Fractal Properties of Functions
Defined in Terms of Q-Representation

Mykola Pratsiovytyi
Dragomanov National Pedagogical University
Kyiv, Ukraine

Natalya Vasylenko
Dragomanov National Pedagogical University
Kyiv, Ukraine

Copyright © 2013 Mykola Pratsiovytyi and Natalya Vasylenko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper we study differential, self-affine, fractal and integral properties of a generalization of the Sierpinski function whose argument is represented in the form of Q_s-expansion and value represented in the form of G_3-expansion.

Keywords: continuous nowhere differentiable function, nowhere monotonic function, levels sets of function, self-affine properties function, Q-representation of real numbers

1. Introduction

Today, continuous nowhere differentiable functions more often attract attention of researchers and appear in both theoretical and applied studies [1], [2], [6], [9]. The theory of fractals opens up special conditions for their theoretical analysis. The Banach-Mazurkiewicz theorem stimulates additional philosophical and methodological interest in such functions. It states that almost all in the sense of Baire category continuous functions on $[0,1]$ are nowhere differentiable.
One of the simplest examples of a continuous non-differentiable function is the W. Sierpiński function [1] defined in terms of ternary and quinary representations of number. Q-representation is a generalization of s-adic numeration system [5]. Formal generalization of the Sierpiński function using Q_s- and Q_3-representation provides continuum family of functions depending on a finite number of parameters. Constructed family of functions has complicated differential, integral and fractal properties. We understand fractal properties as dimensional properties of graphs considered as sets in the space R_2 and level sets of function.

This paper is devoted to specified family of generalized Sierpiński functions. We study properties of functions related to self-affinity of graph.

2. Q-REPRESENTATION OF REAL NUMBERS

Let $1 < s$ be a fixed positive integer, and let $Q = \{q_0, q_1, \ldots, q_{s-1}\}$ be a fixed set with the following properties

1) $q_i > 0, \ i \in A_s = \{0, 1, \ldots, s - 1\}$,

2) $\sum_{i=0}^{s-1} q_i = 1$.

It is known (see, e.g., [5]) that for any $x \in [0, 1]$ there exists a sequence (α_k), $\alpha_k \in A_s$ such that

$$x = \beta_{\alpha_1} + \sum_{i=2}^{\infty} \left(\beta_{\alpha_i} \prod_{j=1}^{i-1} q_{\alpha_j} \right) \equiv \Delta^Q_{\alpha_1 \alpha_2 \ldots \alpha_k \ldots}$$

where $\beta_0 = 0, \beta_i = \sum_{j=0}^{i-1} q_j, i \in A_s \setminus \{0\}$.

The representation of the real number x in the form (1) is said to be the Q-expansion and its symbolic notation $\Delta^Q_{\alpha_1 \alpha_2 \ldots \alpha_k \ldots}$ is said to be the Q-representation of x. The number $\alpha_k = \alpha_k(x)$ is said to be the k-th Q symbol of x. If $q_0 = q_1 = \ldots = q_{s-1} = \frac{1}{s}$, then Q-representation is the usual s-adic expansion. We note that Q-symbol of number x is the index in the expansion (1). Sometimes in order to emphasize that Q-symbol belongs to the alphabet of s-adic numeration system we use notation Q_s.

Any number x has no more than two formally different Q-representations. These numbers have the form $\Delta^Q_{\alpha_1 \alpha_2 \ldots \alpha_k \ldots} = \Delta^Q_{\alpha_1 \alpha_2 \ldots \alpha_{k-1} \alpha_k(0)} = \Delta^Q_{\alpha_1 \alpha_2 \ldots \alpha_{k-1} \alpha_k(1)}$ and they are called Q-rational. All other numbers are Q-irrational. Any Q-rational number has two different Q-representations, and any Q-irrational number has a unique Q-representation.

Let (c_1, \ldots, c_m) be a fixed set of symbols from the alphabet A_s. Cylinder of rank m with the base $c_1 \ldots c_m$ is a set of numbers $x \in [0, 1]$ with Q-representation $\Delta^Q_{c_1 c_2 \ldots c_m}$ such that $\alpha_j(x) = c_j, j = \overline{1, m}$.
Lemma 2.1. [3] The cylinder is a closed interval with endpoints

\[a = \beta_{c_1} + \sum_{k=2}^{m} (\beta_{c_1} \prod_{j=1}^{k-1} q_{c_j}), \quad b = a + \prod_{i=1}^{m} q_{c_i}. \]

Properties of cylinder:

1) \(|\Delta_{c_1 \ldots c_m}^Q| = \prod_{i=1}^{s-1} q_{c_i}, \)
2) \(\Delta_{c_1 \ldots c_m}^Q = \bigcup_{i=0}^{s} \Delta_{c_1 \ldots c_m}^Q, \)
3) \(\max \Delta_{c_1 \ldots c_m}^Q = \min \Delta_{c_1 \ldots c_m}^Q, \quad i = 0, s - 2, \)
4) \(\bigcap_{n=1}^{\infty} \Delta_{c_1 \ldots c_m}^Q = x \equiv \Delta_{c_1 \ldots c_m}. \)

The properties 1-4 show that geometry of Q-representation is self-similar and has zero redundancy.

3. Definition of function

Let \(3 < s \) be a fixed odd positive integer, \(A_s = \{0, 1, \ldots, s - 1\} \) be an alphabet, and let \(Q_s \) and \(G_3 \) be two given Q-representations.

We will define a discrete function on \(A_s \) as follows

(2) \[\gamma(\alpha) = \begin{cases} 0 & \text{if } \alpha = 0, \\ 1 & \text{if } \alpha \in A_s \setminus \{0, s - 1\} \\ 2 & \text{if } \alpha = s - 1. \end{cases} \]

For any sequence \((\alpha_k) \in L = A_s^\infty = A_s \times A_s \times \ldots \), define sequence \((c_k) \) as follows

(3) \[c_1 = 0, \quad c_k = \begin{cases} c_{k-1} & \text{if } \alpha_{k-1} \in A_s \setminus \{2, 4, \ldots, s - 3\}, \\ 1 - c_{k-1} & \text{if } \alpha_{k-1} \in \{2, 4, \ldots, s - 3\}. \end{cases} \]

Let the argument of function is in the form of \(Q_s \)-representation

(4) \[x = \varphi_{\alpha_1} + \sum_{i=2}^{\infty} \left(\varphi_{\alpha_1} \prod_{j=1}^{i-1} q_{\alpha_j} \right) \equiv \Delta_{\alpha_1 \alpha_2 \ldots \alpha_k}^{Q_s} \quad \alpha_k \in A_s, \]

where \(Q_s = \{q_0, q_1, \ldots, q_{s-1}\}, \quad \varphi_0 = 0, \quad \varphi_i = \sum_{j=0}^{i-1} q_j, \quad i \in A_s \setminus \{0\}, \)

and value of function has the following \(G_3 \)-representation

(5) \[f(x) = \Delta_{\beta_1 \beta_2 \ldots}^{G_3} \equiv \psi_{\beta_1} + \sum_{i=2}^{\infty} \left(\psi_{\beta_1} \prod_{j=1}^{i-1} q_{\beta_j} \right), \]
\[G_3 = \{g_0, g_1, g_2\}, \beta_k \in \{0, 1, 2\} = A_3, \psi_0 = 0, \psi_j = \sum_{i=0}^{j-1} g_i, j \in A_3 \setminus \{0\} \] and

(6) \[\beta_1 = \gamma(\alpha_1), \quad \beta_k = \begin{cases} \gamma(\alpha_k), & \text{if } c_k = 0, \\ 2 - \gamma(\alpha_k), & \text{if } c_k \neq 0. \end{cases} \]

To prove some statements we need another form for \(\beta_k \):

(7) \[\beta_k = \begin{cases} 0 & \text{if } \alpha_k = 0 \text{ and } c_k = 0, \\ 1 & \text{if } \alpha_k \in A_3 \setminus \{0, s - 1\}, \\ 2 & \text{if } \alpha_k = s - 1 \text{ and } c_k = 0. \end{cases} \]

Remark 3.1. It is easy to see that \(\beta_k \) depends on \((\alpha_1, \alpha_2, \ldots, \alpha_k - 1)\) but it depend only on \(\alpha_k \) if all \(\alpha_i \in A_3 \setminus \{0, s - 1\} \) (\(i = 1, k - 1 \)).

4. Continuity of function \(f \)

There are the following two different \(Q_s \)-representation for each rational point \(x \): \(x \equiv \Delta^{Q_s}_{\alpha_1 \alpha_2 \cdots \alpha_{k-1} \alpha_k(0)} = \Delta^{Q_s}_{\alpha_1 \alpha_2 \cdots \alpha_{k-1} \alpha_k(1)} \equiv x^* \). Therefore, the function \(f \) is well defined if for above two \(Q_s \)-expansions the correspondence is uniquely determined. We show that \(f(x) = f(x^*) \). Consider the difference

\[
\begin{align*}
\Delta f(x) &= \prod_{i=1}^{k-1} g_{\beta_i}(\psi_{\beta_k} - \psi_{\beta_k^*}) + \prod_{i=1}^{k-1} g_{\beta_i} \left(\sum_{n=k+1}^{\infty} (\psi_{\beta_n} \prod_{j=k}^{n-1} g_{\beta_j}) - \sum_{n=k+1}^{\infty} (\psi_{\beta_n^*} \prod_{j=k}^{n-1} g_{\beta_j}) \right) \\
&= \prod_{i=1}^{k-1} g_{\beta_i} \left(\psi_{\beta_k} - \psi_{\beta_k^*} \right) - \prod_{i=1}^{k-1} g_{\beta_i} \left(\sum_{n=k+1}^{\infty} \psi_{\beta_n} \prod_{j=k}^{n-1} g_{\beta_j} \right) \\
&= \prod_{i=1}^{k} g_{\beta_i} - \prod_{i=1}^{k-1} g_{\beta_i} \left(\psi_{\beta_k} - \psi_{\beta_k^*} \right) = 0.
\end{align*}
\]

Similarly, we can show that \(f(x) = f(x^*) \) for \(c_k = 1 \).

2) if \(c_{k+1}(x) \neq c_k = c_{k+1}(x^*) \) (or \(c_{k+1}(x) = c_k \neq c_{k+1}(x^*) \)), then \(\alpha_k(x) \in \{2, 4, \ldots, s - 3\} \) or \(\alpha_k(x^*) \in \{2, 4, \ldots, s - 3\} \). Therefore, using (7) we have \(\beta_n = \beta_n^* \) (\(n = k + i \), \(i \in \mathbb{N}_0 \)). So \(f(x) = f(x^*) = 0 \).

Theorem 4.1. The function \(f \) is continuous.

Proof. Let \(x_0 \) be an arbitrary point belonging to the interval \([0, 1]\). We show that \(\lim_{\Delta x \to x_0} |f(x) - f(x_0)| = 0 \).
First consider the case when the \(x_0 \) is a \(Q_s \)-irrational point. For any \(x \in [0, 1] \) there exists \(m = m(x) \) such that

\[
\begin{cases}
\alpha_i(x) = \alpha_i(x_0), & i = 1, m - 1, \\
\alpha_m(x) \neq \alpha_m(x_0),
\end{cases}
\]

and the condition \(x \to x_0 \) is equivalent to \(m \to \infty \). So,

\[
|f(x) - f(x_0)| = \left| \sum_{i=m}^{\infty} \psi_{\beta_i} \prod_{j=1}^{i-1} g_{\beta_j} - \sum_{i=m}^{\infty} \psi_{\beta_i} \prod_{j=1}^{i-1} g_{\beta_j} \right| \leq \prod_{i=1}^{m-1} g_{\beta_i} \left| \frac{g_0 + g_1}{1 - g_2} \right| = \prod_{i=1}^{m-1} g_{\beta_i} \leq (\max \{g_0, g_1, g_2\})^{m-1} \to 0 \text{ by } m \to \infty.
\]

Hence the function is continuous in the \(Q_s \)-irrational points.

Now let \(x_0 \) be a \(Q_s \)-rational number, i.e., \(x_0 = \Delta_{\alpha_1 \alpha_2 \ldots \alpha_k}^Q(0) \). To prove the left continuity of function we use the representation \(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_k}^{Q_s} = \alpha_1 \alpha_2 \ldots \alpha_{k-1}[\alpha_k - 1](s-1) \), and to prove the right continuity we use representation \(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_k}^{Q_s} = \alpha_1 \alpha_2 \ldots \alpha_k(0) \). Repeating the same steps as for the \(Q_s \)-irrational point will complete the proof.

5. NOWHERE MONOTONIC FUNCTIONS AND PROPERTIES OF LEVEL SETS.

Definition 5.1. The interval \(\left(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}^{Q_s}(0), \Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}^{Q_s}(s-1) \right) \) is called the cylindrical interval of rank \(m \) with the base \(\alpha_1 \alpha_2 \ldots \alpha_m \). Corresponding increment of the function on this interval is defined by equality

\[
\mu_f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}^{Q_s}) = f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}(s-1)) - f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}(0))
\]

Definition 5.2. Function \(f \) is called nowhere monotonic on the interval \([0, 1] \) if it is continuous on this interval and has no intervals of monotonicity.

Lemma 5.3. Function \(f \) is nowhere monotonic and the following equality holds: \(\mu_f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}) = (-1)^{m-1} \prod_{i=1}^{m} g_{\beta_i} \).

Proof. To prove nowhere monotonicity of function \(f \) it is sufficient to show that for any cylinder \(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}^{Q_s} \) of rank \(m \) there exists cylinder \(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m \alpha_{m+1}}^{Q_s} \) (\(j \in A_s \)) of rank \(m + 1 \) such that the increments \(\mu_f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}^{Q_s}) \) and \(\mu_f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_{m+1}}^{Q_s}) \) have different signs. From conditions (7) we have

1) for \(c_m = 0 \),

\[
\mu_f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_m}^{Q_s}) = \prod_{i=1}^{m} g_{\beta_i} \left(\psi_2 + \sum_{j=1}^{\infty} \psi_2 \prod_{k=m+1}^{j-1} g_2 \right) = \prod_{i=1}^{m} g_{\beta_i},
\]

\[
\mu_f(\Delta_{\alpha_1 \alpha_2 \ldots \alpha_{m+1}}^{Q_s}) = - \prod_{i=1}^{m+1} g_{\beta_i} \left(\psi_2 + \sum_{j=1}^{\infty} \psi_2 \prod_{k=m+1}^{j-1} g_2 \right) = - \prod_{i=1}^{m+1} g_{\beta_i},
\]

2) for \(c_m = 1 \),
\[\mu_f(\Delta_{a_1a_2...a_m}) = - \sum_{i=1}^{m} g_{\beta_i} \left(\psi_2 + \sum_{j=1}^{\infty} \sum_{k=m+1}^{\infty} g_2 \right) = - \sum_{i=1}^{m} g_{\beta_i}. \]

\[\mu_f(\Delta_{a_1a_2...a_m^2}) = \prod_{i=1}^{m+1} g_{\beta_i} \left(\psi_2 + \sum_{j=1}^{\infty} \sum_{k=m+1}^{\infty} g_2 \right) = \prod_{i=1}^{m+1} g_{\beta_i}. \]

Definition 5.4. The level set \(y_0 \) of function \(f \) is the set \[f^{-1}(y_0) = \{ x : f(x) = y_0 \}. \]

Lemma 5.5. If \(y_0 = \Delta_{(1)}^{G_3} (m \in \mathbb{N}_0) \), then \(f^{-1}(y_0) = C[Q_s, V] \equiv \{ x : \alpha_i(x) \in V = A \setminus \{0, s - 1\} \} \) i.e., level set \(y_0 \) has the properties: 1) it is a continuum set; 2) it is a nowhere dense set; 3) it is a set of zero Lebesgue measure \(\lambda \); 4) its Hausdorff-Besicovitch dimension is the solution of equation \(q_1^x + q_2^x + \ldots + q_s^x = 1. \)

Proof. First we prove the lemma for \(m = 0 \), i.e., for \(y_0 = \Delta_{(1)}^{G_3} \).

It is clear that for any point \(x \in C[Q_s, V] \) we have \(f(x) = y_0 \), i.e., \(f^{-1}(y_0) \supset C[Q_s, V] \). Moreover, \(\beta_m(y_0) = 1 \) if and only if \(\alpha_m(f^{-1}(y_0)) \in A \setminus \{0, s - 1\} \), independently of \(n \). So, \(f^{-1}(y_0) = C[Q_s, V] \). It is known that \(C[Q_s, V] \) has properties mentioned in the lemma.

Now let \(m \neq 0 \), i.e., \(y_0 = \Delta_{d_1d_2...d_m(1)}^{G_3} \). Then

\[H = \bigcup_{i=1}^{s-1} \bigcup_{i_2=0}^{s-1} \bigcup_{i_m=0}^{s-1} \left(\Delta_{d_1d_2...d_m}^{G_3} \cap f^{-1}(y_0) \right). \]

If the set \(\Delta_{d_1d_2...d_m}^{G_3} \cap f^{-1}(y_0) \) is not empty, then arbitrary \(x \) belonging to this set has the form \(x = \Delta_{d_1d_2...d_m}^{G_3} \cap V \) (\(j \in \mathbb{N} \)).

The set \(\Delta_{d_1d_2...d_m}^{G_3} \cap f^{-1}(y_0) \) can be empty or not empty. Moreover, it is not empty if \(m \) is an ordered set \((\beta_1, \beta_2, \ldots, \beta_m)\) such that

\[\beta_1 = \beta_1(i_1) = d_1, \quad \beta_2 = \beta_2(i_1, i_2) = d_2, \quad \ldots, \quad \beta_m = \beta_m(i_1, i_2, \ldots, i_m) = d_m. \]

In this case the set \(\Delta_{d_1d_2...d_m}^{G_3} \cap f^{-1}(y_0) \) is \(\prod_{j=1}^{m} g_{i_j} \) times less “copy” than the set \(f^{-1}(\Delta_{d_1d_2...d_m}^{G_3}) \), since equality \(f^{-1}(\Delta_{d_1d_2...d_m}^{G_3}) = \sum_{j=1}^{\infty} \Delta_{d_1d_2...d_m}^{G_3} \cap f^{-1}(y_0) \) holds. Then \(f^{-1}(y_0) = C[Q_s, V_k] \), where \(V_k = \{ i_k \} \) \((k = 1, m) \) \(V_{m+j} = V \).

Since minimal intervals containing sets from the union (8) are pairwise disjoint, the set \(f^{-1}(y_0) \) has properties mentioned in the lemma. \(\square \)

Lemma 5.6. If \(y_0 = \Delta_{\beta_1\beta_2...\beta_k...}^{G_3} \), where

\[\left\{ \begin{array}{l}
\beta_m(y_0) = 1, \quad n \in \mathbb{N}, \\
\beta_j(y_0) \neq 1, \quad j \notin \{k_n\},
\end{array} \right. \]
then the set \(f^{-1}(y_0) \) is continuum and does not contain pair of points \(x_1 \) and \(x_2 \) such that

\[
\begin{align*}
\alpha_{k_n}(x_1) &= \alpha'_{k_n}(x_2) \\
\alpha_j(x_1) &\neq \alpha'_j(x_2), \ j \notin \{k_n\}.
\end{align*}
\]

(10)

Proof. Suppose that for the point \(y_0 = \Delta_{\beta_1\beta_2...\beta_k}^G \) conditions (9) and (10) hold and \(f^{-1}(y_0) = \{x_1, x_2\} \), where \(x_1 = \Delta_{\alpha_1\alpha_2...\alpha_k}^Q, \ x_2 = \Delta_{\alpha'_1\alpha'_2...\alpha'_k}^Q \) such that \(f(x_1) = y_0, \ f(x_2) = y_0 \). Then \(\exists k \in \mathbb{N} : \alpha_i = \alpha'_i \) for \(i = 1, k-1 \) and \(\alpha_k \neq \alpha'_k \). Then from (9) and (10) follows that \(\alpha_k, \alpha'_k \in \{0, s-1\} \), and hence \(\beta_k(f(x)) \neq \beta'_k(f(x')) \), i.e., \(f(x_1) - f(x_2) \neq 0 \). And this contradicts the condition of the lemma.

Lemma 5.7. If digits \(i_k \in A_3 \setminus \{1\} \) \((k = 1, \infty) \) in the \(G_3 \)-representation of the point \(y_0 = \Delta_{i_1i_2...i_k}^G \), then the set \(f^{-1}(y_0) \) contains a single point.

Proof. Suppose that the set \(f^{-1}(y_0) \) contains at least two different points \(x = \Delta_{\alpha_1\alpha_2...\alpha_k}^Q, x' = \Delta_{\alpha'_1\alpha'_2...\alpha'_k}^Q \). Then there exists \(m \) such that \(\alpha_m \neq \alpha'_m \) but \(\alpha_i = \alpha'_i \) (for \(i < m \)).

From \(\alpha_i = \alpha'_i \) (for \(i < m \)) follows that \(\beta(\alpha_1, \alpha_2, \ldots, \alpha_{m-1}) = \beta(\alpha'_1, \alpha'_2, \ldots, \alpha'_{m-1}) \). Since \(\beta_m(f(x)) = i_m(y_0) = \beta_m(f(x')) \) and \(\alpha_m \neq \alpha'_m \) from (7) follows that \(c_{m-1}(x) \neq c_{m-1}(x') \), \(i_m(y_0) = 1 \). From conditions \(c_{m-1}(x) \neq c_{m-1}(x') \) follows that \(\exists\alpha_j (j < m) \) such that \(\alpha_j \neq \alpha'_j \), which contradicts the assumption of the lemma. While the condition \(i_m(y_0) = 1 \) contradicts the condition of the lemma. This contradiction proves the lemma.

Lemma 5.8. If \(G_3 \)-representation of the point \(y_0 = \Delta_{i_1i_2...i_k}^G \) contains exactly \(n \) digits "1", then the set \(f^{-1}(y_0) \) consists of the \((s-2)^n \) points.

Proof. This statement is obvious. Since from (7) that in each place where \(\beta_i(y_0) = 1 \) are \((s-2) \) alternatives, and all the other numbers remain fixed.

Theorem 5.9. Function \(f \) is non-differentiable in \(Q_s \)-rational point when conditions \(y_0 \geq \max\{q_0, q_{s-1}\} \) and \(g_2 \geq \max\{q_0, q_{s-1}\} \) hold.

Proof. To prove the statement it is sufficient to show that for each point \(x_0 \) there exists a sequence \((x_m) \) converging to it such that the limit \(\lim_{m \to \infty} \frac{f(x_0) - f(x_m)}{x_0 - x_m} \) is infinite or does not exist.

Let \(x_0 \) is a \(Q_s \)-rational point, i.e.,

\[
x_0 = \Delta_{\alpha_1\alpha_2...\alpha_{k-1}\alpha_k}^Q = \Delta_{\alpha_1\alpha_2...\alpha_{k-1}[\alpha_k-1](s-1)}^Q = x_0'.
\]

We choose a sequence \(x_m \) such that

\[
x_m = \Delta_{\alpha_1\alpha_2...\alpha_{k-1}\alpha_k}^Q \underbrace{0...0}_{m}(s-1), \ x'_m = \Delta_{\alpha_1\alpha_2...\alpha_{k-1}[\alpha_k-1][s-1]...[s-1](0)}^Q
\]

Fractal properties of functions 3161
obviously, \(x_m \to x_0 + 0 \), \(x'_m \to x'_0 - 0 \). Then
\[
x_m - x_0 = q_0^m q_{\alpha_k} \prod_{i=1}^{k-1} q_{\alpha_i}, \quad x'_m - x'_0 = -q_0^m q_{[s-1]} q_{[\alpha_k-1]} \prod_{i=1}^{k-1} q_{\alpha_i}.
\]

If the derivative of the function \(f \) at the point \(x_0 \) exists, then
\[
f'(x_0) = \lim_{x_m \to x_0^+} \frac{f(x_m) - f(x_0)}{x_m - x_0} = \lim_{x_m \to x_0^-} \frac{f(x'_m) - f(x'_0)}{x'_m - x'_0}.
\]

So,
\[
\frac{f(x_m) - f(x_0)}{x_m - x_0} = \frac{\mu_f(\Delta^{Q_s}_{\alpha_1 \alpha_2 \ldots \alpha_k} q_0 \ldots q_0)}{x_m - x_0} = \begin{cases}
\left(\frac{g_0}{q_0} \right)^m \frac{g_{\beta_k}}{q_{\alpha_k}} \prod_{i=1}^{k-1} g_{\beta_i} / q_{\alpha_i} & \text{if } c_k(x_0) = 0, \\
- \left(\frac{g_2}{q_0} \right)^m \frac{g_{\beta_k}}{q_{\alpha_k}} \prod_{i=1}^{k-1} g_{\beta_i} / q_{\alpha_i} & \text{if } c_k(x_0) \neq 0;
\end{cases}
\]

(11)

\[
\frac{f(x'_m) - f(x'_0)}{x'_m - x'_0} = \frac{-\mu_f(\Delta^{Q_s}_{\alpha_1 \alpha_2 \ldots \alpha_{k-1}} [s-1] \ldots [s-1])}{x'_m - x'_0} = \begin{cases}
\left(\frac{g_2}{q_{[s-1]}} \right)^m \frac{g_{\beta'_k}}{q_{[\alpha_k-1]}} \prod_{i=1}^{k-1} g_{\beta_i} / q_{\alpha_i} & \text{if } c_k(x'_0) = 0, \\
- \left(\frac{g_0}{q_{[s-1]}} \right)^m \frac{g_{\beta'_k}}{q_{[\alpha_k-1]}} \prod_{i=1}^{k-1} g_{\beta_i} / q_{\alpha_i} & \text{if } c_k(x'_0) \neq 0,
\end{cases}
\]

(12)

where \(\beta'_k = \beta_k \) if \(\alpha_k \in A_s \setminus \{1, s-1\} \) and \(\beta'_k = |1 - \beta_k| \) if \(\alpha_k \in \{1, s-1\} \).

From the formulas (11) and (12) follows that function \(f \) is non-differentiable in \(Q_s \)-rational point, when conditions \(g_0 \geq \max\{q_0, q_{s-1}\} \) and \(g_2 \geq \max\{q_0, q_{s-1}\} \) hold.

Theorem 5.10. Function \(f \) is non-differentiable in \(Q_s \)-irrational point if \(\min g_i \geq \max q_j, \ j \in A_s, \ i \in A_3. \)

Proof. Let now \(x_0 \) be an arbitrary irrational number. Then for number \(x_0 \) there exists an infinite sequence \((m_k) \) indexes such that \(\alpha_{m_k}(x_0) \in A_s \setminus \{2, 4, \ldots, s-3\} \). Consider the sequence \((x_k) \) such that \(\alpha_i(x_k) = \alpha_i(x_0) \), when \(i \neq m_k \), and \(\alpha_{m_k}(x_k) = \left\lfloor \frac{\alpha_{m_k}(x_0)}{2} \right\rfloor \),

where \(\left\lfloor \frac{\alpha_{m_k}(x_0)}{2} \right\rfloor \) is an integer part of \(\frac{\alpha_{m_k}(x_0)}{2} \), when \(i = m_k \).
Obviously, the \(x_k \to x_0 \), when \(k \to \infty \). Then we have

\[
x_0 - x_k = \prod_{i=1}^{m_k-1} q_{a_i} \left(\varphi_{a_{m_k}(x_0)} - \varphi_{a_{m_k}(x_k)} \right) = \pm \prod_{i=1}^{m_k} q_{a_i}.
\]

\[
f(x_0) - f(x_k) = \prod_{i=1}^{m_k-1} g_{\beta_i} \left(\psi_{\beta_{m_k}(f(x_0))} - \psi_{\beta_{m_k}(f(x_k))} \right) = \pm \prod_{i=1}^{m_k} g_{\beta_i}.
\]

And hence

\[
\lim_{m \to \infty} \frac{f(x_0) - f(x_k)}{x_0 - x_k} = \pm \lim_{m \to \infty} \prod_{i=1}^{m_k} \frac{g_{\beta_i}}{q_{a_i}}.
\]

Therefore, if \(\min g_i \geq \max q_j \) (where \(j \in A_s \), \(i \in A_3 \)) the limit of the last relation is equal to \(\pm \infty \).

\[\Box \]

6. Self-affine properties of function \(f \)

Theorem 6.1. Let \(x = \Delta_{Q_1 \alpha_1 \ldots \alpha_k} \), \(f(x) = \Delta_{G_1 \beta_1 \beta_2 \ldots \beta_k} \). Graph \(\Gamma_f = \{ (x', f(x')) \mid x' \in [0, 1] \} \) of the function \(f \) is self-affine set, and \(\Gamma_f = \bigcup_{i=0}^{s-1} \phi_i(\Gamma_f) \), \(\phi_i = \left\{ \begin{array}{ll} x' = \varphi_1 + q_i x' = \Delta_{Q_1 \alpha_1 \ldots \alpha_k}, & i \in A_s, \\
\phi_i(\Gamma_f) = c_2 \psi_2 + (1 - c_2) \psi_{\gamma(i)} + (-1)^{c_2} q_{\gamma(i)} f(x). & \end{array} \right. \)

Proof. Let \(G = \phi_1(\Gamma_f) \cup \phi_2(\Gamma_f) \cup \ldots \cup \phi_n(\Gamma_f) \), \(\phi_i(\Gamma_f) \neq \phi_j(\Gamma_f) \) for \(i \neq j \). We prove that \(\Gamma_f = G \).

To this end first we show that \(G \subset \Gamma_f \). Consider an arbitrary point \(M(x_M, y_M) \in G \), then there exists \(i \) such that \(x_M = q_i x + \varphi_i \), \(y_M = \psi_{\gamma(i)} + c_2 g_1 + (-1)^{c_2} q_{\gamma(i)} f(x) \).

It is easy to prove that \(f(x_M) = y_M \). So \(M \in \Gamma_f \).

We will now prove that \(\Gamma_f \subset G \), i.e., for any point \(M(x, y) \in \Gamma_f \), namely \(x = \Delta_{Q_1 \alpha_1 \ldots \alpha_k}, \ y = \Delta_{G_1 \beta_1 \beta_2 \ldots \beta_k} = c_2 \psi_2 + (1 - c_2) \psi_{\gamma(i)} + (-1)^{c_2} q_{\gamma(i)} f(x) \), there exists \(i \) such that \(M \in \phi_i(\Gamma_f) \). For this consider a point \(M^*(x^*, y^*) \in \Gamma_f \), i.e., \(x^* = \Delta_{Q_1 \alpha_1 \ldots \alpha_k}, \ y^* = \Delta_{G_1 \beta_1 \beta_2 \ldots \beta_k} \).

Since \(\phi_{\alpha_1}(M^*) = M \), we have \(M \in \phi_{\alpha_1}(\Gamma_f) \). Hence, \(\Gamma_f \equiv G \).

\[\Box \]

Theorem 6.2. For the Lebesgue integral the following equality holds:

\[
\int_{0}^{1} f(x) dx = \frac{(g_0 + g_1)(1 - q_0) - g_1 \sum_{i=1}^{m+1} q_{2i-1}}{1 - q_0 g_0 - g_1 \left(\sum_{i=1}^{m+1} q_{2i-1} - \sum_{i=m}^{m} q_{2i} \right) - g_2 q_{s-1}}, \quad \text{where} \quad m = \frac{s - 3}{2}
\]

Proof. Using the additive property of the Lebesgue integral and self-affine properties of function we have
\[
\int_0^1 f(x)dx = \int_0^{\varphi_1} f(x)dx + \sum_{i=1}^{s-2} \int_{\varphi_i}^{\varphi_{i+1}} f(x)dx + \int_{\varphi_{s-1}}^{1} f(x)dx = \int_0^{\varphi_1} g_0 f(t)dt + \\
+ \sum_{i=1}^{m} \int_{\varphi_{2i-1}}^{\varphi_{2i+1}} (g_0 + g_1 f(t)) dt + \sum_{i=1}^{m} \int_{\varphi_{2i}}^{\varphi_{2i+1}} (g_0 + g_1 - g_2 f(t)) dt + \\
+ \int_{\varphi_s-1}^{1} (g_0 + g_1 + g_2 f(t)) dt = q_0 g_0 \int_0^{1} f(x)dx + g_0 \sum_{i=1}^{m+1} q_{2i-1} + \\
+ q_1 \sum_{i=1}^{m+1} q_{2i-1} \int_0^{1} f(x)dx + (g_0 + g_1) \sum_{i=1}^{m} q_{2i} - q_1 \sum_{i=1}^{m} q_{2i} \int_0^{1} f(x)dx + \\
+ (g_0 + g_1) q_{s-1} + g_2 q_{s-1} \int_0^{1} f(x)dx,
\]

\[
\left(1 - q_0 g_0 - g_1 \sum_{i=1}^{m+1} q_{2i-1} + g_1 \sum_{i=1}^{m} q_{2i} - g_2 q_{s-1}\right) \int_0^{1} f(x)dx = \\
q_0 \sum_{i=1}^{m+1} q_{2i-1} + (g_0 + g_1) \sum_{i=1}^{m} q_{2i} + (g_0 + g_1) q_{s-1},
\]

\[
\int_0^{1} f(x)dx = \frac{(g_0 + g_1) (1 - q_0) - q_1 \sum_{i=1}^{m+1} q_{2i-1}}{1 - q_0 g_0 - g_1 \left(\sum_{i=1}^{m+1} q_{2i-1} - \sum_{i=1}^{m} q_{2i}\right) - g_2 q_{s-1} + g_2 q_{s-1}},
\]

Theorem 6.3. Let \([0, 1] \ni u \) be a real number. Then for Lebesgue integral the following equality holds

\[
\int_0^u f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(S^{(k)} \prod_{i=1}^{k-1} q_{\alpha_i} \right), \text{ where}
\]

\[
S^{(k)} = \psi_{\alpha k} D_{k-1} + \prod_{n=1}^{k-1} g_{\beta_n} \sum_{j=0}^{\alpha-1} \left(q_j S^{(k)}_{\Delta_{\alpha_1 \alpha_2 \cdots \alpha_{k-1}}^k} \right),
\]

\[
D_{k-1} = \sum_{j=1}^{k-1} \left(\psi_{j} \prod_{n=1}^{j-1} g_{\beta_n} \right), \quad S^{(k)}_{\Delta_{\alpha_1 \alpha_2 \cdots \alpha_{k-1}}} = \psi_{\beta_k} + (-1)^{c_k} g_{\beta_k} I, \quad I = \int_0^{1} f(x)dx.
\]
Proof. Since $u \in [0, 1]$, it can be represented in the form

$$u = \varphi_{a_1} + \sum_{i=2}^{\infty} \left(\varphi_{a_i} \prod_{j=1}^{k-1} q_{a_j} \right), \quad f(u) = \psi_{\beta_1} + \sum_{i=2}^{\infty} \left(\psi_{\beta_i} \prod_{j=1}^{k-1} g_{\beta_j} \right).$$

We denote

$$\frac{u - \varphi_{a_1}}{q_{a_1}} = \xi_1 = \Delta_{a_2a_3\ldots a_k}\ldots, \quad \frac{u - \varphi_{a_1} - \varphi_{a_2}q_{a_1}}{q_{a_1}q_{a_2}} = \xi_2 = \Delta_{a_3a_4\ldots a_k}\ldots,$$

$$\frac{u - \varphi_{a_1} - \varphi_{a_2}q_{a_1} - \ldots - \varphi_{a_k} \prod_{i=1}^{k-1} q_{a_i}}{q_{a_1}q_{a_2}\ldots q_{a_k}} = \xi_k = \Delta_{a_{k+1}a_{k+2}\ldots}, \quad \xi_k \in [0, 1], \quad k = 1, 2, \ldots.$$

Using the additive property of the Lebesgue integral and self-affine properties

$$\int_0^u f(u) du = \int_0^{\xi_1} f(\xi_1) d\xi_1 + \int_{\varphi_{a_1}}^{\varphi_{a_1} + \varphi_{a_2}q_{a_1}} f(\xi_2) d\xi_2 + \ldots$$

of function we have

$$\varphi_{a_1} + \sum_{i=2}^{k-1} \left(\varphi_{a_i} \prod_{j=1}^{k-1} q_{a_j} \right) + \int_{\varphi_{a_1} + \sum_{i=2}^{k-1} \left(\varphi_{a_i} \prod_{j=1}^{k-1} q_{a_j} \right)}^{\varphi_{a_1} + \sum_{i=2}^{k-1} \left(\varphi_{a_i} \prod_{j=1}^{k-1} q_{a_j} \right)} f(\xi_k) d\xi_k + \ldots$$

Each summand of the formula determines a successive approximation of the value of the integral. Denote

by $S_{\Delta_{a_1}}^{(1)}$ the first approximation, were $i = 0, a_1 - 1$,

by $S_{\Delta_{a_1}}^{(2)}$ the second approximation, where $i = 0, a_2 - 1$,

by $S_{\Delta_{a_1a_2\ldots a_{k-1}}}^{(k)}$ the k-th approximation, where $i = 0, a_k - 1$. Now we have

$$S_{\Delta_{a_i}}^{(1)} = \psi_{\gamma(i)} + q_{\gamma(i)} I, \quad i \in A \setminus \{2, 4, \ldots, s - 3\},$$

$$S_{\Delta_{a_i}}^{(1)} = q_0 + q_1 - q_1 I, \quad j \in \{2, 4, \ldots, s - 3\},$$

$$S_{\Delta_{a_1a_2\ldots a_{k-1}}}^{(k)} = \psi_{\beta_k} + (-1)^{\gamma_{k+1}} g_{\beta_k} I, \quad \text{where}$$

$$I = \int_0^u f(x) dx, \quad c_{k+1}' = \begin{cases} c_k, & i \in A \setminus \{2, 4, \ldots, s - 3\}; \\ 1 - c_k, & i \in \{2, 4, \ldots, s - 3\}. \end{cases}$$

Hence, we have

$$\int_0^u f(x) dx = \sum_{i=0}^{\alpha_1 - 1} \int_{\varphi_i}^{\varphi_i + 1} \left(S_{\Delta_{a_i}}^{(1)} \right) d\xi_1 + q_{a_1} \sum_{i=0}^{\alpha_2 - 1} \int_{\varphi_i}^{\varphi_i + 1} \left(\psi_{\beta_i} + g_{\beta_i} S_{\Delta_{a_1a_2\ldots a_{k-1}}}^{(k)} \right) d\xi_2 + \ldots +$$

$$+ \prod_{i=1}^{k-1} q_{a_i} \sum_{i=0}^{\alpha_k - 1} \int_{\varphi_i}^{\varphi_i + 1} \left(\psi_{\beta_i} \prod_{j=1}^{k-1} g_{\beta_j} \right) + \prod_{n=1}^{k-1} g_{\beta_n} S_{\Delta_{a_1a_2\ldots a_{k-1}}}^{(k)} \right) d\xi_k + \ldots =$$
\[= \sum_{i=0}^{\alpha_1-1} \left(q_i S^{(1)}_i \right) + q_{\alpha_1} \sum_{i=0}^{\alpha_2-1} \left(q_i \left(\psi_\beta_1 + g_\beta_1 S^{(2)}_{\Delta_\alpha_1} \right) \right) + \]
\[+ q_{\alpha_1} q_{\alpha_2} \sum_{i=0}^{\alpha_3-1} \left(q_i \left(\psi_\beta_1 + \psi_\beta_2 g_\beta_1 + g_\beta_1 g_\beta_2 S^{(3)}_{\Delta_\alpha_1} \right) \right) + \ldots + \]
\[+ \prod_{i=1}^{k-1} q_{\alpha_i} \sum_{i=0}^{\alpha_k-1} \left(q_i \left(\sum_{j=1}^{k-1} \left(\psi_\beta_j \prod_{n=1}^{j-1} g_\beta_n \right) + \prod_{n=1}^{k-1} g_\beta_n S^{(k)}_{\Delta_\alpha_1 \alpha_2 \ldots \alpha_{k-1}} \right) \right) + \ldots \]

Denote
\[D_{k-1} = \sum_{j=1}^{k-1} \left(\psi_\beta_j \prod_{n=1}^{j-1} g_\beta_n \right), \quad S^{(k)} = \psi_\alpha k D_{k-1} + \prod_{n=1}^{k-1} g_\beta_n \sum_{i=0}^{\alpha_k-1} \left(q_i S^{(k)}_{\Delta_\alpha_1 \alpha_2 \ldots \alpha_{k-1}} \right), \]

then \[\int_0^u f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^n \left(S^{(k)} \prod_{i=1}^{k-1} q_{\alpha_i} \right). \quad \square \]

Corollary 6.4. If \(s = 5 \), \(Q_5 = \{ \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5} \} \), \(G_3 = \{ \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \} \) then \[\int_0^u f(x) \, dx = \frac{1}{2} \] and graph of the function \(f \) has the form

![Graph of the function](image)

References

Fractal properties of functions

Received: November 15, 2013