A Note on Identities of Symmetry for
Generalized Carlitz’s q-Bernoulli Polynomials\(^1\)

Dae San Kim
Department of Mathematics, Sogang University
Seoul 121-742, Republic of Korea

Taekyun Kim
Department of Mathematics, Kwangwoon University
Seoul 139-701, Republic of Korea

Dmitry V. Dolgy
Hanrimwon, Kwangwoon University
Seoul 139-701, Republic of Korea

Jong-Jin Seo
Department of Applied Mathematics
Pukyong National University
Pusan 608-737, Republic of Korea

Copyright © 2014 Dae San Kim, Taekyun Kim, Dmitry V. Dolgy and Jong-Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate some symmetric properties of p-adic q-integral on \mathbb{Z}_p. A question was asked in [10] as to finding formulae of symmetries for the generalized Carlitz q-Bernoulli polynomials. From our investigation, we derive some

\(^1\)This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No.2012R1A1A2003786).
new identities of symmetry for the generalized Carlitz q-Bernoulli polynomials which are a partial answer to that question.

Mathematics Subject Classification: 11B68; 11S80

Keywords: Generalized Carlitz’s q-Bernoulli polynomial; p-adic q-integral

1. Introduction

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p. The p-adic absolute value in \mathbb{C}_p is normalized so that $|p|_p = p^{-1}$. Let q be variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}_p$, we assume that $|1 - q|_p < p^{-\frac{1}{p-1}}$. Let d be a fixed positive integer. We set

$$X = \lim_{N \to \infty} \left(\mathbb{Z}/dp^N \mathbb{Z} \right), \quad X^* = \bigcup_{0 < a < dp \atop (a,p) = 1} a + dp\mathbb{Z}_p,$$

$$a + dp^N\mathbb{Z}_p = \{ x \in X | x \equiv a \pmod{dp^N} \}, \quad (N \in \mathbb{N}),$$

where $a \in \mathbb{Z}$ lies in $0 \leq a < dp^N$, (see [1-19]).

Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, the p-adic q-integral is defined by Kim to be

$$I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x) q^x, \quad (1.1)$$

where $[x]_q = \frac{1-q^x}{1-q}$.

From (1.1), we note that

$$qI_q(f_1) = I_q(f) + (q-1)f(0) + \frac{q-1}{\log q} f'(0), \quad (1.2)$$

where $f_1(x) = f(x + 1)$.

By (1.2), we easily get

$$q^n I_q(f_n) = I_q(f) + (q-1) \sum_{l=0}^{n-1} f(l) + \frac{q-1}{\log q} \sum_{l=0}^{n-1} f'(l), \quad (1.3)$$

where $n \in \mathbb{N}$ and $f_n(x) = f(x + n)$.

It is not difficult to show that

$$\int_X f(x) d\mu_q(x) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x), \quad \text{(see [9])},$$

where $f \in UD(\mathbb{Z}_p)$.
The Bernoulli polynomials are defined by the generating function to be
\[
\frac{t}{e^t - 1} e^{xt} = e^{B(x)t} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad (\text{see} \ [14, 15, 16, 17, 18]). \tag{1.4}
\]
When \(x = 0 \), \(B_n = B_n(0) \) is called the \(n \)-th Bernoulli number.
By (1.4), we easily get
\[
B_0 = 1 \quad \text{and} \quad (B + 1)^n - B_n = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1, \end{cases}
\]
with the usual convention about replacing \(B_i \) by \(B_i \) (see [18, 19]).
In [3], Carlitz considered the \(q \)-extensions of Bernoulli numbers as follows:
\[
\beta_{0,q} = 1, \quad q(q\beta_q + 1)^n - \beta_{n,q} = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1, \end{cases}
\tag{1.5}
\]
He also defined \(q \)-Bernoulli polynomials as follows:
\[
\beta_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} [x]_q^{n-l} q^lx \beta_{l,q}, \quad (\text{see} \ [2, 3]). \tag{1.6}
\]
Recently, Kim gave the Witt’s formula for the Carlitz’s \(q \)-Bernoulli polynomials which are given by
\[
\int_{\mathbb{Z}_p} [x + y]_q^n d\mu_q(y) = \beta_{n,q}(x), \quad (n \geq 0), \quad (\text{see} \ [9]). \tag{1.7}
\]
When \(x = 0 \), \(\beta_{n,q} = \beta_{n,q}(0) \) is called the \(n \)-th Carlitz \(q \)-Bernoulli number.
From (1.2) and (1.7), we note that
\[
q\beta_{n,q}(1) - \beta_{n,q} = \begin{cases} q - 1 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1. \end{cases} \tag{1.8}
\]
By (1.7), we get
\[
\beta_{n,q}(x) = \int_{\mathbb{Z}_p} [x + y]_q^n d\mu_q(x) = \sum_{l=0}^{n} \binom{n}{l} q^lx \int_{\mathbb{Z}_p} [y]_q^l d\mu_q(x) [x]_q^{n-l} \tag{1.9}
\]
\[
= \sum_{l=0}^{n} \binom{n}{l} q^lx \beta_{l,q} [x]_q^{n-l} = \left(q^x \beta_q + [x]_q \right)^n.
\]
Let \(\chi \) be a primitive Dirichlet character with conductor \(d \in \mathbb{Z}_{\geq 0} \), with \((d, p) = 1 \). Then the generalized Bernoulli polynomials attached to \(\chi \) are defined by the generating function to be
\[
\frac{t}{e^{at} - 1} \left(\sum_{\chi(a)} \chi(a) e^{at} \right) e^{xt} = \sum_{n=0}^{\infty} B_{n,\chi}(x) \frac{t^n}{n!}. \tag{1.10}
\]
When \(x = 0 \), \(B_{n,\chi} = B_{n,\chi}(0) \) is called the \(n \)-th generalized Bernoulli number attached to \(\chi \) (see [9, 17, 18]). By (1.10), we get

\[
B_{n,\chi}(x) = d^{k-1} \sum_{a=0}^{d-1} \chi(a) B_k \left(\frac{a + x}{d} \right), \quad (k \geq 0).
\]

(1.11)

In [9], the \(q \)-extension of (1.11) is given by

\[
\beta_{n,\chi,q}(x) = [d]_q^{n-1} \sum_{a=0}^{d-1} \chi(a) q^a \beta_{n,q^d} \left(\frac{a + x}{d} \right),
\]

(1.12)

where \(\beta_{n,\chi,q}(x) \) are called the generalized \(q \)-Bernoulli polynomials attached to \(\chi \).

From (1.1) and (1.12), we note that

\[
\beta_{n,\chi,q}(x) = \int_X [x + y]^n_q \chi(y) d\mu_q(y), \quad (n \geq 0), \quad \text{(see [10])}.
\]

(1.13)

When \(x = 0 \), \(\beta_{n,\chi,q} = \beta_{n,\chi,q}(0) \) is called the \(n \)-th generalized Carlitz \(q \)-Bernoulli number attached to \(\chi \).

Indeed, by (1.13), we get

\[
\int_X [x + y]^n_q \chi(y) d\mu_q(y) = \frac{1}{[d]_q} \sum_{a=0}^{d-1} \chi(a) q^a \int_{\mathbb{Z}_p} [x + a + dy]^n_q d\mu_{q^d}(y)
\]

\[
= [d]_q^{n-1} \sum_{a=0}^{d-1} \chi(a) q^a \int_{\mathbb{Z}_p} \left[\frac{x + a}{d} + y \right]^n_{q^d} d\mu_{q^d}(y)
\]

\[
= [d]_q^{n-1} \sum_{a=0}^{d-1} \chi(a) q^a \beta_{n,q^d} \left(\frac{x + a}{d} \right).
\]

In this paper, we investigate some symmetric properties of \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \). A question was asked in [10] as to finding formulae of symmetries for the generalized Carlitz \(q \)-Bernoulli polynomials. From our investigation, we derive some new identities of symmetry for the generalized Carlitz \(q \)-Bernoulli polynomials which are a partial answer to that question.

2. Symmetric identities of generalized \(q \)-Bernoulli polynomials

From (1.13), we note that

\[
\sum_{n=0}^{\infty} \beta_{n,\chi,q}(x) \frac{t^n}{n!} = \int_X \chi(y) e^{[x+y]_q t} d\mu_q(y).
\]

(2.1)

Let \(w_1, w_2 \) be natural numbers.
Then, by (2.1), we get
\[
\frac{1}{[w_1]_q} \int_X \chi (y) e^{[w_1 w_2 x + w_2 j + w_1 y]_q} t d \mu_{w_1} (y) \tag{2.2}
\]
\[
= \lim_{N \to \infty} \frac{1}{[dw_1 w_2 p^N]_q} \sum_{i=0}^{dw_2-1} \sum_{j=0}^{dw_1-1} e^{[w_1 w_2 x + w_2 j + w_1 (i + dw_2 y)]_q} t q^{dw_1 w_2 y}.
\]
Thus, from (2.2), we have
\[
\frac{1}{[w_1]_q} \sum_{j=0}^{dw_1-1} \chi (j) q^{w_2 j} \int_X \chi (y) e^{[w_1 w_2 x + w_2 j + w_1 y]_q} t d \mu_{w_1} (y) \tag{2.3}
\]
\[
= \lim_{N \to \infty} \frac{1}{[dw_1 w_2 p^N]_q} \sum_{y=0}^{p^N-1} \sum_{j=0}^{dw_1-1} \sum_{i=0}^{dw_2-1} \chi (i) \chi (j) \times q^{w_1 i + w_2 j + dw_1 w_2 y} e^{[w_1 w_2 x + w_2 j + w_1 (i + dw_2 y)]_q} t.
\]
By the same method as (2.3), we get
\[
\frac{1}{[w_2]_q} \sum_{j=0}^{dw_2-1} \chi (j) q^{w_1 j} \int_X \chi (y) e^{[w_1 w_2 x + w_2 j + w_2 y]_q} t d \mu_{w_2} (y) \tag{2.4}
\]
\[
= \lim_{N \to \infty} \frac{1}{[dw_1 w_2 p^N]_q} \sum_{y=0}^{p^N-1} \sum_{j=0}^{dw_2-1} \sum_{i=0}^{dw_1-1} \chi (i) \chi (j) \times q^{w_2 i + w_1 j + dw_1 w_2 y} e^{[w_1 w_2 x + w_1 j + w_2 (i + dw_1 y)]_q} t.
\]
Therefore, by (2.3) and (2.4), we obtain the following theorem.

Theorem 2.1. For $w_1, w_2 \in \mathbb{N}$, we have
\[
\frac{1}{[w_1]_q} \sum_{j=0}^{dw_1-1} \chi (j) q^{w_2 j} \int_X \chi (y) e^{[w_1 w_2 x + w_2 j + w_1 y]_q} t d \mu_{w_1} (y)
\]
\[
= \frac{1}{[w_2]_q} \sum_{j=0}^{dw_2-1} \chi (j) q^{w_1 j} \int_X \chi (y) e^{[w_1 w_2 x + w_1 j + w_2 y]_q} t d \mu_{w_2} (y). \tag{2.5}
\]
Note that
\[
[w_1 w_2 x + w_2 j + w_1 y]_q = [w_1]_q \left[w_2 x + \frac{w_2 j}{w_1} + y \right]_{q^{w_1}} \tag{2.5}
\]
and
\[
[w_1 w_2 x + w_1 j + w_2 y]_q = [w_2]_q \left[w_1 x + \frac{w_1 j}{w_2} + y \right]_{q^{w_2}}. \tag{2.6}
\]
Therefore, by Theorem 2.1, (2.5) and (2.6), we obtain the following corollary.
Remark. We note that Theorem 2.3 is a partial answer to Question 1 in [10].

Corollary 2.2. For $n \geq 0$, we have

$$
[w_1]_{q}^{n-1} \sum_{j=0}^{d w_1-1} \chi (j) q^{w_2 j} \int_{X} \chi (y) \left[w_2 x + \frac{w_2}{w_1} j + y\right]^{n}_{q^{w_1}} d \mu_{q^{w_1}} (y)
$$

$$
= [w_2]_{q}^{n-1} \sum_{j=0}^{d w_2-1} \chi (j) q^{w_1 j} \int_{X} \chi (y) \left[w_1 x + \frac{w_1}{w_2} j + y\right]^{n}_{q^{w_2}} d \mu_{q^{w_2}} (y).
$$

Therefore, by (1.13) and Corollary 2.2, we obtain the following theorem.

Theorem 2.3. For $n \geq 0$, $w_1, w_2 \in \mathbb{N}$, we have

$$
[w_1]_{q}^{n-1} \sum_{j=0}^{d w_1-1} \chi (j) q^{w_2 j} \beta_{n, \chi, q^{w_1}} \left(w_2 x + \frac{w_2}{w_1} j\right)
$$

$$
= [w_2]_{q}^{n-1} \sum_{j=0}^{d w_2-1} \chi (j) q^{w_1 j} \beta_{n, \chi, q^{w_2}} \left(w_1 x + \frac{w_1}{w_2} j\right).
$$

Remark. We note that Theorem 2.3 is a partial answer to Question 1 in [10].

From (1.13), we can derive the following equation (2.7):

$$
\int_{X} \chi (y) \left[w_2 x + \frac{w_2}{w_1} j + y\right]^{n}_{q^{w_1}} d \mu_{q^{w_1}} (y) (2.7)
$$

$$
= \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) \left(\sum_{j=0}^{d w_1-1} \chi (j) \left[w_2 x + \frac{w_2}{w_1} j + y\right]^{n-i}_{q^{w_1}} d \mu_{q^{w_1}} (y) \right) (2.8)
$$

Thus, by (2.7), we get

$$
[w_1]_{q}^{n-1} \sum_{j=0}^{d w_1-1} \chi (j) q^{w_2 j} \int_{X} \chi (y) \left[w_2 x + \frac{w_2}{w_1} j + y\right]^{n}_{q^{w_1}} d \mu_{q^{w_1}} (y)
$$

$$
= \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) \left[w_1]_{q}^{n-i-1} [w_2]_{q}^{i} \left(\sum_{j=0}^{d w_1-1} \chi (j) \left[w_2 x + \frac{w_2}{w_1} j + y\right]^{n-i}_{q^{w_1}} d \mu_{q^{w_1}} (w_2 x) \right) \right.
$$

$$
= \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) [w_1]_{q}^{n-i-1} [w_2]_{q}^{n-i} \left(\sum_{j=0}^{d w_1-1} \chi (j) \left[w_2 x + \frac{w_2}{w_1} j + y\right]^{n-i}_{q^{w_1}} d \mu_{q^{w_1}} (w_2 x) \right)
$$

$$
= \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) [w_1]_{q}^{n-i-1} [w_2]_{q}^{n-i} T_{n,i} (dw_1, q^{w_2} | \beta_{i, \chi, q^{w_1}} (w_2 x),
$$
Symmetric identities for generalized q-Bernoulli polynomials

where

$$T_{n,i}(w, q|\chi) = \sum_{j=0}^{w-1} [j]_q^{n-i} q^{j(i+1)} \chi(j). \quad (2.9)$$

By the same method as (2.8), we get

$$[w]_q^{n-1} \sum_{j=0}^{dw_2-1} \chi(j) q^{w_1j} \int_x^y \chi(y) \left[w_1x + \frac{w_1}{w_2}j + y \right]_q^n d\mu_{w_2}(y) = \sum_{i=0}^{n} \binom{n}{i} [w_2]_{q}^{i-1} [w_1]_{q}^{n-i} T_{n,i}(dw_2, q^{w_1}|\chi) \beta_{i,n,w_2}(w_1x). \quad (2.10)$$

Therefore, by (2.8), (2.9) and (2.10), we obtain the following theorem.

Theorem 2.4. For $n \geq 0$, $w_1, w_2 \in \mathbb{N}$, we have

$$\sum_{i=0}^{n} \binom{n}{i} [w_1]_{q}^{i-1} [w_2]_{q}^{n-i} T_{n,i}(dw_1, q^{w_2}|\chi) \beta_{i,n,w_1}(w_2x) = \sum_{i=0}^{n} \binom{n}{i} [w_2]_{q}^{i-1} [w_1]_{q}^{n-i} T_{n,i}(dw_2, q^{w_1}|\chi) \beta_{i,n,w_2}(w_1x),$$

where $T_{n,i}(w, q|\chi) = \sum_{j=0}^{w-1} [j]_q^{n-i} q^{j(i+1)} \chi(j)$.

Remark.

1. Let χ be the trivial character. Then we have $\beta_{n,\chi_{\text{triv}},q^{w_1}}(w_2x) = \beta_{n,\chi,q^{w_1}}(w_2x)$, $(n \geq 0)$.

2. For $\chi = \chi_{\text{triv}}$, we have

$$\sum_{i=0}^{n} \binom{n}{i} [w_1]_{q}^{i-1} [w_2]_{q}^{n-i} T_{n,i}(w_1, q^{w_2}) \beta_{i,n,w_2}(w_2x) = \sum_{i=0}^{n} \binom{n}{i} [w_2]_{q}^{i-1} [w_1]_{q}^{n-i} T_{n,i}(w_2, q^{w_1}) \beta_{i,n,w_2}(w_1x),$$

where $T_{n,i}(w, q) = \sum_{j=0}^{w-1} [j]_q^{n-i} q^{j(i+1)}$.

3. We note that Theorem 2.4 is another partial answer to Question 1 in [10].

References

