Lower Bounds for Blow-up Time of Porous Medium Equation with Nonlinear Flux on Boundary

Yan Hu1, Liangwei Wang and Xiaochun Chen

School of Math. Stat., Chongqing Three Gorges University
Wanzhou, China 404100

Key Laboratory for Nonlinear Science and System Structure
Chongqing Three Georges University

Copyright © 2013 Hu Yan, Liangwei Wang and Xiaochun Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate the lower bounds for the blow-up time of the non-negative solutions of porous medium equation with Neumann boundary conditions. We find that the blow-up time are bounded below by $t^* \geq \int_0^\infty \frac{d \eta}{\Gamma(\eta)}$ for some computable function $\Gamma(\eta)$.

Mathematics Subject Classification: 35K65, 74H40

Keywords: lower bounds; porous medium equation; blow-up

1 Introduction

In this paper we are concerned with the lower bounds for the blow-up time of solutions of following porous medium equation with nonlinear flux on the boundary,

$$u_t = \Delta u^m - f(u), \quad (x, t) \in \Omega \times (0, T), \quad (1.1)$$

$$\frac{\partial u^m}{\partial \nu} = g(u), \quad (x, t) \in \partial \Omega \times (0, T), \quad (1.2)$$

$$u(x, 0) = u_0(x), \quad x \in \Omega, \quad (1.3)$$

where $m > 1$, the nonnegative initial value $u_0(x) \in C(\Omega) \cap L^\infty(\Omega)$, Ω is a bounded star-shaped region convex in two orthogonal directions in \mathbb{R}^3 with the sufficiently smooth

1e-mail: huyan82@126.com This work are supported by NSFC, the Natural Science Foundation Project of “CQ CSTC” (cstc2012jjA00013), the Scientific and Technological Projects of Chongqing Municipal Commission of Education (KJ121105).
boundary \(\partial \Omega \), \(\nu \) is the unit normal vector on \(\partial \Omega \), \(T \) is the blow-up time if blow-up occurs, or else \(T = \infty \).

There is an extensive literature on the bounds for the blow-up time of solutions of porous medium equation with non-linear sources and its linear counterpart—the heat equation, see [1, 2, 3, 4, 5], for other interesting results, see [6, 7, 8]. A variety of methods have used to determine the blow-up of solutions often indicate an upper bound for the blow-up time. In practical situations, we need to know the lower bound. In 2007, Payne and Schaefer [9] considered an initial-boundary value problem for the semilinear heat equation whose solution may blow up in finite time. They use two different methods to determine the lower bounds on blow-up time if blow-up occurs. In 2010, Payne, Philippin and Vernier [10] considered a semilinear heat equation with nonlinear boundary condition (\(m = 1 \) in (1.1)), and establish conditions on nonlinearities sufficient to guarantee that \(u(x, t) \) exists for all time \(t > 0 \) as well as conditions on data forcing the solution \(u(x, t) \) to blow up at some finite time \(t^* \). When \(N = 1 \), the blow-up phenomena for the solutions of the porous medium equation with nonlinear flux on boundary had also been studied by several authors [10, 11]. In our pervious paper [11], we had found that if the absorption is more powerful than the nonlinear boundary-flux, then the solutions of the problem (1.1)–(1.3) exist all the time on the bounded star-shaped region, on the other hand, if the nonlinear boundary-flux is more powerful, then the solutions of the problem (1.1)–(1.3) blow-up on a finite time. Moreover, we had given the upper-bound estimates for the blow-up time.

Our interesting in this paper is to find the low-bound estimates of the blow-up time for Problem (1.1)–(1.3). Here we have used some ideas of [10, 11, 4]. Our main result is the following theorem.

Theorem 1.1. Let \(u(x, t) \) be the nonnegative solution of problem (1.1)–(1.3),

\[
\begin{align*}
 f(\xi) &\geq k_1 \xi^p, \xi \geq 0, \quad (1.4) \\
 0 &\leq g(\xi) \leq k_2 \xi^{1+\frac{p}{2}}, \xi \geq 0, \quad (1.5)
\end{align*}
\]

for some nonnegative constants \(k_1, k_2, \) with \(n \geq 1 \) and \(p > 1 \). If \(u(x, t) \) becomes unbounded in the \(\phi \) measure at some finite time \(T \), then \(T \) is bounded below by \(T \geq \int_{\phi(0)}^{\infty} \frac{d\eta}{c_1 \eta + c_2 \eta^2 + c_3 \eta^3} \) for \(p = n + 1 \) or by \(T \geq \int_{\phi(0)}^{\infty} \frac{d\eta}{c_1 \eta + c_2 \eta^2 + c_3 \eta^3} = \frac{1}{2c_1} \ln \left(1 + \frac{c_1}{c_3} \phi^{-2}(0) \right) \) for \(p < n + 1 \).

Remark 1.1. Note that \(u(x, t) \) exists all time when \(p > n + 1 \), see[2].

Clearly if \(f(u) \) satisfy (1.4) with \(k_1 > 0 \), then if blow-up occurs it will at a time later than that when \(f(u) = 0 \).

2 Proofs of Results

Proof. To begin with the proofs, we define the auxiliary function

\[
\phi(t) = \int_{\Omega} u^{2n} dx, \quad (2.6)
\]
which satisfies a first order differential inequality of the form $\phi'(t) \leq \Gamma(\phi)$ for some computable function $\Gamma(\phi)$. Making use of (1.1)-(1.3), (1.4)-(1.5) and divergence theorem, we obtain

$$
\phi'(t) = 2n \int_{\Omega} u^{2n-1}[\Delta u^m - f(u)]dx
= 2n \int_{\Omega} u^{2n-1} \Delta u^m dx - 2n \int_{\Omega} u^{2n-1} f(u)dx
\leq 2nk_2 \int_{\partial\Omega} u^\frac{n}{2} ds - \frac{2m(2n-1)}{n} \int_{\Omega} u^{m-1} |\nabla u^n|^2 dx - 2nk_1 \int_{\Omega} u^{2n+p-1} dx \tag{2.7}
\leq 2nk_2 \left\{ \frac{3}{\rho_0} \int_{\Omega} u^\frac{n}{2} dx + \frac{5nd}{2\rho_0} \int_{\Omega} u^\frac{n}{2} |\nabla u| dx \right\}
- \frac{2m(2n-1)M}{n} \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1 \int_{\Omega} u^{2n+p-1} dx
$$

with $\rho_0 = \min(x \cdot \nu)$, $d = \max_{\partial\Omega} |x|$ and M is the lower bound of function u^{m-1}. Inserting the following inequalities

$$
\int_{\Omega} u^\frac{n}{2} dx \leq \left(\int_{\Omega} u^\frac{3n}{2} dx \int_{\Omega} u^\frac{2n}{2} dx \right)^\frac{1}{2} \leq \frac{1}{2} \int_{\Omega} u^3 dx + \frac{1}{2} \int_{\Omega} u^2 dx,
$$

$$
\int_{\Omega} u^\frac{n+1}{2} |\nabla u| dx = \frac{1}{n} \int_{\Omega} u^\frac{n}{2} |\nabla u^n| dx \frac{1}{n} \left(\int_{\Omega} u^\frac{3n}{2} dx \int_{\Omega} |\nabla u^n|^2 dx \right)^\frac{1}{2}
 \leq \frac{1}{2\mu} \int_{\Omega} u^3 dx + \frac{\mu}{2n^2} \int_{\Omega} |\nabla u^n|^2 dx,
$$

and $\int_{\Omega} u^{2n+p-1} dx \geq |\Omega|^\frac{1-p}{2n} \phi^{1+\frac{n-1}{2n}}$ in (2.7), we obtain

$$
\phi'(t) \leq \frac{6nk_2}{\rho_0} \left(\frac{1}{2} \int_{\Omega} u^3 dx + \frac{1}{2} \int_{\Omega} u^2 dx \right) + \frac{5n^2dk_2}{\rho_0} \left(\frac{1}{2\mu} \int_{\Omega} u^3 dx + \frac{\mu}{2n^2} \int_{\Omega} |\nabla u^n|^2 dx \right)
- \frac{2m(2n-1)M}{n} \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1 |\Omega|^\frac{1-p}{2n} \phi^{1+\frac{n-1}{2n}}
= \left(\frac{3nk_2}{\rho_0} + \frac{5n^2dk_2}{2\rho_0} \right) \int_{\Omega} u^3 dx + \frac{3nk_2}{\rho_0} \int_{\Omega} u^2 dx
+ \left(\frac{5d\mu k_2}{2\rho_0} - \frac{2m(2n-1)M}{n} \right) \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1 |\Omega|^\frac{1-p}{2n} \phi^{1+\frac{n-1}{2n}}
= \frac{3nk_2}{\rho_0} \phi + \frac{nk_2}{\rho_0} \left(3 + \frac{5nd}{2\mu} \right) \int_{\Omega} u^3 dx
+ \left(\frac{5\mu k_2}{2\rho_0} - \frac{2m(2n-1)M}{n} \right) \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1 |\Omega|^\frac{1-p}{2n} \phi^{1+\frac{n-1}{2n}} \tag{2.8}
$$
for \(\mu > 0 \) to be chosen. Next we use of the following Sobolev type inequality deduced by Payne and Shafer in [18],

\[
\int_{\Omega} u^{3n} dx \leq \frac{\sqrt{2}}{3^3} \left\{ \left(\frac{3}{2\rho_0} \right)^{\frac{3}{4}} \phi^{\frac{3}{4}} + \left(\frac{d}{\rho_0} + 1 \right)^{\frac{3}{4}} \left(\int_{\Omega} |\nabla u^n|^2 dx \right)^{\frac{3}{4}} \right\}
\]

(2.9)

valid for a bounded star-shaped region \(\Omega \) in \(\mathbb{R}^3 \) assumed to be convex in two orthogonal directions and for \(\lambda > 0 \). Combining (2.8) and (2.9), we obtain

\[
\phi'(t) \leq \frac{6n^2k_2}{\rho_0} \left(\frac{1}{2} \int_{\Omega} u^{3n} dx + \frac{1}{2} \int_{\Omega} u^{2n} dx \right) + \frac{5n^2d^2k_2}{\rho_0} \left(\frac{1}{2\mu} \int_{\Omega} u^{3n} dx + \frac{\mu}{2n^2} \int_{\Omega} |\nabla u^n|^2 dx \right) - 2m(2n-1)M \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1|\Omega|^{\frac{1-p}{2n}} \phi^{1+\frac{p-1}{2n}}
\]

(2.10)

\[
= \left(\frac{3nk_2}{\rho_0} + \frac{5n^2d^2k_2}{2\rho_0} \right) \int_{\Omega} u^{3n} dx + \frac{3nk_2}{\rho_0} \int_{\Omega} u^{2n} dx + \frac{5n^2d^2k_2}{2\rho_0} \int_{\Omega} \frac{2m(2n-1)M}{n} \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1|\Omega|^{\frac{1-p}{2n}} \phi^{1+\frac{p-1}{2n}}
\]

\[
\leq \frac{3nk_2}{\rho_0} \phi + \frac{n^2k_2}{\rho_0} \left(\frac{3}{2\mu} \right) \left(\frac{5n^2d^2k_2}{\rho_0} \right) \left(\frac{\phi^{\frac{3}{4}}}{3^3} \phi^{\frac{3}{4}} + \left(\frac{d}{\rho_0} + 1 \right)^{\frac{3}{4}} \left(\int_{\Omega} |\nabla u^n|^2 dx \right)^{\frac{3}{4}} \right) + \frac{5n^2d^2k_2}{2\rho_0} \int_{\Omega} \frac{2m(2n-1)M}{n} \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1|\Omega|^{\frac{1-p}{2n}} \phi^{1+\frac{p-1}{2n}}
\]

(2.10)

for nonnegative constants \(c_i \) given by

\[
c_1 = \frac{3nk_2}{\rho_0}, \quad c_2 = \frac{3^n k_2}{2\rho_0^2} \left(\frac{3}{2\mu} \right) \left(3 + \frac{5n^2d}{\rho_0} \right), \quad c_3 = \frac{n^2k_2}{3^3 2^4 \rho_0^2 \lambda^3} \left(3 + \frac{5n^2d}{\rho_0} \right) \left(\frac{d}{\rho_0} + 1 \right)^{\frac{3}{2}}
\]

\[
c_4 = \frac{3^n k_2 n \lambda}{2^2 \rho_0^2} \left(3 + \frac{5n^2d}{\rho_0} \right) \left(\frac{d}{\rho_0} + 1 \right)^{\frac{3}{2}} + \frac{5n^2d^2k_2}{2\rho_0} \int_{\Omega} \frac{2m(2n-1)M}{n} \int_{\Omega} |\nabla u^n|^2 dx - 2nk_1|\Omega|^{\frac{1-p}{2n}} \phi^{1+\frac{p-1}{2n}}
\]

For \(\mu > 0 \) small enough, we then choose \(\lambda > 0 \) such that \(c_4 = 0 \) and we can obtain

\[
\phi'(t) \leq c_1 \phi + c_2 \phi^{\frac{3}{4}} + c_3 \phi^{\frac{3}{2}} - 2nk_1|\Omega|^{\frac{1-p}{2n}} \phi^{1+\frac{p-1}{2n}}.
\]

(2.11)
In the particular case \(p = n + 1 \), (2.11) then reduces to
\[
\phi'(t) \leq c_1 \phi + \tilde{c}_2 \phi^\frac{3}{2} + c_3 \phi^3
\]
\[
(2.12)
\]
with \(\tilde{c}_2 = c_2 - 2nk_1|\Omega|^{-\frac{1}{2}} \geq 0 \). From (2.12) we obtain that \(T \) is bounded below by
\[
T \geq \int_{\phi(0)}^{\infty} \frac{d\eta}{c_1 \eta + \tilde{c}_2 \eta^{\frac{3}{2}} + c_3 \eta^3}.
\]
\[
(2.13)
\]
If \(p < n + 1 \) we eliminate the last term in (2.11) by using the following inequality
\[
\phi^3 = \left(\varepsilon \phi^{1+\frac{n-1}{2n}} \right)^{\frac{3n}{4n+1-p}} \left(\phi^3 \varepsilon^{\frac{3n}{p-n-1}} \right)^{\frac{n+1-p}{4n+1-p}}
\]
\[
\leq \frac{3n\varepsilon}{4n + 1 - p} \phi^{1+\frac{n-1}{2n}} + \frac{n+1-p}{4n + 1 - p} \varepsilon^{\frac{3n}{p-n-1}} \phi^3
\]
\[
(2.14)
\]
valid for \(\varepsilon > 0 \), and let \(\varepsilon \) such that \(\frac{3n}{4n + 1 - p} c_2 - 2k_1|\Omega|^{\frac{1-p}{2m}} = 0 \). By the argument above we obtain \(\phi'(t) \leq c_1 \phi + \tilde{c}_3 \phi^3 \) with \(\tilde{c}_3 = c_3 + c_2 \frac{n+1-p}{4n+1-p} \varepsilon^{\frac{3n}{p-n-1}} \), from which we obtain that \(T \) is bounded below by
\[
T \geq \int_{\phi(0)}^{\infty} \frac{d\eta}{c_1 \eta + \tilde{c}_3 \eta^3} = \frac{1}{2c_1} \ln \left(1 + \frac{c_1}{\tilde{c}_3} \phi^{-2}(0) \right).
\]

So we complete the proof of our main theorem. \(\square \)

References

Received: September 1, 2013