Some Sectional Rate Spaces

K. Chandrasekhara Rao

Department of Mathematics, Srinivasa Ramanujan Centre
SASTRA University, Kumbakonam-612001, India

K. Balasubramanian

Department of Mathematics
SASTRA University, Thanjavur-613401, India

Copyright © 2014 K. Chandrasekhara Rao and K. Balasubramanian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we find out determining sets for rate spaces l_π and l^2_π.

Mathematics Subject classification: 46A45

Keywords: Determining set, rate space l_π and rate space l^2_π

Introduction

A sequence whose k^{th} term is x_k, is denoted by $x = \{x_k\}$. Let $w = \{\text{all complex sequences}\}$, $l = \{x = \{x_k\} \in w : \sum_{k=1}^{\infty} |x_k| < \infty\}$ and $l_\pi = \{x = \{x_k\} \in w : \sum_{k=1}^{\infty} |x_k|/\pi_k < \infty\}$.

Let X be a linear space over \mathbb{K} (\(\mathbb{R}\) or \(\mathbb{C}\)) and $M \subset X$.
Then M is called absolutely convex set if
$$\forall \alpha, \beta \in \mathbb{K} : (|\alpha| + |\beta| \leq 1 \Rightarrow \alpha M + \beta M \subset M).$$

Let $D = \varnothing \cap B$ where B is the closed unit ball in X,
where $\varnothing = \{\text{all finite sequences}\}$.
If $A = D$, then a subset E of \varnothing is called a determining set for X, where A is the absolutely convex hull of E.

Section-(1)

Let \(x = \{x_k\} \) be a sequence and \(\{\pi_k\} \) be a sequence of positive terms. We define

(i) \(l_s = \{x: \sum_{k=1}^{\infty} |x_1 + x_2 + \cdots + x_k| < \infty\} \)

(ii) \(l_{s\pi} = \left\{ x: \left\{ \frac{x_k}{\pi_k} \right\} \in l_s \right\} \) where \(x = \{x_k\} \)

(iii) \(x = \{x_k\} \in l_{s\pi} \Rightarrow \|x\|_{s\pi} = \frac{x_1}{\pi_1} + \frac{x_2}{\pi_2} + \frac{x_3}{\pi_3} + \cdots \)

(iv) [Wilansky, 1984] Let \(X \) be a BK-space. Then \(D = D(X) = \{x \in \phi: \|x\| \leq 1\} \). We do not assume that \(X \ni \phi \). That is \(D = \phi \cap (\text{unit closed sphere in } X) \).

Theorem-(1)

Let \(s^{(k)} \) be the sequence \(\left\{0,0,0,0,0,0,0, \ldots, \frac{1}{\pi_k}, \ldots, -1,0,0, \ldots\right\} \) \((k^{\text{th}} \text{ place}) \)

for each fixed positive integer \(k \). Let \(E = \{s^{(1)}, s^{(2)}, \ldots\} \).

Then \(E \) is a determining set for the space \(l_{s\pi} \), provided

\[
\left| \frac{1}{\pi_k} \right| + \left| \frac{1}{\pi_k} - \frac{1}{\pi_{k+1}} \right| + \left| \frac{1}{\pi_k} - \frac{1}{\pi_{k+1}} \right| + \cdots \leq 1.
\]

Proof

Step 1: Let \(A \) be the absolutely convex hull of \(E \), \(\phi \) be the set of all finite sequences and \(D \) be the set \(\phi \cap B \), where \(B = \text{the closed unit ball of } l_{s\pi} \). That is, \(D = \{x \in l_{s\pi}: \|x\| \leq 1\} \).

Let \(x = \{x_k\} \in A \). Then \(x = \sum_{k=1}^{m} t_k s^{(k)} \) with \(\sum_{k=1}^{m} |t_k| \leq 1 \) \(\ldots \) (1)

\[
\Rightarrow x = t_1 s^{(1)} + t_2 s^{(2)} + \cdots + t_m s^{(m)} = t_1 \left(\frac{1}{\pi_1}, \frac{-1}{\pi_2}, 0, 0, \ldots \right) + t_2 \left(0, \frac{1}{\pi_2}, \frac{-1}{\pi_3}, 0, 0, \ldots \right) + \cdots + t_m \left(0, 0, \ldots, \frac{1}{\pi_m}, \frac{-1}{\pi_{m+1}}, 0, 0, \ldots \right)
\]

\[
= \left(\frac{t_1}{\pi_1} - \frac{t_1}{\pi_2}, 0, 0, \ldots \right) + \left(0, \frac{t_2}{\pi_2}, -\frac{t_2}{\pi_3}, 0, 0, \ldots \right) + \cdots + \left(0, 0, \ldots, \frac{t_m}{\pi_m}, -\frac{t_m}{\pi_{m+1}}, 0, 0, \ldots \right)
\]
\[\left(\frac{t_1}{\pi_1}, \frac{t_2-t_1}{\pi_2}, ..., \frac{t_m-t_{m-1}}{\pi_m}, \frac{-t_m}{\pi_{m+1}}, 0, 0, ... \right) \]
\[\Rightarrow x \in \phi \quad \ldots (2) \]

From \(x = \sum_{k=1}^{m} t_k s^{(k)} \), taking norm on both sides \(\|x\|_{s,\pi} = \left\| \sum_{k=1}^{m} t_k s^{(k)} \right\|_{s,\pi} \). Hence
\[\|x\|_{s,\pi} \leq \sum_{k=1}^{m} |t_k| \|s^{(k)}\|_{s,\pi} \]
But \((s^{(k)}) = \left(0, 0, ..., \frac{1}{\pi_k}, -1, \frac{1}{\pi_{k+1}}, 0, 0, ... \right) \).
\[\Rightarrow \|s^{(k)}\|_{s,\pi} = |0| + |0| + ... = 0 + 0 + ... + \left| \frac{1}{\pi_k} \right| + 0 + ... + \left| \frac{1}{\pi_k} - \frac{1}{\pi_{k+1}} \right| + ... \]
\[= \left| \frac{1}{\pi_k} \right| + \left| \frac{1}{\pi_k} - \frac{1}{\pi_{k+1}} \right| + ... \]
\[\leq 1 \quad \ldots (3) \]
\[\Rightarrow \|x\|_{s,\pi} \leq \sum_{k=1}^{m} |t_k| \|s^{(k)}\|_{s,\pi} \leq 1 \]
\[\leq 1 \|s^{(k)}\|_{s,\pi} \text{ by (1).} \]
\[\leq 1 \text{ by (3).} \]
\[\Rightarrow x \in B \quad \ldots (4) \]

From (2) and (4), we have \(x \in D \). Thus \(A \subseteq D \quad \ldots (5) \)

Step 2: Let \(x = \{x_k\} \in D \). Then \(x \in \phi \) and \(\|x\|_{s,\pi} \leq 1 \quad \ldots (6) \)

Since \(x \in \phi \), we may have \(x = (x_1, x_2, ..., x_m, 0, 0, ...). \) Then
\[x = t_1 s^{(1)} + t_2 s^{(2)} + ... + t_m s^{(m)} + ... \] where \(t_1 = x_1, \ t_2 = x_1 + x_2, \ ..., t_m = x_1 + x_2 + ... + x_m \).

Hence
\[|t_1| + |t_2| + ... + |t_m| = |x_1| + |x_1 + x_2| + ... + |x_1 + x_2 + ... + x_m| \]
\[= \|x\|_{s,\pi} \leq 1, \text{ by (6).} \]

Consequently \(\sum_{k=1}^{m} |t_k| \leq 1 \). Thus \(x = t_1 s^{(1)} + t_2 s^{(2)} + ... + t_m s^{(m)} \) with \(\sum_{k=1}^{m} |t_k| \leq 1 \).
\[\Rightarrow x \in A \Rightarrow D \subseteq A \quad \ldots (7) \]

From (5) and (7) we get \(A = D \). Hence \(\{s^{(k)}\} \) is a determining set for \(l_{s,\pi} \).
Section-(2)

Definition

Let $l^2 = \{ x \in W : \sum_{k=1}^{\infty} |x_k|^2 < \infty \}$, l^2_{π} is the space of all (complex) sequences $x = \{ x_k \}$ such that $\sum_{k=1}^{\infty} \left| \frac{x_k}{\pi_k} \right|^2 < \infty$ with the norm $\|x\|_{l^2_{\pi}} = \left\{ \sum_{k=1}^{\infty} \left| \frac{x_k}{\pi_k} \right|^2 \right\}^{\frac{1}{2}}$. Then with this norm

\[l^2_{\pi} \text{ is a } BK\text{-space}. \]

Let $\{ l^2 \}_{s_{\pi}}$ denote the space of all those complex sequences $\{ x_k \}$ such that $\{ y_k \} \in l^2_{\pi}$ with $y_k = x_1 + x_2 + \ldots + x_k$ for $k = 1, 2, 3, \ldots$.

In other words, $\{ l^2 \}_{s_{\pi}} = \{ x = \{ x_k \} : \{ y_k \} \in l^2_{\pi} \}$ with the norm

\[\|x\|_{\frac{l^2_{s_{\pi}}}{2}} = \left\{ \sum_{k=1}^{\infty} \left| \frac{x_1}{\pi_k} + \frac{x_2}{\pi_k} + \ldots + \frac{x_k}{\pi_k} \right|^2 \right\}^{\frac{1}{2}}. \]

For each $k = 1, 2, 3, \ldots$, $s^{(k)}$ denotes the sequence

\[\left(0, 0, \ldots, \frac{1}{\pi_k}, \frac{-1}{\pi_{k+1}}, 0, 0, \ldots \right), \frac{1}{\pi_k} \text{ in the } k^{th} \text{ place and } \frac{-1}{\pi_{k+1}} \text{ in the } (k+1)^{th} \text{ place}. \]

Theorem-(2)

For each fixed positive integer k, let $s^{(k)}$ be the sequence

\[\left(0, 0, \ldots, \frac{1}{\pi_k}, \frac{-1}{\pi_{k+1}}, 0, 0, \ldots \right), \frac{1}{\pi_k} \text{ in the } k^{th} \text{ place}. \text{ Then } E = \{ s^{(1)}, s^{(2)}, \ldots \} \text{ is a determining set for the space } \{ l^2 \}_{s_{\pi}}, \text{ provided } \left| \frac{1}{\pi_k} \right|^2 + \left| \frac{1}{\pi_k} - \frac{1}{\pi_{k+1}} \right|^2 + \ldots \leq 1. \]

Proof

Let A be the absolutely convex hull of E and ϕ denote the set of all finite sequences. Let $D = \phi \cap \left(\text{the closed unit ball in } \{ l^2 \}_{s_{\pi}} \right)$ and $x = \{ x_k \} \in A$.

Then $x = \sum_{k=1}^{m} t_k s^{(k)}$ with $\sum_{k=1}^{m} |t_k| \leq 1$

\[x = t_1 s^{(1)} + t_2 s^{(2)} + \ldots + t_m s^{(m)} \]

\[= \frac{t_1}{\pi_1} \left(0, 0, \ldots, \frac{1}{\pi_1}, \frac{-1}{\pi_2}, 0, 0, \ldots \right) + \frac{t_2}{\pi_2} \left(0, 0, \ldots, \frac{1}{\pi_2}, \frac{-1}{\pi_3}, 0, 0, \ldots \right) + \ldots + \frac{t_m}{\pi_m} \left(0, 0, \ldots, \frac{1}{\pi_m}, \frac{-1}{\pi_{m+1}}, 0, 0, \ldots \right) \]

\[= \frac{t_1}{\pi_1} \left(0, 0, \ldots, \frac{1}{\pi_1}, \frac{-1}{\pi_2}, 0, 0, \ldots \right) + \frac{t_2}{\pi_2} \left(0, 0, \ldots, \frac{1}{\pi_2}, \frac{-1}{\pi_3}, 0, 0, \ldots \right) + \ldots + \frac{t_m}{\pi_m} \left(0, 0, \ldots, \frac{1}{\pi_m}, \frac{-1}{\pi_{m+1}}, 0, 0, \ldots \right) \]
Therefore \(x \in \phi \) \(\ldots (9) \)

From \(x = \sum_{k=1}^{m} t_k s^{(k)} \), taking norm on both sides \(\|x\|_{s\pi} = \left\| \sum_{k=1}^{m} t_k s^{(k)} \right\|_{s\pi} \). Hence

\[
\|x\|_{s\pi} \leq \sum_{k=1}^{m} |t_k| \|s^{(k)}\|_{s\pi} \leq \left\| \sum_{k=1}^{m} t_k s^{(k)} \right\|_{s\pi}
\]

\[
\leq |t_1| \|s^{(1)}\| + |t_2| \|s^{(2)}\| + \cdots + |t_m| \|s^{(m)}\|
\]

\[
= |t_1| \|s^{(1)}\| + |t_2| \|s^{(2)}\| + \cdots + |t_m| \|s^{(m)}\|
\]

\[
\leq |t_1| \|s^{(1)}\|^2 + |t_2| \|s^{(2)}\|^2 + \cdots + |t_m| \|s^{(m)}\|^2
\]

But \((s^{(k)}) = \left(0,0, \ldots, \frac{1}{\pi_k}, -\frac{1}{\pi_{k+1}}, 0, \ldots\right) \). That is \(\|s^{(k)}\|_{s\pi}^2 = \left\| \left(0,0, \ldots, 1, 0\right) \right\|_{s\pi}^2 \).

\[
= \left\{ \left|0\right|^2 + \left|0\right|^2 + \cdots + \left|0\right|^2 + \frac{1}{\pi_k} \right\}^2 + \left\{ \left|0\right|^2 + \left|0\right|^2 + \frac{1}{\pi_k} \right\}^2 + \cdots \leq 1
\]

\[
\|s^{(k)}\|_{s\pi}^2 \leq 1
\]

\[
\|x\|_{s\pi}^2 \leq \sum_{k=1}^{m} |t_k| \|s^{(k)}\|_{s\pi}^2
\]

\[
\|x\|_{s\pi}^2 \leq 1 \text{ by using (10)}.
\]

Thus \(x \in \phi \) with \(\|x\|_{s\pi} \leq 1 \). Therefore \(x \in D \).

Arbitrariness of \(x \in A \) gives \(A \subset D \) \(\ldots (11) \)

On the other hand, let \(x = \{x_k\} \in D \Rightarrow x \in \phi \) and \(\|x\|_{s\pi} \leq 1 \).

Since \(x \in \phi \), we may have \(x = (x_1, x_2, \ldots, x_m, 0,0, \ldots) \).

Then \(x = t_1 s^{(1)} + t_2 s^{(2)} + \cdots + t_m s^{(m)} + \cdots \)

where \(t_1 = \frac{x_1}{\pi_1}, t_2 = \frac{x_1}{\pi_2}, \ldots, t_m = \frac{x_1}{\pi_1} + \frac{x_2}{\pi_2} + \cdots + \frac{x_m}{\pi_m} \).

Hence \(|t_1| + |t_2| + \cdots + |t_m| = \left\{ \frac{x_1^2}{\pi_1} + \frac{x_1^2}{\pi_2} + \cdots + \frac{x_1^2}{\pi_1} + \frac{x_2^2}{\pi_2} + \cdots + \frac{x_m^2}{\pi_2} + \cdots + \frac{x_m^2}{\pi_m} \right\}^{1/2} \).

But \(\|x\|_{s\pi} \leq 1 \). Consequently \(\sum_{k=1}^{m} |t_k| \leq 1 \). Thus \(x = t_1 s^{(1)} + t_2 s^{(2)} + \cdots + t_m s^{(m)} \) with \(\sum_{k=1}^{m} |t_k| \leq 1 \). Therefore \(x \in A \).

Arbitrariness of \(x \) in \(D \) gives \(D \subset A \) \(\ldots (12) \)

From (11) and (12) it follows that \(A = D \). Hence \(E \) is a determining set for \((l^2)_{s\pi} \).

This completes the proof.
References

Received: November 15, 2013