On the Inverse Diamond Kernel of Marcel Riesz

D. Maneetus and K. Nonlaopon

Department of Mathematics, Khon Kaen University
Khon Kaen 40002, Thailand
nkamsi@kku.ac.th

Abstract

In this paper, we define the diamond Marcel Riesz operator of order \((\alpha, \beta)\) on the function \(f\) by

\[M^{(\alpha, \beta)}(f) = K^{\alpha, \beta} * f, \]

where \(K^{\alpha, \beta}\) is diamond kernel of Marcel Riesz, \(\alpha, \beta \in \mathbb{C}\), the symbol \(*\) designates the convolution, and \(f \in \mathcal{S}\), \(\mathcal{S}\) is the Schwartz space of functions. Our purpose of this paper is to obtain the operator \(N^{(\alpha, \beta)} = [M^{(\alpha, \beta)}]^{-1}\) such that if \(M^{(\alpha, \beta)}(f) = \varphi\), then \(N^{(\alpha, \beta)} \varphi = f\). Our results generalize formulae appearing in A. Kananthai [On the convolutions of the diamond kernel of Marcel Riesz, Applied Mathematics and Computation, 114(2000), 95 – 101].

Mathematics Subject Classification: 46F10, 46F12

Keywords: Diamond kernel of Marcel Riesz, diamond operator, ultra-hyperbolic kernel of Marcel Riesz, ultra-hyperbolic operator, Dirac-delta distribution

1 Introduction

The \(n\)-dimensional ultra-hyperbolic operator \(\Box^k\) iterated \(k\) times is defined by

\[\Box^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \right)^k, \]

where \(p + q = n\) is the dimension of \(\mathbb{R}^n\) and \(k\) is a non-negative integer.

Consider the linear differential equation in the form of

\[\Box^k u(x) = f(x), \]

\(^1\) Corresponding Author, e-mail : nkamsi@kku.ac.th
where \(u(x) \) and \(f(x) \) are generalized functions and \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \).

I. M. Gelfand and G. E. Shilov [4] were the first to introduce the fundamental solution of (2), which is a complicated form. Later, S. E. Trione [19] showed that the generalized function \(R_{2k}(x) \), defined by (14) with \(\gamma = 2k \), is the unique fundamental solution of (2) and M. A. Tellez [15] also proved that \(R_{2k}(x) \) exists only when \(p + q = n \) with odd \(p \).

Later, A. Kananthai [10] was the first to introduce the operator \(\diamond^k \) called the diamond operator iterated \(k \) times, which is defined by

\[
\diamond^k = \left[\left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} \right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^2 \right]^k,
\]

where \(n = p + q \) is the dimension of \(\mathbb{R}^n \), for all \(x = (x_1, x_2, \ldots, x_n) \), and \(k \) is a non-negative integer. The operator \(\diamond^k \) can be expressed in the form

\[
\diamond^k = \triangle^k \square^k = \square^k \triangle^k,
\]

(4)

where \(\square^k \) is defined by (1), and

\[
\triangle^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)^k.
\]

is the Laplace operator iterated \(k \) times. On finding the fundamental solution of this product, A. Kananthai used the convolution of functions which are fundamental solutions of the operators \(\square^k \) and \(\triangle^k \). He found that the convolution

\[
(-1)^k S_{2k}(x) * R_{2k}(x)
\]

is the fundamental solution of the operator \(\diamond^k \), that is,

\[
\diamond^k ((-1)^k S_{2k}(x) * R_{2k}(x)) = \delta(x),
\]

(6)

where \(R_{2k}(x) \) and \(S_{2k}(x) \) are defined by (14) and (19), respectively, with \(\gamma = 2k \), and \(\delta(x) \) is the Dirac delta distribution. The fundamental solution

\[
(-1)^k S_{2k}(x) * R_{2k}(x)
\]

is called the diamond kernel of Marcel Riesz. A wealth of some effective works on the diamond kernel of Marcel Riesz were presented by A. Kananthai [5, 6, 7, 8, 9, 14, 18].

In 1978, A. G. Dominguez and S. E. Trione [3] introduced the distributional functions \(H_\alpha(P \pm i0, n) \) which are causal (anti-causal) analogues of the elliptic kernel of Riesz [12]. Later, R. A. Cerutti and S. E. Trione [2] defined the causal (anti-causal) generalized Marcel Riesz potentials of order \(\alpha, \alpha \in \mathbb{C} \), by

\[
R^\alpha \varphi = H_\alpha(P \pm i0, n) * \varphi,
\]

(7)

where \(\varphi \in \mathcal{S}, \mathcal{S} \) is the Schwartz space of functions [13], and \(H_\alpha(P \pm i0, n) \) is given by

\[
H_\alpha(P \pm i0, n) = \frac{e^{\mp \alpha \pi i/2} e^{\pm \pi i/2} \Gamma((n - \alpha)/2)(P \pm i0)^{(\alpha - n)/2}}{2^{\alpha} \pi^{n/2} \Gamma(\alpha/2)}.
\]

(8)
Here, P is defined by
\begin{equation}
P = P(x) = x_1^2 + x_2^2 + \cdots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \cdots - x_{p+q}^2,
\end{equation}
where q is the number of negative terms of the quadratic form P. The distributions $(P \pm i\lambda)$ are defined by
\begin{equation}
(P \pm i\lambda) = \lim_{\epsilon \to 0} (P \pm i\epsilon |x|^2)^\lambda,
\end{equation}
where $\epsilon > 0$, $\lambda \in \mathbb{C}$ and $|x|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$, see [4]. They also studied the inverse operator of R^α, denoted by $(R^\alpha)^{-1}$, such that if $f = R^\alpha \varphi$, then $(R^\alpha)^{-1} f = \varphi$.

Later, M. A. Aguirre [1] defined the ultra-hyperbolic Marcel Riesz operator M^α of the function f by
\begin{equation}
M^\alpha(f) = R^\alpha * f,
\end{equation}
where R^α is defined by (14) and $f \in \mathcal{S}$. He also studied the operator $N^\alpha = (M^\alpha)^{-1}$ such that if $M^\alpha(f) = \varphi$, then $N^\alpha \varphi = f$.

Let us consider the diamond kernel of Marcel Riesz $K_{\alpha,\beta}(x)$ introduced by A. Kananthai [6], which is given by the convolution
\begin{equation}
K_{\alpha,\beta}(x) = S_\alpha * R_\beta,
\end{equation}
where S_α is elliptic kernel defined by (19) and R_β is the ultra-hyperbolic kernel defined by (14). M. A. Tellez and A. Kananthai [18] proved that $K_{\alpha,\beta}(x)$ exists and is in the space of rapidly decreasing distributions. Moreover, they also showed that the convolution of the distributional families $K_{\alpha,\beta}(x)$ relates to the diamond operator.

In this paper, we define the diamond Marcel Riesz operator of order (α, β) of the function f by
\begin{equation}
M^{(\alpha,\beta)}(f) = K_{\alpha,\beta} * f,
\end{equation}
where $K_{\alpha,\beta}$ is defined by (12), $\alpha, \beta \in \mathbb{C}$, the symbol \ast designates the convolution, and $f \in \mathcal{S}$. Our aim of this paper is to obtain the operator $N^{(\alpha,\beta)} = [M^{(\alpha,\beta)}]^{-1}$ such that if $M^{(\alpha,\beta)}(f) = \varphi$, then $N^{(\alpha,\beta)} \varphi = f$.

Before we proceed to our main theorem, the following definitions and some concepts require some clarifications.

2 Preliminary Notes

Definition 2.1. Let $x = (x_1, x_2, \ldots, x_n)$ be a point of the n-dimensional Euclidean space \mathbb{R}^n. Let
\begin{equation}
u = x_1^2 + x_2^2 + \cdots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \cdots - x_{p+q}^2,
\end{equation}
be the nondegenerated quadratic form, where \(p + q = n \) is the dimension of \(\mathbb{R}^n \). Let \(\Gamma_+ = \{ x \in \mathbb{R}^n : x_1 > 0 \text{ and } u > 0 \} \) be the interior of a forward cone and let \(\overline{\Gamma}_+ \) denote its closure. For any complex number \(\gamma \), we define

\[
R_\gamma(x) = \begin{cases} \frac{u^{(\gamma-n)/2}}{K_n(\gamma)}, & \text{for } x \in \Gamma_+, \\ 0, & \text{for } x \notin \Gamma_+, \end{cases}
\]

(14)

where

\[
K_n(\gamma) = \frac{\pi^{(n-1)/2} \Gamma((2 + \gamma - n)/2) \Gamma((1 - \gamma)/2) \Gamma(\gamma)}{\Gamma((2 + \gamma - p)/2) \Gamma((p - \gamma)/2)}.
\]

(15)

The function \(R_\gamma(x) \) is called the ultra-hyperbolic kernel of Marcel Riesz and was introduced by Nozaki [11]. It is well known that \(R_\gamma(x) \) is an ordinary function if \(\Re(\gamma) \geq n \) and is a distribution of \(\gamma \) if \(\Re(\gamma) < n \). Let \(\text{supp } R_\gamma(x) \) denote the support of \(R_\gamma(x) \) and suppose that \(\text{supp } R_\gamma(x) \subset \overline{\Gamma}_+ \) (i.e. \(\text{supp } R_\gamma(x) \) is compact).

By putting \(p = 1 \) in \(R_{2k}(x) \) and taking into account Legendre’s duplication formula for \(\Gamma(z) \), that is,

\[
\Gamma(2z) = 2^{2z-1} \pi^{-1/2} \Gamma(z) \Gamma(z + 1/2),
\]

(16)

we obtain

\[
I_H^\gamma(x) = \frac{v^{(\gamma-n)/2}}{H_n(\gamma)},
\]

(17)

and \(v = x_1^2 - x_2^2 - x_3^2 - \cdots - x_n^2 \), where

\[
H_n(\gamma) = \pi^{(n-2)/2} 2^{\gamma-1} \Gamma((\gamma + 2 - n)/2) \Gamma(\gamma/2).
\]

(18)

The function \(I_H^\gamma(x) \) is called the hyperbolic kernel of Marcel Riesz.

Definition 2.2. Let \(x = (x_1, x_2, \ldots, x_n) \) be a point of \(\mathbb{R}^n \) and \(\omega = x_1^2 + x_2^2 + \cdots + x_n^2 \). The elliptic kernel of Marcel Riesz is defined by

\[
S_\gamma(x) = \frac{\omega^{(\gamma-n)/2}}{W_n(\gamma)},
\]

(19)

where \(n \) is the dimension of \(\mathbb{R}^n \), \(\gamma \in \mathbb{C} \), and

\[
W_n(\gamma) = \frac{\pi^{n/2} 2^{\gamma} \Gamma(\gamma/2)}{\Gamma((n - \gamma)/2)}.
\]

(20)

Note that \(n = p + q \). By putting \(q = 0 \) (i.e. \(n = p \)) in (14) and (15), we can reduce \(u^{(\gamma-n)/2} \) to \(\omega_p^{(\gamma-p)/2} \), where \(\omega_p = x_1^2 + x_2^2 + \cdots + x_p^2 \), and reduce \(K_n(\gamma) \) to

\[
K_p(\gamma) = \frac{\pi^{(p-1)/2} \Gamma((1 - \gamma)/2) \Gamma(\gamma)}{\Gamma((p - \gamma)/2)}.
\]
Using Legendre’s duplication formula
\[\Gamma(2z) = 2^{2z-1} \pi^{-1/2} \Gamma(z) \Gamma(z + 1/2), \]
and
\[\Gamma(1/2 + z) \Gamma(1/2 - z) = \pi \sec(\pi z), \]
we obtain
\[K_p(\gamma) = \frac{1}{2} \sec\left(\frac{\gamma \pi}{2}\right) W_p(\gamma). \]

Thus, for \(q = 0 \), we have
\[R_0(\gamma)(x) = \frac{u(\gamma - p)}{K_p(\gamma)} = 2 \cos\left(\frac{\gamma \pi}{2}\right) W_p(\gamma) = 2 \cos\left(\frac{\gamma \pi}{2}\right) S_\gamma(x). \]

In addition, if \(\gamma = 2k \) for some non-negative integer \(k \), then
\[R_{2k}(x) = 2(-1)^k S_{2k}(x). \]

The proofs of Lemmas 2.3 and 2.4 are given in \[18\].

Lemma 2.3. The function \(K_{\alpha,\beta}(x) \) has the following properties:

(i) \(K_{0,0}(x) = \delta(x) \);

(ii) \(K_{-2k,-2k}(x) = (-1)^k \delta(x) \);

(iii) \(\delta^k(K_{\alpha,\beta}(x)) = (-1)^k K_{-2k,\beta-2k}(x) \);

(iv) \(\delta^k(K_{2k,2k}(x)) = (-1)^k \delta(x) \);

(v) \(K_{\alpha,\beta}(x) * K_{-2k,-2k}(x) = (-1)^k \delta^k K_{\alpha,\beta}(x) \).

Lemma 2.4. (The convolutions of \(K_{\alpha,\beta}(x) \))

(i) If \(p \) is odd, then
\[K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = (R_{\beta+\beta'} + T_{\beta,\beta'}) * S_{\alpha+\alpha'}, \]
where \(R_\beta \) and \(S_\alpha \) are defined by (14) and (19), respectively. \(T_{\beta,\beta'} \) is defined by
\[T_{\beta,\beta'} = -\frac{i}{2} \frac{\sin(\beta \pi/2) \sin(\beta' \pi/2)}{\sin((\beta + \beta') \pi/2)} \left[H^+_{\beta+\beta'} - H^-_{\beta+\beta'} \right] \]
and
\[H^\pm_q = H_q(P \pm i0, n) \]
as defined by (8).
(ii) If \(p \) is even, then
\[
K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = B_{\beta,\beta'} R_{\beta+\beta'} * S_{\alpha+\alpha'},
\]
(29)
where
\[
B_{\beta,\beta'} = \frac{\cos(\beta \pi/2) \cos(\beta' \pi/2)}{\cos ((\beta + \beta') \pi/2)}.
\]

3 The Convolution \(K_{\alpha,\beta} * K_{\alpha',\beta'} \) when \(\alpha' = -\alpha, \beta' = -\beta \)

Now, we consider the property of \(K_{\alpha,\beta} * K_{\alpha',\beta'} \) when \(\alpha' = -\alpha \) and \(\beta' = -\beta \).

From (26) and (29), we know that the following properties are valid:

1. If \(p \) is odd and \(q \) is even, then
\[
K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = (R_{\beta+\beta'} + T_{\beta,\beta'}) * S_{\alpha+\alpha'},
\]
(30)
where \(R_{\beta}, S_{\alpha} \) and \(T_{\beta,\beta'} \) are defined by (14), (19), and (27), respectively.

2. If \(p \) and \(q \) are both odd, then
\[
K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = (R_{\beta+\beta'} + T_{\beta,\beta'}) * S_{\alpha+\alpha'}.
\]
(31)

3. If \(p \) is even and \(q \) is odd, then
\[
K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = \cos(\beta \pi/2) \cos(\beta' \pi/2) \cos((\beta + \beta') \pi/2) R_{\beta+\beta'} * S_{\alpha+\alpha'}.
\]
(32)

4. If \(p \) and \(q \) are both even, then
\[
K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = \frac{\cos(\beta \pi/2) \cos(\beta' \pi/2)}{\cos((\beta + \beta') \pi/2)} R_{\beta+\beta'} * S_{\alpha+\alpha'}.
\]
(33)

Moreover, it follows from (27) that
\[
T_{\beta,\beta'} = \lim_{\beta' \to -\beta} T_{\beta,\beta'} = -\frac{i}{2} \lim_{\gamma \to 0} \frac{\sin(\beta \pi/2) \sin((\gamma - \beta) \pi/2)}{\sin(\gamma \pi/2)} [H_{\gamma}^+ - H_{\gamma}^-]
\]
\[
= -\frac{i}{2} \lim_{\gamma \to 0} \frac{\sin(\beta \pi/2) \sin((\gamma - \beta) \pi/2)}{\sin(\gamma \pi/2)} \cdot \lim_{\gamma \to 0} [H_{\gamma}^+ - H_{\gamma}^-],
\]
(34)
where \(\gamma = \beta + \beta' \).
On the other hand, using (28) and (8), we have

\[
\lim_{\gamma \to 0} [H_{\gamma}^+ - H_{\gamma}^-] = \frac{\Gamma(n/2)}{\pi^{n/2}} \left[\lim_{\gamma \to 0} \frac{e^{-\gamma \pi i/2} e^{q \pi i/2}}{\Gamma(\gamma/2)} \frac{(P + i0)^{(\gamma-n)/2}}{\Gamma(\gamma/2)} - \lim_{\gamma \to 0} \frac{e^{\gamma \pi i/2} e^{-q \pi i/2}}{\Gamma(\gamma/2)} \frac{(P - i0)^{(\gamma-n)/2}}{\Gamma(\gamma/2)} \right] = \frac{\Gamma(n/2)}{\pi^{n/2}} \left[\lim_{\gamma \to 0} \frac{e^{-\gamma \pi i/2} e^{q \pi i/2}}{\Gamma(\gamma/2)} \frac{\text{Res}_{\beta=-(n/2)} (P + i0)^{\beta}}{\text{Res}_{\beta=-(n/2)} \Gamma(\beta + n/2)} - \lim_{\gamma \to 0} \frac{e^{\gamma \pi i/2} e^{-q \pi i/2}}{\Gamma(\gamma/2)} \frac{\text{Res}_{\beta=-(n/2)} (P - i0)^{\beta}}{\text{Res}_{\beta=-(n/2)} \Gamma(\beta + n/2)} \right].
\]

(35)

Now, taking \(n \) as an odd integer, we obtain

\[
\text{Res}_{\lambda=-n/2-k} (P \pm i0)^{\lambda} = \frac{e^{\pm q \pi i/2} \pi^{n/2}}{2^{2k} k! \Gamma(n/2 + k)} \square^k \delta(x),
\]

where \(\square^k \) is defined by (1), \(p + q = n \), and \(k \) is non-negative integer; see [16, 17]. If \(p \) and \(q \) are both even, then

\[
\text{Res}_{\lambda=-n/2-k} (P \pm i0)^{\lambda} = \frac{e^{\pm q \pi i/2} \pi^{n/2}}{2^{2k} k! \Gamma(n/2 + k)} \square^k \delta(x).
\]

(36)

Nevertheless, if \(p \) and \(q \) are both odd, then

\[
\text{Res}_{\lambda=-n/2-k} (P \pm i0)^{\lambda} = 0,
\]

(38)

Therefore, we have

\[
\lim_{\gamma \to 0} [H_{\gamma}^+ - H_{\gamma}^-] = \frac{\Gamma(n/2)}{\pi^{n/2}} \frac{\pi^{n/2}}{\Gamma(n/2)} \left[\lim_{\gamma \to 0} e^{-\gamma \pi i/2} - \lim_{\gamma \to 0} e^{\gamma \pi i/2} \right] \delta(x) = \lim_{\gamma \to 0} \left[-2i \sin(\gamma \pi/2) \right] \delta(x).
\]

(39)

From (35) and (38), we have

\[
\lim_{\gamma \to 0} [H_{\gamma}^+ - H_{\gamma}^-] = 0
\]

if \(p \) and \(q \) are both odd (\(n \) even).

Applying (39) and (40) in (34), we have

\[
T_{\beta,-\beta} = -\frac{i}{2} \lim_{\gamma \to 0} \frac{\sin(\beta \pi/2) \sin((\gamma - \beta) \pi/2)}{\sin(\gamma \pi/2)} \cdot \lim_{\gamma \to 0} \left[-2i \sin(\gamma \pi/2) \right] \delta(x) = \sin^2(\beta \pi/2) \delta(x)
\]

(41)
if p is odd and q is even, and

$$T_{\beta,-\beta} = 0 \tag{42}$$

if p and q are both odd.

From (30) to (33) and using Lemmas 2.3 and 2.4 and the formulae (41) and (42), if p is odd and q is even, then we obtain

$$K_{\alpha,\beta} \ast K_{-\alpha,-\beta} = (R_0 + T_{\beta,-\beta}) \ast S_0$$

$$= \left[\delta(x) + \sin^2(\beta \pi/2) \delta(x) \right] \ast \delta(x)$$

$$= \delta(x) + \sin^2(\beta \pi/2) \delta(x)$$

$$= [1 + \sin^2(\beta \pi/2)] \delta(x). \tag{43}$$

If p and q are both odd, then

$$K_{\alpha,\beta} \ast K_{-\alpha,-\beta} = (R_0 + T_{\beta,-\beta}) \ast S_0$$

$$= R_0 \ast S_0$$

$$= K_{0,0} = \delta(x). \tag{44}$$

If p is even and q is odd, then

$$K_{\alpha,\beta} \ast K_{-\alpha,-\beta} = \frac{\cos(\beta \pi/2) \cos(-\beta \pi/2)}{\cos((\beta - \beta) \pi/2)} (R_0 \ast S_0)$$

$$= \cos^2(\beta \pi/2) \delta(x). \tag{45}$$

Finally, if p and q are both even, then

$$K_{\alpha,\beta} \ast K_{-\alpha,-\beta} = \frac{\cos(\beta \pi/2) \cos(-\beta \pi/2)}{\cos((\beta - \beta) \pi/2)} (R_0 \ast S_0)$$

$$= \cos^2(\beta \pi/2) \delta(x). \tag{46}$$

4 The Main Theorem

Let $M^{(\alpha,\beta)}(f)$ be the diamond Marcel Riesz operator of order (α, β) of the function f, which is defined by

$$M^{(\alpha,\beta)}(f) = K_{\alpha,\beta} \ast f, \tag{47}$$

where $K_{\alpha,\beta}$ is defined by (12), $\alpha, \beta \in \mathbb{C}$, and $f \in \mathcal{S}$.

Recall that our objective is to obtain the operator $N^{\alpha,\beta} = [M^{(\alpha,\beta)}]^{-1}$ such that if $M^{(\alpha,\beta)}(f) = \varphi$, then $N^{(\alpha,\beta)} \varphi = f$ for all $\alpha, \beta \in \mathbb{C}$.

We are now ready to state our main theorem.
Theorem 4.1. If $M^{(\alpha,\beta)}(f) = \varphi$ (where $M^{(\alpha,\beta)}(f)$ is defined by (47) and $f \in \mathcal{S}$), then $N^{(\alpha,\beta)} \varphi = f$ such that

$$N^{(\alpha,\beta)} = [M^{(\alpha,\beta)}]^{-1} = \begin{cases} [1 + \sin^2(\beta \pi/2)]^{-1} K_{-\alpha,-\beta} & \text{if } p \text{ is odd and } q \text{ is even;} \\ K_{-\alpha,-\beta} & \text{if } p \text{ and } q \text{ are both odd;} \\ \sec^2(\beta \pi/2) K_{-\alpha,-\beta} & \text{if } p \text{ is even with } \beta \neq 2s + 1 \end{cases}$$

for any non-negative integer s.

Proof. By (47), we have

$$M^{(\alpha,\beta)}(f) = K_{\alpha,\beta} \ast f = \varphi,$$

where $K_{\alpha,\beta}$ is defined by (12), $\alpha, \beta \in \mathbb{C}$ and $f \in \mathcal{S}$. If p is odd and q is even, then, in view of (43), we obtain

$$[1 + \sin^2(\beta \pi/2)]^{-1} K_{-\alpha,-\beta} \ast (K_{\alpha,\beta} \ast f) = [1 + \sin^2(\beta \pi/2)]^{-1} (K_{-\alpha,-\beta} \ast K_{\alpha,\beta}) \ast f = [1 + \sin^2(\beta \pi/2)]^{-1} \{ [1 + \sin^2(\beta \pi/2)] \delta(x) \} \ast f = \delta \ast f = f.$$

Hence,

$$[1 + \sin^2(\beta \pi/2)]^{-1} K_{-\alpha,-\beta} = [M^{(\alpha,\beta)}]^{-1} = (K_{\alpha,\beta})^{-1} \tag{48}$$

for all $\alpha, \beta \in \mathbb{C}$.

Similarly, if both p and q are odd, then by (44), we obtain

$$K_{-\alpha,-\beta} \ast (K_{\alpha,\beta} \ast f) = (K_{-\alpha,-\beta} \ast K_{\alpha,\beta}) \ast f = \delta \ast f = f.$$

Hence,

$$K_{-\alpha,-\beta} = [M^{(\alpha,\beta)}]^{-1} = (K_{\alpha,\beta})^{-1} \tag{49}$$

for all $\alpha, \beta \in \mathbb{C}$.

Finally, if p is even, then by (45) and (46), we have

$$\sec^2(\beta \pi/2) K_{-\alpha,-\beta} \ast (K_{\alpha,\beta} \ast f) = \sec^2(\beta \pi/2) (K_{-\alpha,-\beta} \ast K_{\alpha,\beta}) \ast f = \sec^2(\beta \pi/2) \{ \cos^2(\beta \pi/2) \delta(x) \} \ast f = \delta \ast f = f,$$

provided that $\beta \neq 2s + 1$ for any non-negative integer s.

Hence,

$$\sec^2(\beta \pi/2) K_{-\alpha,-\beta} = [M^{(\alpha,\beta)}]^{-1} = (K_{\alpha,\beta})^{-1} \tag{50}$$

for all $\alpha, \beta \in \mathbb{C}$ with $\beta \neq 2s + 1$ for any non-negative integer s.

In the conclusion, formulae (48), (49) and (50) are the desired results, and this completes the proof.

Acknowledgement

The second author would like to thank Khon Kaen University for financial support.
References

[15] M.A. Tellez, The distribution Hankel transform of Marcel Riesz’s ultra-

[16] M.A. Tellez, The expansion and Fourier’s transform of \(\delta^{(k-1)}(m^2 + P) \),

[17] M.A. Tellez and A.L. Barrenechea, A relation between the \(k \)th derivative
of the Dirac delta in \((P \pm i0)\) and the residue of the distributions \((P \pm i0)^{\lambda}\),

[18] M.A. Tellez and A. Kananthai, On the convolution product of the distribu-
tional families related to the diamond operato, *Le Matematiche*, **57**(2002),

[19] S.E. Trione, On Marcel Riesz’s ultra hyperbolic kernel, *Trabajos de Math-

Received: October, 2012