A Note on the lambda-Daehee Polynomials

Dae San Kim

Department of Mathematics, Sogang University
Seoul 121-742, Republic of Korea
dskim@sogang.ac.kr

Taekyun Kim

Department of Mathematics, Kwangwoon University
Seoul 139-701, Republic of Korea
tkkim@kw.ac.kr

Sang-Hun Lee

Division of General Education, Kwangwoon University
Seoul 139-701, Republic of Korea
leesh58@kw.ac.kr

Jong-Jin Seo

Department of Applied mathematics
Pukyoung National University
Pusan 608-737, Republic of Korea
seo2011@pknu.ac.kr

Copyright © 2013 Dae San Kim, Taekyun Kim, Sang-Hun Lee and Jong-Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. Recently, Daehee polynomials are introduced in [6]. In this paper, we study the \(\lambda \)-Daehee polynomials and investigate their properties arising from the \(p \)-adic integral equations.

1. Introduction

The Daehee polynomials of the first kind are defined by the generating function to be

\[
\left(\frac{\log (1 + t)}{t} \right) (1 + t)^x = \sum_{n=0}^{\infty} D_n(x) \frac{t^n}{n!},
\]

(see [6]) and the Daehee polynomials of the second kind are given by

\[
\left(\frac{\log (1 + t)}{t} \right) (1 + t)^{x+1} = \sum_{n=0}^{\infty} \hat{D}_n(x) \frac{t^n}{n!},
\]

(see [6]).

As is well known, the Bernoulli polynomials of order \(k (\in \mathbb{N}) \) are defined by the generating function to be

\[
\left(\frac{t}{e^t - 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!},
\]

(see [7-15]).

When \(x = 0 \), \(B_n^{(k)} = B_n^{(k)}(0) \) are the Bernoulli numbers of order \(k \). In particular, if \(k = 1 \), \(B_n(x) = B_n^{(1)}(x) \) are the Bernoulli polynomials.

When \(x = 0 \), \(B_n = B_n(0) \) are the Bernoulli numbers.

Throughout this paper, \(\mathbb{Z}_p, \mathbb{Q}_p \) and \(\mathbb{C}_p \) will denote the ring of \(p \)-adic integers, the field of \(p \)-adic numbers and the completion of algebraic closure of \(\mathbb{Q}_p \).

Let \(UD(\mathbb{Z}_p) \) be the space of uniformly differentiable functions on \(\mathbb{Z}_p \). For \(f \in UD(\mathbb{Z}_p) \), the bosonic \(p \)-adic integral on \(\mathbb{Z}_p \) is defined by

\[
I(f) = \int_{\mathbb{Z}_p} f(x) d\mu_0(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x),
\]

(see [9]).

Let \(f_1 \) be the translation of \(f \) with \(f_1(x) = f(x + 1) \). Then, by (4), we get

\[
I(f_1) = I(f) + f'(0),
\]

where \(f'(0) = \frac{df(x)}{dx} \bigg|_{x=0} \) (see [1-9]).
A note on the lambda-Daehee polynomials

The Stirling number of the first kind is given by

\[(x)_n = x(x - 1) \cdots (x - n + 1) = \sum_{l=0}^{n} S_1(n, l) x^l, \quad (n \geq 0),\]

and the Stirling number of the second kind is defined by the generating function to be

\[(e^t - 1)^n = n! \sum_{l=n}^{\infty} S_2(l, n) \frac{t^l}{l!},\]

(see [13]).

In this paper, we consider the \(\lambda\)-Daehee polynomials which are derived from the bosonic \(p\)-adic integral on \(\mathbb{Z}_p\). Finally, we investigate some properties on the \(\lambda\)-Daehee polynomials related to Bernoulli polynomials of order \(k\) \((k \in \mathbb{N})\).

2. On the \(\lambda\)-Daehee Polynomials

In this section, we assume that \(t \in \mathbb{C}_p\) with \(|t|_p < p^{-\frac{1}{p-1}}\) and \(\lambda \in \mathbb{Z}_p\).

Now, we consider \(\lambda\)-Daehee polynomials which are a generalization of Daehee polynomials, defined as follows:

\[
\frac{\lambda \log (1 + t)}{(1 + t)^\lambda - 1} (1 + t)^x = \sum_{n=0}^{\infty} D_{n,\lambda}(x) \frac{t^n}{n!}.
\]

(8)

When \(x = 0\), \(D_{n,\lambda} = D_{n,\lambda}(0)\) are called the \(\lambda\)-Daehee numbers. It is easy to see that \(D_n(x) = D_{n,1}(x)\) and \(D_n = D_{n,1}\).

Let us take \(f(x) = (1 + t)^{\lambda x}\). From (5), we have

\[
\int_{\mathbb{Z}_p} (1 + t)^{\lambda x} d\mu_0(y) = \frac{\lambda \log (1 + t)}{(1 + t)^\lambda - 1}.
\]

(9)

Thus, by (9), we get

\[
\int_{\mathbb{Z}_p} (1 + t)^{\lambda y + x} d\mu_0(y) = \frac{\lambda \log (1 + t)}{(1 + t)^\lambda - 1} (1 + t)^x
\]

\[
= \sum_{n=0}^{\infty} D_{n,\lambda}(x) \frac{t^n}{n!},
\]

(10)

and

\[
\int_{\mathbb{Z}_p} (1 + t)^{\lambda y + x} d\mu_0(y) = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left(\frac{\lambda y + x}{n} \right) d\mu_0(y) t^n
\]

\[
= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (\lambda y + x)_n d\mu_0(y) \frac{t^n}{n!}.
\]

(11)

Therefore, by (10) and (11), we obtain the following theorem.
Theorem 1. For \(n \geq 0 \), we have

\[
D_{n, \lambda} (x) = \int_{\mathbb{Z}_p} (\lambda y + x)_n \, d\mu_0 (y).
\]

By (8), we get

\[
\frac{\lambda t}{e^{\lambda t} - 1} e^{(\lambda t)x} = \sum_{n=0}^{\infty} D_{n, \lambda} (x) \frac{1}{n!} (e^t - 1)^n \tag{12}
\]

and

\[
\frac{\lambda t}{e^{\lambda t} - 1} e^{(\lambda t)x} = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} S_2 (m, n) D_{n, \lambda} (x) \right) \frac{t^m}{m!} \tag{13}
\]

From (6) and Theorem 1, we note that

\[
D_{n, \lambda} (x) = \int_{\mathbb{Z}_p} (\lambda y + x)_n \, d\mu_0 (y) \tag{14}
\]

= \sum_{l=0}^{n} S_1 (n, l) \, \lambda^l \int_{\mathbb{Z}_p} \left(y + \frac{x}{\lambda} \right)^l \, d\mu_0 (y)

= \sum_{l=0}^{n} S_1 (n, l) \, \lambda^l B_l \left(\frac{x}{\lambda} \right).

Therefore, by (12), (13) and (14), we obtain the following theorem.

Theorem 2. For \(m \geq 0 \), we have

\[
D_{m, \lambda} (x) = \sum_{l=0}^{m} S_1 (m, l) \, \lambda^l B_l \left(\frac{x}{\lambda} \right),
\]

and

\[
\lambda^m B_m \left(\frac{x}{\lambda} \right) = \sum_{n=0}^{m} S_2 (m, n) \, D_{n, \lambda} (x).
\]

Let us consider the \(\lambda \)-Daehee polynomials of the first kind with order \(k (\in \mathbb{N}) \) as follows:

\[
D_{n, \lambda}^{(k)} (x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (\lambda x_1 + \cdots + \lambda x_k + x)_n \, d\mu_0 (x_1) \cdots d\mu_0 (x_k). \tag{15}
\]

From (15), we can derive the generating function of \(D_{n, \lambda}^{(k)} (x) \) as follows:
\[
\sum_{n=0}^{\infty} D^{(k)}_{n,\lambda}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (\lambda x_1 + \cdots + \lambda x_k + x) d\mu_0(x_1) \cdots d\mu_0(x_k) \frac{t^n}{n!} \\
= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1+t)^{\lambda x_1 + \cdots + \lambda x_k + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \left(\frac{\lambda \log (1+t) - 1}{(1+t)^\lambda - 1} \right)^k (1+t)^x.
\]

By (15), we easily get
\[
D^{(k)}_{n,\lambda}(x)
= \sum_{l=0}^{n} S_1(n, l) \lambda^l \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(x_1 + \cdots + x_k + \frac{x}{\lambda} \right)^l d\mu_0(x_1) \cdots d\mu_0(x_k)
= \sum_{l=0}^{n} S_1(n, l) \lambda^l B_l^{(k)}\left(\frac{x}{\lambda} \right).
\]

From (16), we note that
\[
\left(\frac{\lambda t}{e^{\lambda t} - 1} \right)^k e(t) \lambda^t = \sum_{n=0}^{\infty} D^{(k)}_{n,\lambda}(x) \frac{1}{n!} \left(e^t - 1 \right)^n
= \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} D^{(k)}_{n,\lambda}(x) S_2(m, n) \right) \frac{1}{m!} \frac{t^m}{m!},
\]
and
\[
\left(\frac{\lambda t}{e^{\lambda t} - 1} \right)^k e(t) \lambda^t = \sum_{m=0}^{\infty} \lambda^m B_m^{(k)}\left(\frac{x}{\lambda} \right) \frac{1}{m!} \frac{t^m}{m!}.
\]

Therefore, by (17), (18) and (19), we obtain the following theorem.

Theorem 3. For \(m \geq 0, \ k \in \mathbb{N} \), we have
\[
D^{(k)}_{n,\lambda}(x) = \sum_{l=0}^{n} S_1(n, l) \lambda^l B_l^{(k)}\left(\frac{x}{\lambda} \right),
\]
and
\[
\lambda^m B_m^{(k)}\left(\frac{x}{\lambda} \right) = \sum_{n=0}^{m} S_2(m, n) D^{(k)}_{n,\lambda}(x).
\]
For \(n \geq 0 \), the rising factorial sequence is defined by
\[
x^{(n)} = x(x + 1)\cdots(x + n - 1) = (-1)^n (-x)_n
\] (20)
\[
= \sum_{l=0}^{n} (-1)^{n-l} S_1(n, l) x^l.
\]
Let us define the \(\lambda \)-Dahee polynomials of the second kind as follows:
\[
\frac{\lambda \log (1 + t)}{(1 + t)^\lambda - 1} (1 + t)^{\lambda + x} = \sum_{n=0}^{\infty} \hat{D}_{n, \lambda}(x) \frac{t^n}{n!}.
\] (21)

Note that \(\hat{D}_{n, 1}(x) = \hat{D}_n(x) \).

Let us take \(f(x) = (1 + t)^{-\lambda x} \). Then, by (5), we get
\[
\int_{\mathbb{Z}_p} (1 + t)^{-\lambda x} d\mu_0(x) = \frac{\lambda \log (1 + t)}{(1 + t)^\lambda - 1} (1 + t)^\lambda.
\] (22)

Thus, from (22), we have
\[
\int_{\mathbb{Z}_p} (1 + t)^{-\lambda y + x} d\mu_0(y) = \sum_{n=0}^{\infty} \hat{D}_{n, \lambda}(x) \frac{t^n}{n!},
\] (23)

and
\[
\int_{\mathbb{Z}_p} (1 + t)^{-\lambda y + x} d\mu_0(y) = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left(-\frac{\lambda y + x}{n} \right) d\mu_0(y) t^n
\] (24)
\[
= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (-\lambda y + x) d\mu_0(y) \frac{t^n}{n!}.
\]

By (23) and (24), we get
\[
\hat{D}_{n, \lambda}(x) = \int_{\mathbb{Z}_p} (-\lambda y + x) d\mu_0(y)
\] (25)
\[
= \sum_{l=0}^{n} S_1(n, l) (-\lambda)^l \int_{\mathbb{Z}_p} \left(y - \frac{x}{\lambda} \right)^l d\mu_0(y)
\]
\[
= \sum_{l=0}^{n} S_1(n, l) (-\lambda)^l B_l \left(\frac{x}{\lambda} \right).
\]

It is well known that \(B_n(1 - x) = (-1)^n B_n(x) \).

From (25), we have
\[
\hat{D}_{n, \lambda}(x) = \sum_{l=0}^{n} S_1(n, l) \lambda^l B_l \left(1 + \frac{x}{\lambda} \right).
\] (26)
By (21), we get
\[
\frac{\lambda t}{e^{\lambda t} - 1} e^{(\lambda + x)t} = \sum_{n=0}^{\infty} \hat{D}_{n,\lambda}(x) \frac{(e^t - 1)^n}{n!}
\]
(27)
\[= \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} \hat{D}_{n,\lambda}(x) S_2(m, n) \right) \frac{t^m}{m!},
\]
and
\[
\frac{\lambda t}{e^{\lambda t} - 1} e^{(\lambda + x)t} = \frac{\lambda t}{e^{\lambda t} - 1} e^{(1 + \frac{x}{\lambda})t}
\]
(28)
\[= \sum_{m=0}^{\infty} \lambda^m B_m \left(1 + \frac{x}{\lambda} \right) \frac{t^m}{m!}.
\]

Therefore, by (26), (27) and (28), we obtain the following theorem.

Theorem 4. For $m \geq 0$, we have
\[
\hat{D}_{m,\lambda}(x) = \sum_{l=0}^{m} S_1(m, l) \lambda^l B_l \left(1 + \frac{x}{\lambda} \right)
\]
and
\[
\lambda^m B_m \left(1 + \frac{x}{\lambda} \right) = \sum_{n=0}^{m} S_2(m, n) \hat{D}_{n,\lambda}(x).
\]

Remark. When $x = 0$, we get
\[
\lambda^m B_m (1) = \sum_{n=0}^{m} \hat{D}_{n,\lambda} S_2(m, n).
\]

For $\lambda = 1$, we have
\[
B_m (1) = \sum_{n=0}^{m} \hat{D}_{n,\lambda} S_2(m, n).
\]

For $k \in \mathbb{N}$, we define the λ-Daehee polynomials of the second kind with order k :
\[
\hat{D}_{n,\lambda}^{(k)}(x) = \int_{Z_p} \cdots \int_{Z_p} (- (\lambda x_1 + \cdots + \lambda x_k) + x)_n \, d\mu_0(x_1) \cdots d\mu_0(x_k).
\]
(29)
From (29), we can derive the generating function of $\hat{D}_{n,\lambda}^{(k)}(x)$ as follows:

\[
\sum_{n=0}^{\infty} \hat{D}_{n,\lambda}^{(k)}(x) \frac{t^n}{n!}
= \sum_{n=0}^{\infty} \int_{Z_p} \cdots \int_{Z_p} \left(-\lambda x_1 + \cdots + \lambda x_k + x \right)_n d\mu_0(x_1) \cdots d\mu_0(x_k) \frac{t^n}{n!}
= \int_{Z_p} \cdots \int_{Z_p} (1 + t)^{-\left(\lambda x_1 + \cdots + \lambda x_k + x \right)} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \left(\frac{\lambda \log(1 + t)}{(1 + t)^\lambda - 1} \right)^k (1 + t)^{\lambda k + x}.
\]

Thus, by (30), we get

\[
\sum_{n=0}^{\infty} \hat{D}_{n,\lambda}^{(k)}(x) \frac{(e^t - 1)^n}{n!} = \left(\frac{\lambda t}{e^{\lambda t} - 1} \right)^k e^{(\lambda k + x)t}
= \sum_{m=0}^{\infty} \lambda^m B_m^{(k)} \left(k + \frac{x}{\lambda} \right) \frac{t^m}{m!},
\]

and

\[
\sum_{n=0}^{\infty} \hat{D}_{n,\lambda}^{(k)}(x) \frac{(e^t - 1)^n}{n!}
= \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} S_2(m, n) \hat{D}_{n,\lambda}^{(k)}(x) \right) \frac{t^m}{m!}.
\]

By (29), we easily get

\[
\hat{D}_{m,\lambda}^{(k)}(x)
= \sum_{l=0}^{m} S_1(m, l) \lambda^l \left(-1 \right)^l \int_{Z_p} \cdots \int_{Z_p} \left(x_1 + \cdots + x_k - \frac{x}{\lambda} \right)^l d\mu_0(x_1) \cdots d\mu_0(x_k)
= \sum_{l=0}^{m} S_1(m, l) \lambda^l \left(-1 \right)^l B_l^{(k)} \left(-\frac{x}{\lambda} \right).
\]
A note on the lambda-Daehee polynomials

We observe that

\[
\sum_{n=0}^{\infty} B_n^{(k)} (k - x) \frac{t^n}{n!} = \left(\frac{t}{e^t - 1} \right)^k e^{(k-x)t} = \left(\frac{-t}{e^{-t} - 1} \right)^k e^{-xt} = \sum_{n=0}^{\infty} (-1)^n B_n^{(k)} (x) \frac{t^n}{n!}.
\]

(34)

Thus, by (34), we get

\[
B_n^{(k)} (k - x) = (-1)^n B_n^{(k)} (x).
\]

(35)

From (33) and (35), we have

\[
\hat{D}^{(k)}_{m,\lambda} (x) = \sum_{l=0}^{m} S_1 (m, l) (-\lambda)^l B_l^{(k)} \left(-\frac{x}{\lambda} \right) = \sum_{l=0}^{m} S_1 (m, l) \lambda^l B_l^{(k)} \left(k + \frac{x}{\lambda} \right).
\]

(36)

Therefore, by (31), (32) and (36), we obtain the following theorem.

Theorem 5. For \(m \geq 0 \), we have

\[
\hat{D}^{(k)}_{m,\lambda} (x) = \sum_{l=0}^{m} S_1 (m, l) \lambda^l B_l^{(k)} \left(k + \frac{x}{\lambda} \right),
\]

and

\[
\lambda^m B_m^{(k)} \left(k + \frac{x}{\lambda} \right) = \sum_{n=0}^{m} S_2 (m, n) \hat{D}^{(k)}_{n,\lambda} (x).
\]

We observe that
\[
(-1)^n \frac{D_{n,\lambda}(x)}{n!} = \int_{\mathbb{Z}_p} \binom{x + \lambda y}{n} d\mu_0(y)
\]

\[
= (-1)^n \int_{\mathbb{Z}_p} \binom{-y\lambda - x + n - 1}{n} d\mu_0(y)
\]

\[
= \sum_{m=0}^{n} \binom{n-1}{n-m} \frac{1}{m!} \int_{\mathbb{Z}_p} \binom{-y\lambda - x}{m} d\mu_0(y)
\]

\[
= \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{1}{m!} \int_{\mathbb{Z}_p} \binom{-y\lambda - x}{m} d\mu_0(y)
\]

\[
= \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{D_{m,\lambda}(-x)}{m!},
\]

and

\[
(-1)^n \frac{\hat{D}_{n,\lambda}(x)}{n!} = (-1)^n \int_{\mathbb{Z}_p} \binom{-\lambda y + x}{n} d\mu_0(y)
\]

\[
= \int_{\mathbb{Z}_p} \binom{\lambda y - x + n - 1}{n} d\mu_0(y)
\]

\[
= \sum_{m=0}^{n} \binom{n-1}{n-m} \int_{\mathbb{Z}_p} \binom{y\lambda - x}{m} d\mu_0(y)
\]

\[
= \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{1}{m!} \int_{\mathbb{Z}_p} \binom{y\lambda - x}{m} d\mu_0(y)
\]

\[
= \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{D_{m,\lambda}(-x)}{m!}.
\]

Therefore, by (37) and (38), we obtain the following theorem.

Theorem 6. For \(n \geq 1 \), we have

\[
(-1)^n \frac{D_{n,\lambda}(x)}{n!} = \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{D_{m,\lambda}(-x)}{m!},
\]

and

\[
(-1)^n \frac{\hat{D}_{n,\lambda}(x)}{n!} = \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{D_{m,\lambda}(-x)}{m!}.
\]
A note on the lambda-Daehee polynomials

Remark. For $n \geq 1$, we have

$$(-1)^n \frac{D_{n,\lambda}^{(k)}(x)}{n!}$$

$$= (-1)^n \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{x + \lambda x_1 + \cdots + \lambda x_k}{n} \right) d\mu_0(x_1) \cdots d\mu_0(x_k)$$

$$= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(-\frac{(\lambda x_1 + \cdots + \lambda x_k) - x + n - 1}{n} \right) d\mu_0(x_1) \cdots d\mu_0(x_k)$$

$$= \sum_{m=0}^n \binom{n-1}{n-m} \frac{n}{m} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(-\frac{\lambda x_1 + \cdots + \lambda x_k - x}{m} \right) d\mu_0(x_1) \cdots d\mu_0(x_k)$$

$$= \sum_{m=1}^n \binom{n-1}{m-1} \frac{1}{m!} \hat{D}_{m,\lambda}^{(k)}(x) - x$$

and

$$(-1)^n \frac{\hat{D}_{n,\lambda}^{(k)}(x)}{n!}$$

$$= (-1)^n \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{-\lambda x_1 + \cdots + \lambda x_k + x}{n} \right) d\mu_0(x_1) \cdots d\mu_0(x_k)$$

$$= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{\lambda x_1 + \cdots + \lambda x_k - x + n - 1}{n} \right) d\mu_0(x_1) \cdots d\mu_0(x_k)$$

$$= \sum_{m=0}^n \binom{n-1}{n-m} \frac{n}{m} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{\lambda x_1 + \cdots + \lambda x_k - x}{m} \right) d\mu_0(x_1) \cdots d\mu_0(x_k)$$

$$= \sum_{m=1}^n \binom{n-1}{m-1} \frac{1}{m!} \hat{D}_{m,\lambda}^{(k)}(x) - x$$

$$= \sum_{m=1}^n \binom{n-1}{m-1} \frac{1}{m!} \hat{D}_{m,\lambda}^{(k)}(x)$$

References

Received: November 1, 2013