Remark on Uniform Attractor for the 3D Non-autonomous Brinkman-Forchheimer Equation

Xiaosong Wang1, Hongjun Wang2 and Lingrui Zhang3

1College of Information Science
1Henan University of Technology, Zhengzhou, 450001, P. R. China
2College of Mathematics and Information Science
3College of Education and Teacher Development
2,3Henan Normal University, Xinxiang, 453007, P. R. China

Copyright © 2013 Xiaosong Wang, Hongjun Wang and Lingrui Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we show the existence result of uniform attractors for the 3D non-autonomous Brinkman-Forchheimer equation.

Keywords: processes, upper semicontinuity, uniform attractor

1 Introduction

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with sufficiently smooth boundary $\partial \Omega$. We consider the large time behavior for a non-autonomous 3D Brinkman-Forchheimer equation:

\begin{align}
& u_t - \nu \Delta u + \alpha u + \beta |u|u + \gamma |u|^2u + \nabla p = \sigma(t, x), \quad (1) \\
& \text{div} u = 0, \quad x \in \Omega, \quad t \in [\tau, +\infty), \quad (2) \\
& u(t, x)|_{\partial \Omega} = 0, \quad t \in [\tau, +\infty), \quad (3) \\
& u(\tau, x) = u_\tau(x), \quad x \in \Omega, \quad \tau \geq 0. \quad (4)
\end{align}

Here $(x, t) \in \Omega \times [\tau, +\infty)$, $u = u(t, x) = (u_1(t, x), u_2(t, x), u_3(t, x))$ is the velocity vector field, p is the pressure, $\nu > 0$ is the Brinkman kinematic viscosity.
Let us recall some known results for the Brinkman-Forchheimer equation. [3] and [10] investigated the physics significance and theoretical development of the 3D Brinkman-Forchheimer equation respectively, when the Reynolds number for fluid is low, [3] shows the Darcy’s Law also holds except some corrections. For the autonomous Brinkman-Forchheimer equation, it was shown in [1], [2], [4] and [6] that the Brinkman-Forchheimer equation has global solutions and the solution is continuous dependence on the coefficients, moreover, they also derived the convergence of corresponding solutions as coefficients tend to zero. [8], [5] and [9] obtained the existence of global attractor of Brinkman-Forchheimer equation by different methods. However, there are fewer results for the non-autonomous case, [7] deduced the existence of \mathcal{D}-pullback attractors for 3D non-autonomous Brinkman-Forchheimer equation by establishing the \mathcal{D}-pullback asymptotical compactness of θ-cocycle recently, [11] gave the existence of uniform attractor of 3D non-autonomous Brinkman-Forchheimer equation by continuous method.

In this paper, we shall describe our main result and some simple proof of [11].

2 Main Results

The family of functions $L^2_{loc}(R; H)$ denote a local Bochner integration function class, $L^2_b(R; H)$ denotes all translation bounded functions which satisfies $\sup_{t \in R} \int_{t}^{t+1} \|\sigma(s, x)\|^2_H ds < +\infty$ for all $\sigma \in L^2_{loc}(R; H)$, i.e., σ is translation bounded in $L^2_{loc}(R; H)$. Obviously, $L^2_b(R; H) \subset L^2_{loc}(R; H)$.

The problem (1)-(2) can be written as an abstract form

\begin{align}
 u_t + \nu Au + \alpha u + B(u) &= \sigma(t, x), \\
 \text{div} u &= 0,
\end{align}

(5) (6)

where the pressure p has disappeared by force of the application of the Leray-Helmholtz projection P, $B(u) = PF(u)$, $F(u) = \beta|u|u + \gamma|u|^2u$. Clearly, system (5)-(6) is equivalent to (1)-(2).

The existence and uniqueness of global solution for (1)-(4) can be derived by standard method as in [9], [2] or [4]:

Theorem 2.1 Assume $\sigma \in L^2_{loc}(R, H)$, $u_\tau \in H$, then problem (1)-(4) possesses a unique global solution $u(t, x)$ which satisfies

\begin{align}
 u \in C([\tau, +\infty); H) \cap L^2(\tau, T; V) \cap L^4(\tau, T; (L^4(\Omega))^3). \tag{7}
\end{align}
Moreover, we choose a non-autonomous external force \(\sigma_0(t, x) \in L^2_b(R, H) \) and fixed, the global solution \(u(t, x) \) generates a process \(\{U_\sigma(\tau, t)\} \) (\(\tau, \sigma \in \Sigma \)) which is continuous with respect to \(u_\tau \), where \(\sigma \) is a symbol which belong to the symbol space \(\Sigma = \mathcal{H}(\sigma_0) = \{\sigma_0(s + h) | h \in R\} \) \(L^2_{loc}(R, H) \). \(E \) means the closure in the topology \(E \).

Theorem 2.2 Assume that \(u_\tau \in H, \sigma \in \Sigma \subset L^2_{loc}(\tau, +\infty; H) \), then the family of processes \(\{U_\sigma(t, \tau), t \geq \tau \in R\} \) \((\sigma \in \mathcal{H}(\sigma_0)) \) generated by the global solution of problem (1)-(4) possesses a uniform (w.r.t. \(\sigma \in \Sigma = \mathcal{H}(\sigma_0) \)) attractor \(\mathcal{A}_{\mathcal{H}(\sigma_0)} = \mathcal{A}_{\Sigma} \) in \(H \).

3 Discussion

Choosing an arbitrary non-autonomous force \(\sigma_0(x, t) \in L^2_b(R, H) \) and then fixed, i.e.,

\[
\sup_{t \in R} \int_t^{t+1} \|\sigma_0(s)\|^2_H ds < +\infty
\]

taking \(\Sigma = \mathcal{H}(\sigma_0) \) (Defined in Theorem 2.1) as the symbol space of problem (1)-(4), \(\forall \sigma \in \Sigma \) is called the symbol of the system (1)-(4). Obviously, \(\mathcal{H}(\sigma_0) \) is strictly invariant under the acting of the translation semigroup \(\{S(h)\}_{h \geq 0} \), i.e., \(S(h)\mathcal{H}(\sigma_0) \equiv \mathcal{H}(\sigma_0) \) for all \(h \geq 0 \).

From Theorem 2.1, the global solution generates processes class \(\{U_\sigma(t, \tau), t \geq \tau, \tau \in R\} \), \(\sigma \in \mathcal{H}(\sigma_0) \), i.e., \(U_\sigma(t, \tau)u_\tau = u(t) \), where \(u(t) \) is the solution of problem (1)-(4) with symbol \(\sigma \in \Sigma \) and initial data \(u_\tau \in H \).

Lemma 3.1 Let the external force \(\sigma \in \Sigma, u_\tau \in H \), then the process has a bounded uniform (w.r.t. \(\sigma \in \mathcal{H}(\sigma_0) \)) absorbing set \(B_0 \) in \(H \), where \(B_0 = \{u \in H : \|u\|_H \leq C\|\sigma_0\|_{L^2_b(R, H(\Omega))} \doteq \rho\} \) is a bounded set in \(H \).

Proof. Multiplying (1) with \(u \) and integrating on \(\Omega \), by the Young inequality we conclude

\[
\frac{1}{2} \frac{d}{dt} \|u\|^2 + \nu \|\nabla u\|^2 + \alpha \|u\|^2 + \beta \|u\|^3_{L^3} + \gamma \|u\|^4_{L^4} = \int_\Omega \sigma(t, x) u dx \\
\leq \frac{\alpha}{2} \|u\|^2 + \frac{2\|\sigma\|^2}{\alpha}, \tag{8}
\]
	hen integrating over \([\tau, t] \), it follows

\[
\|u\|^2 + \int_{\tau}^{t} (2\nu \|\nabla u\|^2 + \alpha \|u\|^2 + 2\beta \|u\|^3_{L^3} + 2\gamma \|u\|^4_{L^4}) ds \\
\leq \frac{4}{\alpha} \int_{\tau}^{t} \|\sigma(s)\|^2 ds + \|u_\tau\|^2, \tag{9}
\]
hence,
\[
\|u\|^2 + \int_{\tau}^{t} (2\lambda_1 \nu + \alpha) \|u\|^2 ds \leq \frac{4}{\alpha} \int_{\tau}^{t} \|\sigma(s)\|^2 ds + \|u_\tau\|^2, \tag{10}
\]
where \(\lambda_1\) is the first eigenvalue in the Poincaré inequality.

By Gronwall’s inequality, we derive
\[
\|u(t)\|^2 \leq \|u_\tau\|^2 e^{-(2\lambda_1 \nu + \alpha)(t - \tau)} + \frac{4}{\alpha} \int_{\tau}^{t} e^{(2\lambda_1 \nu + \alpha)(s - t)} \|\sigma(s)\|^2 ds \\
\leq \|u_\tau\|^2 e^{-(2\lambda_1 \nu + \alpha)(t - \tau)} + \frac{4}{\alpha} \left(\int_{t-1}^{t} e^{(2\lambda_1 \nu + \alpha)(s - t)} \|\sigma(s)\|^2 ds \\
+ \int_{t-2}^{t-1} e^{(2\lambda_1 \nu + \alpha)(s - t)} \|\sigma(s)\|^2 ds + \cdots \right) \\
\leq \|u_\tau\|^2 e^{-(2\lambda_1 \nu + \alpha)(t - \tau)} + \frac{4}{\alpha} \left(\int_{t-1}^{t} \|\sigma(s)\|^2 ds \\
+ e^{-(2\lambda_1 \nu + \alpha)} \int_{t-2}^{t-1} \|\sigma(s)\|^2 ds + e^{-(2\lambda_1 \nu + \alpha)} \int_{t-3}^{t-2} \|\sigma(s)\|^2 ds + \cdots \right) \\
\leq \|u_\tau\|^2 e^{-(2\lambda_1 \nu + \alpha)(t - \tau)} + \frac{4}{\alpha} \left(1 + \frac{1}{(2\lambda_1 \nu + \alpha)} \right) \|\sigma_0\|^2_{L^2_b(R;H)} \\
\leq \|u_\tau\|^2 e^{-(2\lambda_1 \nu + \alpha)(t - \tau)} + \frac{4}{\alpha} \left(1 + \frac{1}{(2\lambda_1 \nu + \alpha)} \right) \|\sigma_0\|^2_{L^2_b(R;H)}, \tag{11}
\]
choosing \(\|u_\tau\|^2 e^{-(2\lambda_1 \nu + \alpha)(t - \tau)} \leq \frac{4}{\alpha} \left(1 + \frac{1}{(2\lambda_1 \nu + \alpha)} \right) \|\sigma_0\|^2_{L^2_b(R;H)}\); then there exists a time \(t_0 = t_0(\alpha, \lambda, \|\sigma_0\|^2_{L^2_b(R;H)})\) such that \(B_0 = \{ u : \|u\|^2 \leq \rho^2 \}\), where \(\rho^2 = \frac{8}{\alpha} \left(1 + \frac{1}{(2\lambda_1 \nu + \alpha)} \right) \|\sigma_0\|^2_{L^2_b(R;H)}\) i.e., \(B_0\) is the uniformly (w.r.t. \(\sigma \in \Sigma\)) absorbing ball for the process \(U_\sigma(t, \tau)\) in \(H\).

Lemma 3.2 For any \(\sigma \in \mathcal{H}(\sigma_0), u_\tau \in H\), the family of processes \(\{U_\sigma(t, \tau), t \geq \tau \in R\}\), \(\sigma \in \mathcal{H}(\sigma_0)\) defined on \(H\), corresponding to equations (1)-(4) is uniformly (w.r.t. \(\sigma \in \Sigma\)) asymptotically compact in \(H\).

Proof. Assume that \(\{u^n_\tau\}\) is a bounded sequence in \(H\), \(\{\sigma^n\} \subset \mathcal{H}(\sigma_0)\) and \(\{t_n\} \in (\tau, +\infty), t_n \to +\infty\) as \(n \to +\infty\).

From the proof of the existence of uniformly absorbing set, we see that for any fixed \(\tau \in R\), there exists a time \(T_0 = T_0(\rho, \tau)\) dependent on radius \(\rho\) of the absorbing ball and \(\tau\), such that for all \(t_n \geq T_0\), \(\{U_{\sigma^n}(t_n, \tau)u^n_\tau\} \subseteq B_0\), \(B_0\) is defined in Lemma 3.1.

From Theorem 2.1, the sequence \(\{U_{\sigma^n}(t_n, \tau)u^n_\tau\}\) is weakly precompact in \(H\) and we have
\[
U_{\sigma^n}(t_n, \tau)u^n_\tau \rightharpoonup u \text{ weakly in } H \text{ as } n \to +\infty \tag{12}
\]
for some \(u \in H\) and some subsequence (still denoted by) \(U_{\sigma^n}(t_n, \tau)u^n_\tau\).
Similarly, for each $T > 0$ and $t_n \geq T_0 + T$,
\[
u^n_T = U\sigma^n(t_n - T, \tau)u^n_T \rightarrow u_T \text{ weakly in } H \text{ as } n \rightarrow +\infty
\] (13)
for some $u_T \in H$.
Noting that the translation semigroup $\{S(h) : h \geq 0\}$ satisfies
\[
U_{S(h)\sigma}(t, \tau) = U_\sigma(t + h, \tau + h), \quad \forall \ h \geq 0, \ t \geq \tau \in \mathbb{R}, \ \forall \ \sigma \in \mathcal{H}(\sigma_0),
\] (14)
we see that
\[
U_\sigma(t_n, \tau) = U_\sigma(T, 0)U_\sigma(n - T, \tau), \ t_n - T \geq \tau.
\] (15)
Let $\sigma^n_T = S(t_n - T)\sigma^n$, by (13)–(15), we have
\[
U_\sigma(t_n, \tau)u^n_T = U_\sigma(T, 0)U_\sigma(n - T, \tau)u^n_T, \ t_n - T \geq \tau,
\]
\[
u = U_\sigma(T, 0)u_T, \ \forall \ T > 0.
\] (16)
Next, we want to prove
\[
\liminf_{n \rightarrow +\infty} \|U_\sigma^n(t_n, \tau)u^n_T\| = \liminf_{n \rightarrow +\infty} \|U_\sigma^n(T, 0)u^n_T\| \geq \|\nu\|,
\] (17)
and
\[
U_\sigma^n(t_n, \tau)u^n_T \rightarrow \nu \text{ in } H \text{ as } n \rightarrow +\infty,
\] (18)
however, Theorem 2.1 ensures (18) holds. Next, we only need to prove (17). To this end, we shall prove
\[
\liminf_{n \rightarrow +\infty} \|U_\sigma^n(t_n, \tau)u^n_T\| = \liminf_{n \rightarrow +\infty} \|U_\sigma^n(T, 0)u^n_T\| \geq \|\nu\|,
\] (19)
\[
\limsup_{n \rightarrow +\infty} \|U_\sigma^n(t_n, \tau)u^n_T\| = \limsup_{n \rightarrow +\infty} \|U_\sigma^n(T, 0)u^n_T\| \leq \|\nu\|.
\] (20)
However, the weak convergence of corresponding sequences ensures that (19) is true, so our aim is only to prove (20).
By the weak convergence and norm convergence
\[
\limsup_{n, T \rightarrow \infty} \|U_\sigma^n(T, 0)u^n_T\|^2 = \lim_{n \rightarrow +\infty} \|U_\sigma^n(t_n, \tau)u^n_T\|^2 = \|U_\sigma(t, \tau)u_T\|^2 = \|\nu\|^2.
\] (21)
to arrive
\[
\lim_{n \rightarrow +\infty} \|U_\sigma^n(t_n, \tau)u^n_T - \nu\| = 0.
\] (22)

ACKNOWLEDGEMENTS: Hongjun Wang was supported by the Nature Science Fund from the Department of Science and Technology in Henan Province (No. 122300410414) and (No. 132300410432).
References

Received: November 5, 2013