Admissible Perturbations of Differential Expressions
with Exponentially Decaying Coefficients
Preserving the Nullities

Juancho A. Collera

Department of Mathematics and Computer Science
University of the Philippines Baguio
Baguio City 2600, Philippines

Marian P. Roque

Institute of Mathematics
University of the Philippines Diliman
Quezon City 1101, Philippines

Copyright © 2013 Juancho A. Collera and Marian P. Roque. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The essential spectrum and nullities of differential expressions of the form:
\[\nu_0 = \sum_{k=0}^{r} b_k e^{\beta k s} D_{gk} \]

have been classified. A class of relatively compact perturbations of the above expressions which do not alter these properties has also been defined in [2]. Recently, admissible perturbations of this expression which preserve the essential spectrum have been classified [3]. In this paper, we define a class of admissible perturbations for the above form of differential expressions which preserves the nullities of these expressions.

Mathematics Subject Classification: 34L05, 47A11, 47A55

Keywords: Differential Expressions, Nullities, Admissible Perturbation
1 Special Expressions

A special expression is a differential expression in $L_2[1, \infty)$ of the form

$$M_0 = \sum_{k=0}^{r} b_k t^{\alpha_k} D_t^{\rho_k}$$

(1)

where $D_t = \frac{d}{dt}$, $\rho_k \in \mathbb{N}_0$ with $0 = \rho_0 < \rho_1 < \cdots < \rho_r = n$ and $\alpha_k \in \mathbb{R}$ for every k, satisfying $\alpha_0 = 0$, $\alpha_1 \leq \rho_1$, and

$$1 \geq \frac{\alpha_k - \alpha_{k-1}}{\rho_k - \rho_{k-1}} \geq \frac{\alpha_{k+1} - \alpha_k}{\rho_{k+1} - \rho_k},$$

(2)

for $k = 1, \ldots, r - 1$ if $r > 1$. We denote by $\sigma_1 < \sigma_2 < \cdots < \sigma_{s-1}$ those indices k ($k = 1, 2, \ldots, r - 1$) for which the strong inequality holds in (2) and with $\sigma_0 = 0$ and $\sigma_s = r$. The coefficients b_k are nonzero real numbers for $k = \sigma_1, \ldots, r$ satisfying

$$c_\sigma = \sum_{\rho_{\sigma_i} \leq \lambda \leq \rho_{\sigma_i+1}} (-1)^{\rho_\lambda+s} b_\lambda \geq 0$$

(3)

where $\rho_{\sigma_i} \leq \sigma \leq \rho_{\sigma_{i+1}}$, $i = 1, \ldots, s - 1$. For $k = 0, \ldots, \sigma_1 - 1$, b_k may be an arbitrary complex constant. The indices $\sigma_1, \ldots, \sigma_s$ are called the kink indices, and the essential part of M_0 is $M_{0,0} = \sum_{k=0}^{\sigma_1} b_k t^{\alpha_k} D_t^{\rho_k}$.

If we plot the points (ρ_k, α_k), $k = 0, 1, \ldots, r$ on the Cartesian plane and connect (ρ_0, α_k) and $(\rho_{k+1}, \alpha_{k+1})$, we obtain the polygonal path generated by M_0. This path corresponds to the graph of the function $\gamma : [0, n] \rightarrow \mathbb{R}$ which we define, for $k \in [\rho_{\sigma_i}, \rho_{\sigma_{i+1}}]$, as

$$\gamma(k) = \frac{1}{\rho_{\sigma_{i+1}} - \rho_{\sigma_i}} \left\{ (k - \rho_{\sigma_i}) \alpha_{\sigma_{i+1}} + (\rho_{\sigma_{i+1}} - k) \alpha_{\sigma_i} \right\}.$$

(4)

A class of relatively compact perturbations of special expressions are expressions of the form

$$M_1 = \sum_{j=0}^{n} r_j(t) D_t^j$$

(5)

where $r_j(t) \in C^j([1, \infty))$, $j = 0, \ldots, n$. and for $j = 0, \ldots, n$,

$$r_j(t) = o(t^{\gamma(j)})$$

(6)

as $t \rightarrow \infty$. For the invariance of nullities, we also admit perturbations of the above form satisfying

$$r_j^{(m)}(t) = o(t^{\gamma(j-m)})$$

(7)
as $t \to \infty$, for $j = 0, \ldots, n$ and $m = 0, \ldots, j$.

In [4], Schultze evaluated the essential spectrum and nullities of special expressions together with their relatively compact perturbations. These results are summarized in the following theorem.

Theorem 1.1 Let M_0 be a special expression and M_1 a relatively compact perturbation of M_0 of the form (5) satisfying (6). Then

$$\sigma_e(M_0 + M_1) = \sigma_e(M_0) = \sigma_e(M_{0,0})$$

where

$$\sigma_e(M_{0,0}) = \begin{cases} \{ \sum_{k=0}^{\sigma_1} b_k z^{\rho_k} \mid \Re z = 0 \}, & \text{if } \alpha_1 < \rho_1 \\ \{ \sum_{k=0}^{\sigma_1} b_k \prod_{j=0}^{k-1} (z - (j + \frac{1}{2})) \mid \Re z = 0 \}, & \text{if } \alpha_1 = \rho_1. \end{cases}$$

If M_1 satisfies (7), then for every $\lambda \in \mathbb{C}\setminus \sigma_e(M_0)$,

$$\text{nul}(M_0 + M_1 - \lambda) = \text{nul}(M_0 - \lambda) = \text{nul}(M_{0,0} - \lambda) + \sum_{i=1}^{s-1} \# \{ z \mid \sum_{k=\sigma_{i+1}}^{\sigma_i} b_k z^{\rho_k} = 0, \Re z < 0 \}$$

where

$$\text{nul}(M_{0,0} - \lambda) = \begin{cases} \# \{ z \mid \sum_{k=0}^{\sigma_1} b_k z^{\rho_k} = \lambda, \Re z < 0 \}, & \text{if } \alpha_1 < \rho_1 \\ \# \{ z \mid \sum_{k=0}^{\sigma_1} b_k \prod_{j=0}^{k-1} (z - (j + \frac{1}{2})) = \lambda, \Re z < 0 \}, & \text{if } \alpha_1 = \rho_1. \end{cases}$$

Mumpar-Victoria [1] was able to describe a new type of perturbations, called the admissible perturbations, which do not necessarily satisfy (6) but preserve the essential spectrum and nullities.

Definition 1.2 Let M be a differential expression of the form

$$M = \sum_{j=0}^{n-1} r_j(t) D_t^j. \quad (8)$$

We say that M is an admissible perturbation of the special expression M_0 if there exists a B such that the coefficients $r_j(t)$ satisfy the following

$$\sup_{[x, x+1] \subset [1, \infty)} \int_x^{x+1} \left| \frac{r_j(t)}{w_j(t)} \right|^2 dt < B \quad (9)$$
where \(r_j(t) \in C^i([1, \infty)) \) for \(j = 0, \ldots, n-1 \) and \(0 < w_j(t) \in C^\infty([1, \infty)) \) is an auxiliary function satisfying \(w_j(t) = o(t^{\gamma(j+1)}) \) and \(w_j(t) = o(t^{\gamma(j)}) \) as \(t \to \infty \).

For the invariance of nullities, we can only admit a somewhat less general class of perturbations consisting of expressions (8) satisfying

\[
\sup_{[x,x+1] \subset [1, \infty)} \int_x^{x+1} \left| \frac{r_{j-b}(t)}{w_b(t)} \right|^2 dt < \tilde{B}
\]

for \(b = 0, \ldots, n-1 \) and \(j = b, \ldots, n-1 \).

Theorem 1.3 Let \(M_0 \) be a special expression and \(M \) an admissible perturbation of \(M_0 \) of the form (8) satisfying (9). Then \(\sigma_e(M_0 + M) = \sigma_e(M_0) \).

In addition, if \(M \) satisfies (10), then, for every \(\lambda \in \mathbb{C} \setminus \sigma_e(M_0) \),

\[
nul(M_0 + M - \lambda) = nul(M_0 - \lambda)
\]

2 Differential Expressions with Exponentially Decaying Coefficients

Let us now consider differential expressions of the form

\[
\nu_0 = \sum_{k=0}^{r} b_k e^{\beta_k s} D^\rho_k
\]

where \(D_s = \frac{d}{ds} \), \(\rho_k \in \mathbb{N}_0 \) for every \(k \), such that \(0 = \rho_0 < \rho_1 < \cdots < \rho_r = n \), and \(\beta_k \in \mathbb{R} \), satisfying

\[
\beta_0 = 0 \quad \text{and} \quad 0 \geq \frac{\beta_k - \beta_{k-1}}{\rho_k - \rho_{k-1}} \geq \frac{\beta_{k+1} - \beta_k}{\rho_{k+1} - \rho_k},
\]

for \(k = 1, \ldots, r-1 \) if \(r > 1 \), and the coefficients \(b_k \) satisfy (3). We denote by \(\sigma_1 < \sigma_2 < \cdots < \sigma_{s-1} \) those indices \(k \), for which strict inequality holds in (12) with \(\sigma_0 = 0 \) and \(\sigma_s = r \). The polygonal path generated by \(\nu_0 \) with the aforementioned conditions lies on or below the horizontal axis and it is given by the graph of the function \(\tilde{\gamma} : [0, n] \to \mathbb{R} \) defined, for \(k \in [\rho_{\sigma_i}, \rho_{\sigma_i+1}] \), as

\[
\tilde{\gamma}(k) = \frac{1}{\rho_{\sigma_{i+1}} - \rho_{\sigma_i}} \{(k - \rho_{\sigma_i})\beta_{\sigma_{i+1}} + (\rho_{\sigma_{i+1}} - k)\beta_{\sigma_i}\}.
\]

Remark 2.1 For every \(k \), \(\tilde{\gamma}(\rho_k) = \beta_k \) and if \(k > j \), then \(\tilde{\gamma}(k) \leq \tilde{\gamma}(j) \). If \(\beta_{k+1} < \beta_k \) for \(k = 0, \ldots, r-1 \), then for \(k > j \), \(\tilde{\gamma}(k) < \tilde{\gamma}(j) \).

Let \(\nu_1 \) be a differential expression of the form

\[
\nu_1 = \sum_{k=0}^{n} r_k(s) D^k_s
\]
Admissible perturbations of differential expressions preserving the nullities

where \(r_k(s) \in C^k([0, \infty)), k = 0, \ldots, n \). We say that \(\nu_1 \) is a \textit{relatively compact perturbation} of the differential expression \(\nu_0 \) if for every \(k = 0, \ldots, n \),

\[
r_k(s) = o(e^{\tilde{\gamma}(k)s})
\]

as \(s \to \infty \). For the invariance of the nullities, we admit a class of perturbations consisting of expressions \(\nu_1 \) of the form (13) satisfying

\[
r_k^{(m)}(s) = o(e^{\tilde{\gamma}(k-m)s})
\]

as \(s \to \infty \), for \(k = 0, \ldots, n \) and \(m = 0, \ldots, k \).

The following theorem, due to Roque [2], gives the classification of the spectral properties of \(\nu_0 \) together with its relatively compact perturbation.

Theorem 2.2 Let \(\nu_0 \) be a differential expression of the form (11) satisfying (12), and let the coefficients \(b_k \) satisfy (3). Let \(\nu_1 \) be a relatively compact perturbation of \(\nu_0 \) of the form (13) satisfying (14). Then

\[
\sigma_e(\nu_0 + \nu_1) = \sigma_e(\nu_0) = \{ \sum_{k=0}^{\sigma_1} b_k z^{\rho_k} \mid Re \, z = 0 \}.
\]

Furthermore, if \(\nu_1 \) satisfies (15), then for every \(\lambda \in \mathbb{C} \setminus \sigma_e(\nu_0) \),

\[
nul(\nu_0 + \nu_1 - \lambda) = nul(\nu_0 - \lambda)
\]

\[
= \# \{ z \mid \sum_{k=0}^{\sigma_1} b_k z^{\rho_k} = \lambda, Re \, z < 0 \} + \sum_{i=1}^{s-1} \# \{ z \mid \sum_{k=\sigma_i}^{\sigma_{i+1}} b_k z^{\rho_k} = 0, Re \, z < 0 \}.
\]

In the proof of Theorem 2.2, \(\nu_0 \) was transformed to a special expression using the transformation \(\eta : L_2[1, \infty) \to L_2[0, \infty) \) defined as \((\eta f)(s) = e^{s/2} f(e^s) \) where \(0 \leq s < \infty \). The mapping \(\eta \) is a surjective linear isometry and its inverse map \(\eta^{-1} \) is given by \((\eta^{-1} g)(t) = t^{-1/2} g(\log t) \), where \(1 \leq t < \infty \). We now describe the transformation of a differential expression under the mapping \(\eta \).

Lemma 2.3 Let \(\tau = \sum_{k=0}^{r} h_k(t) D_t^{\rho_k}, \) where \(h_k(t) \in C^k([1, \infty)) \) and \(\rho_k \in \mathbb{N}_0 \) such that \(0 = \rho_0 < \rho_1 < \cdots < \rho_r = n \). Then

\[
\eta \tau \eta^{-1} = h_0(e^s) + \sum_{k=1}^{r} h_k(e^s) e^{-\rho_k s} \prod_{j=0}^{\rho_k-1} (D_s - (j + \frac{1}{2})).
\]
3 Main Results

The aim of this paper is to determine a new class of perturbations for \(\nu_0 \) which preserves its nullities. We now define the admissible perturbations of \(\nu_0 \).

Definition 3.1 Let \(\nu_0 \) be a differential expression of the form (11) satisfying (12). An admissible perturbation of \(\nu_0 \) is an expression \(\nu \) in \(\mathcal{L}_2([0, \infty)) \) of the form

\[
\nu = \sum_{j=0}^{n-1} h_j(s) D_j^s
\]

where \(h_j(s) \in C^j([0, \infty)) \) for every \(j \) satisfying:

AP1. For every \(i > j \) and for some finite \(C \geq 0 \), \(\left| \frac{h_i(s)}{h_j(s)} \right| \leq C \).

AP2. There exists a \(D > 0 \) such that

\[
sup_{x \leq x+1 \in [1, \infty)} \int_{\log x}^{\log(x+1)} e^s \left| \frac{h_i(s)}{q_j(s)} \right|^2 ds < D
\]

where \(0 < q_j(s) \in C^\infty([0, \infty)) \) for all \(j \) and \(q_j(s) = o(e^{5(j+1)s}) \) as \(s \to \infty \).

The functions \(q_j(s) \) are called auxiliary functions.

Theorem 3.2 Let \(\nu_0 \) be a differential expression of the form (11) satisfying (12), and let the coefficients \(b_k \) satisfy (3). If \(\nu \), of the form (16), is an admissible perturbation of \(\nu_0 \), then \(\sigma_e(\nu_0 + \nu) = \sigma_e(\nu_0) \).

Conditions AP1 and AP2 are sufficient to preserve the essential spectrum, as shown in [3], but not the nullity of \(\nu_0 \). We will now define conditions AP3, AP4, and AP5 for the admissible perturbation of the expression \(\nu_0 \) and prove that these conditions are sufficient to preserve the nullity of this expression.

We will consider expressions \(\nu \) of the form (16) satisfying:

AP3. For every \(i > j \), \(0 \leq k \leq j - b \) and for some finite \(\tilde{C} \geq 0 \), \(\left| \frac{h_{i+k}(s)}{h_j(s)} \right| \leq \tilde{C} \).

AP4. \(h_j^{(j-b)}(s) = sup_{0 \leq k \leq j-b} \{ h_j^{(k)}(s) \} \).

AP5. There exists a \(\tilde{D} > 0 \) such that

\[
sup_{x \leq x+1 \in [1, \infty)} \int_{\log x}^{\log(x+1)} e^s \left| \frac{h_j^{(j-b)}(s)}{q_b(s)} \right|^2 ds < \tilde{D}
\]

where \(b = 0, 1, \ldots, n - 1 \) and \(j = b, \ldots, n - 1 \) and \(q_b(s) \) are the auxiliary functions for the admissible perturbation \(\nu \) in Definition 3.1.
In the following lemma, we show that transforming ν under η results into an admissible perturbation of a special expression.

Lemma 3.3 Let ν_0 be a differential expression of the form (11) satisfying (12), and let the coefficients b_k satisfy (3). If ν is an admissible perturbation of ν_0 satisfying $AP3$, $AP4$, and $AP5$, then $\tau = \eta^{-1} \nu \eta$ is an admissible perturbation of $\tau_0 = \sum_{k=0}^{r} b_k t_k^{m_k} D_t^{m_k}$ satisfying (10) where $\alpha_k = \beta_k + \rho_k$.

Proof: We show that $\tau = \eta^{-1} \nu \eta = \sum_{j=0}^{n-1} r_j(t) D_t^j$ where $r_j(t) = \sum_{i=j}^{n-1} c_{ji} h_i(\log t) t^j$ satisfies (10). Note that,

$$r_j^{(m)}(t) = \sum_{i=j}^{n-1} c_{ji} [h_i(\log t) t^j]^{(m)} = \sum_{i=j}^{n-1} c_{ji} \sum_{k=0}^{m} J_{j,k}^{m} h_i^{(k)}(\log t) t^{j-m}$$

where c_{ji} and $J_{j,k}^{m}$ are constants. Since $r_j^{(m)}(t) = \sum_{i=j}^{n-1} c_{ji} \sum_{k=0}^{m} J_{j,k}^{m} h_i^{(k)}(\log t) t^{j-m}$, and taking the auxiliary functions $w_b(t) = q_b(\log t) t^b$, we have

$$\int_{x}^{x+1} \left| \frac{r_j^{(j-b)}(t)}{w_b(t)} \right|^2 dt = \int_{\log x}^{\log (x+1)} e^s \left| \sum_{i=j}^{n-1} c_{ji} \sum_{k=0}^{j-b} J_{j,k}^{m} h_i^{(k)}(s) \right|^2 ds, \quad \log t = s$$

$$\leq J^2 c^2 \int_{\log x}^{\log (x+1)} e^s \left\{ \sum_{i=j}^{n-1} \left| h_i^{(k)}(s) \right| q_b(s) \right\}^2 ds$$

where $J = \sup_{0 \leq k \leq j-b} \{ J_{j,k}^{j-b} \}$ and $c = \sup_{i \geq j} \{ c_{ji} \}$. From $AP3$, $\left| h_i^{(k)}(s) \right| \leq \bar{C} \left| h_j^{(k)}(s) \right|$, for $i > j$, and from $AP4$ $h_j^{(j-b)}(s) = \sup_{0 \leq k \leq j-b} \{ h_j^{(k)}(s) \}$. Thus,

$$\int_{x}^{x+1} \left| \frac{r_j^{(j-b)}(t)}{w_b(t)} \right|^2 dt < J^2 c^2 \int_{\log x}^{\log (x+1)} e^s \left\{ \bar{C} \sum_{i=j}^{n-1} \left| h_j^{(k)}(s) \right| q_b(s) \right\}^2 ds$$

$$= J^2 c^2 \bar{C} \int_{\log x}^{\log (x+1)} e^s \left\{ \sum_{i=j}^{n-1} \sum_{k=0}^{j-b} \left| h_j^{(k)}(s) \right| q_b(s) \right\}^2 ds$$

$$< J^2 c^2 \bar{C} \int_{\log x}^{\log (x+1)} e^s \left\{ \sum_{i=j}^{n-1} \sum_{k=0}^{j-b} \left| h_j^{(j-b)}(s) \right| q_b(s) \right\}^2 ds$$

$$= J^2 c^2 \bar{C} \int_{\log x}^{\log (x+1)} e^s \left\{ \left| h_j^{(j-b)}(s) \right| q_b(s) \right\}^2 ds$$

$$= J^2 c^2 \bar{C} (n-j)^2 (j-b+1) \int_{\log x}^{\log (x+1)} e^s \left| h_j^{(j-b)}(s) \right|^2 ds.$$
Letting $A = J^2c^2\tilde{C}^2(n - j)^2(j - b + 1)^2$, then taking the supremum of both sides on the interval $[x, x + 1] \subset [1, \infty)$, we get

$$\sup_{[x, x+1] \subset [1, \infty)} \int_x^{x+1} \left| \frac{r_j^{(j-b)}(t)}{w_b(t)} \right|^2 dt < A \sup_{[x, x+1] \subset [1, \infty)} \int_{\log x}^{\log(x+1)} e^s \left| \frac{h_j^{(j-b)}(s)}{q_b(s)} \right|^2 ds.$$

From AP5, for $b = 0, 1, ..., n - 1$ and $j = b, ..., n - 1$,

$$\sup_{[x, x+1] \subset [1, \infty)} \int_{\log x}^{\log(x+1)} e^s \left| \frac{h_j^{(j-b)}(s)}{q_b(s)} \right|^2 ds < \tilde{D}.$$

Taking $A\tilde{D} = \tilde{B}$, we have

$$\sup_{[x, x+1] \subset [1, \infty)} \int_x^{x+1} \left| \frac{r_j^{(j-b)}(t)}{w_b(t)} \right|^2 dt < \tilde{B}.$$

This proves the assertion.

From the above lemma, we have the main result

Theorem 3.4 Let ν_0 be a differential expression of the form (11) satisfying (12), and let the coefficients b_k satisfy (3). If ν is an admissible perturbation of ν_0 satisfying AP3, AP4, and AP5, then, for any $\lambda \in \mathbb{C} \setminus \sigma_e(\nu_0)$,

$$\text{nul}(\nu_0 + \nu - \lambda) = \text{nul}(\nu_0 - \lambda).$$

Acknowledgements. The authors acknowledge the support of the University of the Philippines.

References

Received: October 21, 2013