Some Interpolation Problem for an \(F\)-space

Takahiko Nakazi

Hokusei Gakuen University
Atsubetsu-ku, Sapporo, 004-8631, Japan
z00547@hokusei.ac.jp

Copyright © 2013 Takahiko Nakazi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Some interpolation problem is studied for an \(F\)-space. This generalizes a known result of an \(\ell^1\)-interpolation problem for a Banach space. Then there is an application for Smirnov class and Arens-Hardy space.

Mathematics Subject Classification: Primary 32A35, 46J15

Keywords: Interpolation, \(\ell^1\), \(F\)-space, Hardy space, Smirnov class

§1 Introduction

Let \(B\) be an \(F\)-space with an invariant metric \(d_B\) and \(B^*\) its dual space. Throughout this paper, we assume \(d_B\) satisfies the following conditions : (1) When \(\alpha, \beta \in \mathbb{C}\) and \(f\) is nonzero in \(B\), \(d_B(\alpha f, 0) > d_B(\beta f, 0)\) if and only if \(|\alpha| > |\beta|\). (2) \(d_B(\alpha f, 0)\) is continuous with respect to \(\alpha \in \mathbb{C}\) for each \(f\) in \(B\).

We assume that \((\phi_n)\) is an infinite sequence of distinct points in \(B^*\). Let \(\ell\) be a sequence space of \((w_n)\) where \(w_n \in \mathbb{C}\). A sequence \((\phi_n)\) is called \(\ell\)-interpolating if for every sequence \((w_n)\) in \(\ell\) there exists an element \(f\) in \(B\) such that \(\phi_n(f) = w_n\) for all \(n\). For \((\phi_n)\) in \(B^*\) put

\[J = \{ f \in B : f = 0 \text{ on } (\phi_k) \}, \]

\[J_n = \{ f \in B : f = 0 \text{ on } (\phi_k)_{k \neq n} \}, \]
and

\[\rho_n = \sup\{|\phi_n(f)| : f \in J_n, d_B(f, 0) \leq 1\} \]

Then \(0 \leq \rho_n \leq \infty \). In general, \(\rho_n > 0 \) if and only if \(J_n \neq J \). Hence \(0 < \rho_n \leq \infty \) if and only if there exists an element \(f_n \) in \(B \) such that \(\phi_k(f_n) = \delta_{kn} \). In this paper, we assume that \(\rho_n \neq 0 \) for all \(n \) and so \(J_n = \langle f_n \rangle + J \). For each \(\alpha \) in \(\mathbb{C} \), put

\[\varepsilon^B_n(\alpha) = \frac{d_B(\alpha f_n + J, 0)}{d_B(f_n + J, 0)} \quad (n = 1, 2, \ldots). \]

Then \(\varepsilon^B_n(1) = 1 \) and \(\varepsilon^B_n(0) = 0 \). We define \(\varepsilon^B_n(\infty) \) as the following : \(\varepsilon^B_n(\infty) = \sup_{\alpha \in \mathbb{C}} \varepsilon^B_n(\alpha) \).

For \((\phi_n) \) in \(B^* \), put

\[\ell_B(\phi_n) = \{ (w_n) : \sum_{n=1}^{\infty} \varepsilon^B_n(w_n) < \infty \} \]

We define a metric \(D_{\ell_B} \) on \(\ell_B(\phi_n) \) as \(D_{\ell_B}(u, v) = \sum_{n=1}^{\infty} \varepsilon^B_n(u_n - v_n) \) where \(u = (u_n) \) and \(v = (v_n) \). Then by the definition of \(\varepsilon^B_n \), \(D_{\ell_B} \) is an invariant metric and \(D_{\ell_B}((\delta_{kn}), 0) = 1 \) for any \(k \geq 1 \). If \(0 < p \leq 1 \) and \(d_B(\alpha f, 0) = |\alpha|^p d(f, 0) \) \((f \in B) \) then \(\ell_B(\phi_n) = \ell^p \). If \(B \) is a Banach space then \(\ell_B(\phi_n) = \ell^1 \).

In this paper, we give a necessary and sufficient condition for an \(\ell_B(\phi_n) \)-interpolation problem. In the previous paper [3] and [4], the problem have been solved. Unfortunately it has not solved when \(\ell_B(\phi_n) \neq \ell^p \) \((0 < p \leq 1) \).

§2 A general theorem for an \(F \)-space

In this section, we give a necessary and sufficient condition for \(\ell_B(\phi_n) \)-interpolating sequence when \(\ell_B(\phi_n) \) is an \(F \)-space. See [5, p8] about the definition of boundedness in a topological vector space.

Lemma 1. If \((\phi_n) \) is an \(\ell_B(\phi_n) \)-interpolating sequence then \(\sup_n d_B(f_n + J, 0) < \infty \).

Proof. Put \(S = (\phi_n) \). For \((w_n) \in \ell_B(\phi_n) \), put

\[T(w_n) = \sum_{n=1}^{\infty} w_n(f_n \mid S) \]

then by the hypothesis there exists \(f \) in \(B \) such that \(T(w_n) = f \mid S \). We put the metric of \(B/J \) on \(B \mid S \). By the closed graph theorem, \(T \) is bounded from \(\ell_B(\phi_n) \) to \(B \mid S \).
Set \(E = \{ (\delta_{kn}) \in \ell_B(\phi_n) : k = 1, 2, \ldots \} \subset \ell_B(\phi_n) \). Then \(E \) is a bounded set in \(\ell_B(\phi_n) \) because \(D\ell_B(\delta_{kn}),0) = 1 \). Hence \(TE \) is also a bounded set in \(B \mid_S \) because \(T \) is bounded. Thus \(\{ f_k \mid S : k = 1, 2, \ldots \} \) is a bounded set and so \(\sup_k d_B(f_k + J,0) < \infty \).

Lemma 2. If \(\sup_n d_B(f_n + J,0) < \infty \) then \((\phi_n) \) is an \(\ell_B(\phi_n) \)-interpolating sequence.

Proof. Suppose \(\gamma = \sup_n d_B(f_n + J,0) < \infty \) and \((w_n) \in \ell_B(\phi_n) \). For each \(n \) there exists \(g_n \) in \(J \) such that \(d_B(w_n(f_n + g_n),0) \leq d_B(w_nf_n + J,0) + 2^{1-n} \).

Put \(f^{(\ell)} = \sum_{n=1}^{\ell} w_n(f_n + g_n) \) then \(f^{(\ell)} \in B \) and for \(\ell \geq k + 1 \)

\[
d_B(f^{(\ell)} - f^{(k)},0) \leq \sum_{n=k+1}^{\ell} d_B(w_n(f_n + g_n),0) \leq \sum_{n=k+1}^{\ell} \{ d_B(w_nf_n + J,0) + 2^{1-n} \} = \sum_{n=k+1}^{\ell} \varepsilon_n^B(w_n) d_B(f_n + J,0) + \sum_{n=k+1}^{\ell} 2^{1-n} \leq \gamma \sum_{n=k+1}^{\ell} \varepsilon_n^B(w_n) + 2(2^{-k} - 2^{-\ell}).
\]

This shows that \(\{ f^{(\ell)} \} \) is a Cauchy sequence in \(B \) and so \(f = \lim_{\ell \to \infty} f^{(\ell)} \) belongs to \(B \) because \(B \) is an \(F \)-space. Then for each \(n \),

\[
\phi_n(f) = \lim_{\ell \to \infty} \phi_n(f^{(\ell)}) = w_n\phi_n(f_n) = w_n
\]

because \(\phi_n(f_k) = \delta_{nk} \). This shows \((\phi_n) \) is an \(\ell_B(\phi_n) \)-interpolating sequence.

Lemma 3. Suppose \(\ell_B(\phi_n) \) is an \(F \)-space. \((\phi_n) \) is an \(\ell_B(\phi_n) \)-interpolating sequence if and only if \(\sup_n d_B(f_n + J,0) < \infty \).

Proof. Lemmas 1 and 2 show this lemma.

For each \(n \), put

\[
\kappa_n = \sup_{f \in J_n} d_B(f,0).
\]

In general, \(0 < \kappa_n \leq \infty \). When \(\kappa_n = \infty \), \(\rho_n < \infty \). When \(\kappa_n < \infty \), two cases may happen. That is, if \(\kappa_n \leq 1 \) then \(\rho_n = \infty \) and if \(\kappa_n > 1 \) then \(\rho_n < \infty \). If \(\kappa_n = \infty \) then by the hypothesis (2) on \(d_B \) there exists \(0 < \alpha_n < \infty \) such that \(d_B(\alpha_n f_n + J,0) = 1 \).

Lemma 4. If \(\kappa_n > 1 \) then \(d_B(f_n + J,0) = 1/\varepsilon_n^B(\rho_n) \). If \(\kappa_n \leq 1 \) then \(d_B(f_n + J,0) = \kappa_n/\varepsilon_n^B(\rho_n) \).

Proof. If \(\kappa_n > 1 \) then \(\rho_n < \infty \). By the definition of \(\rho_n \) and the hypothesis (2) on \(d_B \), there exist \(\alpha_{nj} \) in \(\mathbb{C} \) such that \(d_B(\alpha_{nj}f_n + J,0) \leq 1 \) and \(|\alpha_{nj}| \nearrow \rho_n \) \((j \to \infty) \). By \(\kappa_n > 1 \) and the hypothesis (2) on \(d_B \), there exists \(\alpha_n \in \mathbb{C} \)
such that \(d_B(\alpha_n f_n + J, 0) = 1 \). By the hypothesis (1) on \(d_B \) and the definition of \(\rho_n, |\alpha_n| \leq |\alpha| \leq \rho_n \) and so \(|\alpha| = \rho_n \). Hence \(d_B(f_n + J, 0) = 1/\varepsilon_n^B(\rho_n) \).

Suppose \(\kappa_n \leq 1 \). Then \(\rho_n = \infty \) and so by definition \(\varepsilon_n^B(\rho_n) = \sup_{\alpha \in \mathbb{C}} d(\alpha f_n + J, 0)/d(f_n + J, 0) \). Since \(\sup_{\alpha \in \mathbb{C}} d(\alpha f_n + J, 0) = \sup_{f \in J_n} d(f, 0) = \kappa_n, \varepsilon_n^B(\rho_n) = \kappa_n \).

Lemma 5. A sequence space \(\ell_B(\phi_n) \) is an \(F \)-space.

Proof. Let \(w^k = (w^k_n) \) be a Cauchy sequence in \(\ell_B(\phi_n) \). Then for any \(n \)

\[
\varepsilon_n^B(w^k_n - w^\ell_n) \leq \sum_{j=1}^{\infty} \varepsilon_j^B(w^k_j - w^\ell_j) = D_{\ell_B}(w^k - w^\ell) \to 0 \quad (k, \ell \to \infty).
\]

Then there exists \(w_n \in \mathbb{C} \) such that \(\lim_{k \to \infty} w^k_n = w_n \) because \(d_B \) satisfies the condition (1) and (2) in Introduction. Put \(w = (w_n) \) then we can prove that \(w \in \ell_B(\phi_n) \) and \(D_{\ell_B}(w^k - w) \to 0 \) as \(k \to \infty \) by a familiar argument.

Theorem 1. Then \((\phi_n)\) is an \(\ell_B(\phi_n) \)-interpolating sequence if and only if \(\inf_n \varepsilon_n^B(\rho_n) > 0 \).

Proof. It is a result of Lemmas 3, 4 and 5.

Corollary 1. Suppose \(d_B(\alpha f, 0) = |\alpha|^p d_B(f, 0) \) for some \(0 < p \leq 1 \). Then \(\varepsilon_n^B(\rho_n) = \rho_n^p \) for \(n = 1, 2, \ldots \). Hence \((\phi_n)\) is an \(\ell^p \)-interpolating sequence if and only if \(\inf_n \rho_n > 0 \).

Proof. If \(d_B(\alpha f, 0) = |\alpha|^p d_B(f, 0) \), then \(\varepsilon_n^B(\alpha) = |\alpha|^p \) and so \(\ell_B(\phi_n) = \ell^p \). Hence by Theorem 1, \((\phi_n)\) is an \(\ell^p \)-interpolating sequence if and only if \(\inf_n \rho_n^p > 0 \).

§3 Concrete examples

Let \(D \) be the open unit disc in \(\mathbb{C} \) and \(H(D) \) the set of all holomorphic functions on \(D \). For \((a_n) \) in \(D \) with \(\sum_{n=1}^{\infty} (1 - |a_n|) < \infty \), put \(\phi_n(f) = f(a_n) \) \((f \in H(D))\). For \(1 \leq n < \infty \), put

\[
B_n(z) = \prod_{j \neq n,j=1}^{\infty} \frac{\bar{a}_j z - a_j}{a_j - \bar{a}_j z} \text{ and } f_n(z) = B_n(z)/B_n(a_n)
\]

then \(\phi_j(f_n) = f_n(a_j) = \delta_{nj} \) and \(f_n \) belongs to \(H(D) \) and it is bounded.

For \(0 < p \leq \infty \), \(H^p(D) \) denotes the usual Hardy space on \(D \) and put

\[
\|f\|_p^p = \int_{0}^{2\pi} |f(e^{i\theta})|^p d\theta/2\pi \quad (f \in H^p(D)).
\]
$N_+(D)$ denotes the Smirnov class on D and then

$$d_{N_+}(f, g) = \int_0^{2\pi} \log(1 + |f(e^{i\theta}) - g(e^{i\theta})|)d\theta/2\pi$$

is an invariant metric on $N_+(D)$ (see [6]). $H_\omega(D) = \bigcap_{p \geq 1} H^p(D)$ is called the Arens-Hardy algebra and $H_\omega(D) \supseteq H^\infty(D)$. Then

$$d_{H_\omega}(f, g) = \sum_{p=1}^{\infty} 2^{-p} \frac{\|f - g\|_p}{1 + \|f - g\|_p}$$

is an invariant metric on $H_\omega(D)$ (see [1]).

Theorem 2. Suppose $B = N_+(D)$ or $H_\omega(D)$. Then (ϕ_n) is an $\ell_B(\phi_n)$-interpolating sequence if and only if $\inf_n \epsilon^B_n(\rho_n) > 0$.

Proof. Since d_B satisfies the condition (1) and (2) in Introduction, Lemma 5 and Theorem 1 show the theorem.

§4. $\epsilon^B_n(\rho_n)$ and $\ell_B(\phi_n)$ for $B = H_\omega(D)$.

Lemma 6. We may assume $\alpha \neq 0$. Let α be a complex constant and n a natural number

$$d_{H_\omega}(\alpha f_n + J, 0) = \frac{|\alpha|}{|\alpha| + |B_n(a_n)|}$$

Proof. For any $g \in J$

$$d_{H_\omega}(\alpha f_n + g, 0) = \sum_{p=1}^{\infty} 2^{-p} \frac{|\alpha|\|B_n/B_n(a_n) + g/\alpha\|_p}{1 + |\alpha|\|B_n/B_n(a_n) + g/\alpha\|_p}$$

and

$$d_{H_\omega}(\alpha f_n, 0) = \frac{|\alpha|}{|B_n(a_n)| + |\alpha|}.$$

Since $g = Bh$ for some $h \in H^p$, $\|B_n/B_n(a_n) + g\|_p = \|B_n(a_n)h\|_p/|B_n(a_n)|$ and so

$$\inf_{g \in J} \frac{B_n}{B_n(a_n)} + g\|_p = \frac{1}{|B_n(a_n)|}.$$

Hence

$$d_{H_\omega}(\alpha f_n + J, 0) \geq \frac{|\alpha|}{|B_n(a_n)| + |\alpha|}$$

because $x/(1 + x)$ is increasing on $(-1, \infty)$. This shows the lemma.
Lemma 7. For $B = H^\omega$, $\kappa_n = 1$ for any n.
Proof. Since $\kappa_n = \sup d_{H^\omega}(f + J_n, 0)$, by Lemma 6 $\kappa_n = 1$.

Theorem 3. For $B = H^\omega$, the following are valid.
(1) $\varepsilon_n^B(\rho_n) = 1 + |B_n(a_n)|$.
(2) $\ell_B(\phi_n) = \{(w_n) : \sum_{n=1}^{\infty} |w_n|(1 + |B_n(a_n)|)/(|w_n| + |B_n(a_n)|) < \infty\}$.
Proof. By Lemma 6, for $\alpha \in \mathbb{C}$
$$\varepsilon_n^B(\alpha) = \frac{|\alpha|(1 + |B_n(a_n)|)}{|\alpha| + |B_n(a_n)|}.$$ Since $\rho_n = \infty$ and $\varepsilon_n^B(\alpha)$ is increasing on $|\alpha| < \infty$, (1) is shown. (2) is clear.

By Theorem 2 and (1) of Theorem 3, if $\sum_{n=1}^{\infty} (1 - |a_n|) < \infty$ then (ϕ_n) is always an $\ell_B(\phi_n)$-interpolating sequence for $B = H^\omega$.

§5. $\varepsilon_n^B(\rho_n)$ and $\ell_B(\phi_n)$ for $B = N_+(D)$

Put $\gamma(a) = \sup\{|f(a)| : f \in N_+(D), d_{N_+}(f, 0) \leq 1\}$.

Lemma 8. Let $B = N_+(D)$, then $\rho_n = \gamma(a_n) \prod_{j=1}^{\infty} |B_j(a_j)|$ for $n = 1, 2, \ldots$.
Proof. It is proved essentially in [2, Lemma 3.1].

By the definition, $f_n = B_n/B_n(a_n)$ and $J = B_n(z)\frac{z - a_n}{1 - \bar{a}_n z}N_+$. Hence by Lemma 6,
$$\inf_{g \in J} \int_0^{2\pi} \log(1 + |\alpha||f_n(e^{i\theta}) + g(e^{i\theta})|) d\theta / 2\pi$$
$$= \inf_{g \in J} \int_0^{2\pi} \log \left(1 + \frac{|\alpha|}{|B_n(a_n)|} |B_n(e^{i\theta}) + g(e^{i\theta})| \right) d\theta / 2\pi$$
$$= \inf_{g \in N_+} \int_0^{2\pi} \log \left(1 + \frac{|\alpha|\gamma(a_n) |1 - \bar{a}_n e^{i\theta} + G(e^{i\theta})|}{\rho_n} \right) d\theta / 2\pi.$$

Conjecture. If α and a are complex numbers with $\alpha \geq 0$ and $|a| < 1$, then
$$\inf_{g \in N_+} \int_0^{2\pi} \log \left(1 + \alpha \frac{|1 - \bar{a}_n e^{i\theta} + g(e^{i\theta})|}{e^{i\theta} - a} \right) d\theta / 2\pi = \log(1 + \alpha)$$
and so
$$\varepsilon_n^{N_+}(\alpha) = \log(1 + |\alpha|\gamma(a_n)/\rho_n) / \log(1 + \gamma(a_n)/\rho_n).$$
Hence if we could prove ‘Conjecture’ then \((\phi_n)\) is an \(\ell_{N+}(\phi_n)\)-interpolating sequence if and only if
\[
\inf_n \frac{\log(1 + \gamma(a_n))}{\log(1 + \gamma(a_n)/\rho_n)} > 0.
\]

We could not prove ‘Conjecture’ but we would like to know the infimum above.

It is easy to say that \(\gamma(a) \to \infty\) as \(|a| \to 1\) and \(\gamma(a) \leq \exp 2/(1-|a|)+1\) \((a \in D)\). Suppose \(\gamma_n = \gamma(a_n)\) and \(|a_n| \to 1\) as \(n \to \infty\). Then there exist \(\delta > 1\) and \(n_0\) such that \(\gamma_n^{1-\delta} \leq 2\rho_n\) \((n \geq n_0)\) if and only if \(\inf_n \log(1+\gamma_n)/\log(1+\gamma_n/\rho_n) > 0\).

In fact if \(\varepsilon = \inf_n \log(1 + \gamma_n)/\log(1 + \gamma_n/\rho_n)\) and \(\varepsilon > 0\) then \(1 + \gamma_n \geq (1 + \gamma_n/\rho_n)^{\varepsilon}\). Hence
\[
1 + \frac{1}{\gamma_n} \geq \left(\frac{1}{\gamma_n^{1/\varepsilon}} + \frac{1}{\gamma_n^{1/\varepsilon}}\right)^{\varepsilon}.
\]

and so \(\lim_{n \to \infty} \gamma_n^{1-\frac{1}{\varepsilon}}/\rho_n \leq 1\). Therefore there exist \(\delta > 1\) and \(n_0\) such that \(\gamma_n^{1-\delta} \leq 2\rho_n\) \((n \geq n_0)\). Conversely if there exist \(\delta > 1\) and \(n_0\) such that \(\gamma_n^{1-\delta} \leq 2\rho_n\) \((n \geq n_0)\) then by L’Hospital’s theorem
\[
\frac{\log(1 + \gamma_n)}{\log(1 + \frac{\gamma_n}{\rho_n})} \geq \frac{\log(1 + \gamma_n)}{\log(1 + 2\gamma_n^{\delta})} \geq \frac{1}{\delta}.
\]

References

1. R. Arens, The space \(L^\omega\) and convex topological rings, Bull. Amer. Math. Soc. 52(1946), 931-935.

Received: August 1, 2013