G(x) = N_G(y) \). By \((iii)\), \(T_x \) or \(T_y \) is strictly differentiating in \(H \). Assume without loss of generality that \(T_x \) is a strictly differentiating set in \(H \). Thus, for every \(d \in T_x \), \(N_H[d] \cap T_x \neq T_x \). Then, there exists \((x,d) \in C \) such that \((x,d)(x,a) \notin E(G[H]) \). Since \(xy \in E(G) \), \((x,d)(y,b) \in E(G[H]) \). It follows that

\[
N_{G[H]}[(x,a)] \cap C \neq N_{G[H]}[(y,b)] \cap C.
\]

Accordingly, \(C \) is a differentiating total dominating set in \(G[H] \).

The following is a direct consequence of Theorem 4.1.

Corollary 4.2 Let \(G \) be a totally point determining graph of order \(n \geq 3 \) and \(H \) be a point distinguishing graph of order \(m \geq 3 \) with \(\Delta(H) \leq m - 2 \). Then \(C = \bigcup_{x \in S} \{ x \} \times T_x \) is a minimum differentiating total dominating set in \(G[H] \).
if and only if \(S = V(G) \) and \(T_x \) is a minimum differentiating set in \(H \) for every \(x \in V(G) \).

Corollary 4.3 Let \(G \) be a totally point determining graph of order \(p \geq 3 \) and \(H \) be a point distinguishing graph of order \(m \geq 3 \) with \(\Delta(H) \leq m - 2 \). Then \(\gamma_{DT}(G[H]) = pdn(H) \).

Proof: Let \(C = \bigcup_{x \in S} (\{x\} \times T_x) \) be a minimum differentiating total dominating set in \(G[H] \). Then by Corollary 4.2, \(S = V(G) \) and \(T_x \) is a minimum differentiating set in \(H \) for every \(x \in V(G) \). Therefore \(\gamma_{DT}(G[H]) = |C| = pdn(H) \). \(\square \)

References

Received: May 1, 2014