Noor Iterative Processes for Multivalued Mappings
in Banach Spaces

D. P. Shukla, Vivek Tiwari and Ruchira Singh

Department of mathematics & computer Science
Govt. Model Science College, Rewa, (M.P.), India,486001

Copyright © 2014 D. P. Shukla, Vivek Tiwari and Ruchira Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let K be a nonempty compact convex subset of a uniformly convex Banach space, and $T : K \to \mathcal{P}(K)$ a multivalued nonexpansive mapping. We prove that the sequences of Noor iterate converge to a fixed point of T. This generalizes former results proved by Banach convergence of Noor iterates for a multi-valued mapping with a fixed point. We also introduce both of the iterative processes in a new sense, and prove a convergence theorem of Noor iterates for a mapping defined on a noncompact domain.

Keywords: Multivalued mappings; Fixed points; Noor iterates; uniformly convex Banach space

1. Introduction

Let K be a nonempty bounded closed convex subset of a Banach space X. A mapping $T : K \to K$ is said to be nonexpansive if

$$\|Tx - Tx\| \leq \|x - y\|, \quad \text{for all } x, y \in K$$
It has been shown that if X is uniformly convex then every nonexpansive mapping $T : K \to K$ has a fixed point (see Browder [2], cf. also KirK [3]). In 1974, Ishikawa [4] introduced a new iteration procedure for approximating fixed point of pseudo-contractive compact mapping in Hilbert space as follows.

$$x_{n+1} = \alpha_n x_n + (1-\alpha_n)T[\beta_n x_n + (1-\beta_n)Tx_n], \quad n \geq 0,$$

Where $\{ \alpha_n \}$ and $\{ \beta_n \}$ are sequence in $[0, 1]$ satisfying certain restrictions. Note that the normal Mann iteration procedure [5],

$$x_{n+1} = \alpha_n x_n + (1-\alpha_n)Tx_n, \quad n \geq 0,$$

Where $\{ \alpha_n \}$ is a sequence in $[0, 1]$, is a special case of the Ishikawa one. For a comparison of the two iterative processes in the one-dimensional case, we refer the reader to Rhoades [6]. For more details and Literature on the convergence of Ishikawa and Mann iterates we refer to [7-14]. Recently, Sastry and Babu [1] introduced the analogs of Mann and Ishikawa iterates for nonexpansive mappings whose domain is a compact convex subset of a Hilbert space. In this paper, we generalize results of Sastry and Babu to uniformly convex Banach spaces. We also introduce both of the iteration processes in a new sense, and prove a convergence theorem of Mann iterates for a mapping defined on a noncompact domain.

2. Preliminaries

Let X be a Banach space, K be a nonempty, convex subset of X, and T be a self map of K. Three most popular iteration procedures for obtaining fixed points of T, if they exist, we defined Noor iteration as follows:

Noor iteration [17], defined by

$$x_1 \in K, \ x_{n+1} = (1-\alpha_n)x_n + \alpha_n Ty_n,$$

$$y_n = (1-\beta_n)x_n + \beta_n Tz_n,$$

$$z_n = (1-\gamma_n)x_n + \gamma_n Tx_n, \quad n \geq 1,$$
Let X be a Banach space. A subset K is call proximinal if for each $x \in X$, there exists an element $k \in K$ such that

$$d(x, k) = \text{dist}(x, K) = \inf \|x - y\| : y \in K.$$

It is well known that every closed convex subset of a uniformly convex Banach space is proximinal. We shall denote by $P(K)$ the family of nonempty bounded proximinal subset of K. Let $H(., .)$ be the Hausdorff distance on $P(K)$, i.e.,

$$H(A, B) = \max \left\{ \sup_{a \in A} \text{dist}(a, B), \sup_{b \in B} \text{dist}(b, A) \right\}, \quad A, B \in P(K),$$

Where $\text{dist}(a, B) = \inf \|a - b\| : b \in B$ is the distance from the point a to the set B.

A multivalued mappings $T : K \rightarrow P(K)$ is said to be a nonexpansive if

$$H(Tx, Ty) \leq \|x - y\| \quad \text{for all } x, y \in K.$$

A point x is called a fixed point of T if $x \in Tx$. the existence of fixed points for multivalued nonexpansive mappings in uniformly convex Banach space was proved by Lim [15]. From now on, X stands for a uniformly convex Banach space and $F(T)$ stands for the fixed point set of a mapping T.

Definition 2.1 ([1]) Let K be a nonempty convex subset of X, $T : K \rightarrow P(K)$ a multivalued mapping and fix $p \in F(T)$.

The sequence of Mann iterates is defined by $x_0 \in K$,

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) y_n, \quad \alpha_n \in [0,1], n \geq 0,$$

Where $y_n \in Tx_n$ is such that $\|y_n - p\| = \text{dist}(p, Tx_n)$,

The sequence of Ishikawa iterates is defined by $x_0 \in K$,

$$y_n = (1 - \beta_n) x_n + \beta_n z_n, \quad \beta_n \in [0,1], n \geq 0$$
Where $z_n \in Tx_n$ is such that $\|z_n - p\| = \text{dist}(p, Tx_n)$, and

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n z_n^\prime, \quad \alpha_n \in [0,1]$$

Where $z_n^\prime \in Ty_n$ is such that $\|z_n^\prime - p\| = \text{dist}(p, Ty_n)$.

The sequence of Noor iterates is defined by $x_0 \in K$,

(C)

$$z_n = (1 - \gamma_n)x_n + \gamma_n z_n$$

Where $z_n \in Tx_n$ is such that $\|z_n - p\| = \text{dist}(p, Tx_n)$,

$$y_n = (1 - \beta_n)x_n + \beta_n z_n^\prime, \quad \beta_n \in [0,1], n \geq 0$$

Where $z_n^\prime \in Tz_n$ is such that $\|z_n^\prime - p\| = \text{dist}(p, Tz_n)$, and

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n z_n^\prime, \quad \alpha_n \in [0,1]$$

Where $z_n^\prime \in Ty_n$ is such that $\|z_n^\prime - p\| = \text{dist}(p, Ty_n)$.

Lemma 2.2. [1] Let $\{\alpha_n\}$, $\{\beta_n\}$ be two real sequences such that

(i) $0 \leq \alpha_n, \beta_n < 1$,

(ii) $\beta_n \to 0$ as $n \to \infty$ and

(iii) $\sum \alpha_n \beta_n = \infty$.

Let $\{\gamma_n\}$ be a nonnegative real sequence such that $\sum \alpha_n \beta_n (1 - \beta_n) \gamma_n$ is bounded. Then $\{\gamma_n\}$ has a subsequence which convergence to zero.

Lemma 2.3. Let $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ be real sequences such that

(i) $0 \leq \alpha_n, \beta_n < 1, \gamma_n < 1$
Noor iterative processes for multivalued mappings

\(\beta_n \to 0, \gamma_n \to 0 \) as \(n \to \infty \) and

\(\sum \alpha_n \beta_n \gamma_n = \infty. \)

Let \(\{\delta_n\} \) be a nonnegative real sequence such that \(\sum \beta_n \gamma_n (1 - \gamma_n) \delta_n \) is bounded. Then \(\{\delta_n\} \) has a subsequence which convergence to zero.

Lemma 2.4. Let \(X \) be a Banach space. Then \(X \) is uniformly convex if and only if for any given number \(\rho > 0, \)

The square norm \(\| \cdot \|^2 \) of \(X \) uniformly convex on \(B_\rho \), the closed ball centered at the origin with radius \(\rho \); namely, there exists a continuous strictly increasing function \(\varphi : [0, \infty) \to [0, \infty) \) with \(\varphi(0) = 0 \) such that

\[
\| \alpha x + (1 - \alpha) y \| \leq \alpha \| x \|^2 + (1 - \alpha) \| y \|^2 - \alpha (1 - \alpha) \varphi(\| x - y \|),
\]

For all \(x, y \in B_\rho, \alpha \in [0, 1]. \)

3. Main results

Theorem 3.1. Let \(K \) be a nonempty compact convex subset of a uniformly convex Banach space \(X \). Suppose that a nonexpansive map \(T : K \to P(K) \) has a fixed point \(p \). Let \(\{x_n\} \) be the sequence of Noor iterates defined by (C). Assume that

(i) \(0 \leq \alpha_n, \beta_n < 1, \gamma_n < 1 \)

(ii) \(\beta_n \to 0, \gamma_n \to 0 \) and

(iii) \(\sum \alpha_n \beta_n \gamma_n = \infty. \) Then the sequence \(\{x_n\} \) convergence to a fixed point of \(T. \)

Proof. By using Lemma 2.4, we have
\[
\|x_{n+1} - p\|^2 = \|(1 - \alpha_n)x_n + \alpha_n z_n - p\|^2 \\
\leq (1 - \alpha_n)\|x_n - p\|^2 + \alpha_n \|z_n - p\|^2 - \alpha_n(1 - \alpha_n)\phi(\|x_n - z_n\|)
\]

\[
\leq (1 - \alpha_n)\|x_n - p\|^2 + \alpha_n H^2(Ty_n, Tp) - \alpha_n(1 - \alpha_n)\phi(\|x_n - z_n\|)
\]

\[
\leq (1 - \alpha_n)\|x_n - p\|^2 - \alpha_n(1 - \alpha_n)\phi(\|x_n - z_n\|)
\]

(2)

\[
\|y_n - p\|^2 = \|(1 - \beta_n)x_n + \beta_n z_n - p\|^2 \\
\leq (1 - \beta_n)\|x_n - p\|^2 + \beta_n \|z_n - p\|^2 - \beta_n(1 - \beta_n)\phi(\|x_n - z_n\|)
\]

\[
\leq (1 - \beta_n)\|x_n - p\|^2 + \beta_n H^2(Tz_n, Tp) - \beta_n(1 - \beta_n)\phi(\|x_n - z_n\|)
\]

\[
\leq (1 - \beta_n)\|x_n - p\|^2 - \beta_n(1 - \beta_n)\phi(\|x_n - z_n\|)
\]

(3)

\[
\|z_n - p\|^2 = \|(1 - \gamma_n)x_n + \gamma_n z_n - p\|^2 \\
\leq (1 - \gamma_n)\|x_n - p\|^2 + \gamma_n \|z_n - p\|^2 - \gamma_n(1 - \gamma_n)\phi(\|x_n - z_n\|)
\]

\[
\leq (1 - \gamma_n)\|x_n - p\|^2 + \gamma_n H^2(Tx_n, Tp) - \gamma_n(1 - \gamma_n)\phi(\|x_n - z_n\|)
\]

\[
\leq (1 - \gamma_n)\|x_n - p\|^2 - \gamma_n(1 - \gamma_n)\phi(\|x_n - z_n\|)
\]

From (1), (2) and (3), we get
(4)
\[\|x_{n+1} - p\|^2 \leq \|x_n - p\|^2 - \alpha_n \beta_n \gamma_n (1 - \gamma_n) \varphi(\|x_n - z_n\|) \]

Therefore
\[\alpha_n \beta_n \gamma_n (1 - \gamma_n) \varphi(\|x_n - z_n\|) \leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2. \]

This implies
\[\sum_{n=1}^{\infty} \alpha_n \beta_n \gamma_n (1 - \gamma_n) \varphi(\|x_n - z_n\|) \leq \|x_i - p\|^2 < \infty. \]

Hence by Lemma 2.3, there exists a subsequence \(\{x_{n_k} - z_{n_k}\} \) of \(\{x_n - z_n\} \) such that
\(\varphi(\|x_{n_k} - z_{n_k}\|) \to 0 \) as \(k \to \infty \) and hence \(\|x_{n_k} - z_{n_k}\| \to 0 \), by the continuity and strictly increasing nature of \(\varphi \). By the compactness of \(K \), we may assume that \(x_{n_k} \to q \) for some \(q \in K \). Thus
\[\text{dist}(q,Tq) \leq \|q - x_{n_k}\| + \text{dist}(x_{n_k},Tx_{n_k}) + H(Tx_{n_k},Tq) \]
\[\leq \|q - x_{n_k}\| + \|x_{n_k} - z_{n_k}\| + \|x_{n_k} - q\| \to 0 \quad \text{as} \quad k \to \infty. \]

Hence, \(q \) is a fixed point of \(T \). Now on taking \(q \) in place of \(p \), we get that \(\|x_n - q\| \) is a decreasing sequence by (4). Since \(\|x_n - q\| \to 0 \) as \(k \to \infty \), it follows that \(\|x_n - q\| \) decreases to 0.

Acknowledgements

We would like to thank the Department of Mathematics for theirs kind hospitality, especially to professor W. A. Kirk for his valuable suggestions.
References

Received: February 20, 2014