A Note on the Symmetric Properties
for the Tangent Polynomials

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2013 C. S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In [4], we studied the tangent numbers and polynomials. By using these numbers and polynomials, we give some interesting relations between the power sums and the tangent polynomials.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: tangent numbers and polynomials, power sums

1 Introduction

Tangent numbers and polynomials possess many interesting properties and arising in many areas of mathematics and physics. In [4], we introduced the tangent numbers and polynomials. In this paper, by using the symmetry of p-adic integral on \mathbb{Z}_p, we give recurrence identities the tangent polynomials and the power sums.

Throughout this paper, let p be a fixed odd prime number. The symbol, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. As well known definition, the p-adic absolute value is given by $|x|_p = p^{-r}$ where $x = p^r t^s$ with $(t, p) = (s, p) = (t, s) = 1$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. In this paper we assume
that $q \in \mathbb{C}_p$ with $|1 - q|_p < 1$. We assume that $UD(\mathbb{Z}_p)$ is the space of the uniformly differentiable function on \mathbb{Z}_p. For $g \in UD(\mathbb{Z}_p)$, the fermionic p-adic invariant integral on \mathbb{Z}_p is defined by Kim as follows:

$$I_{-1}(f) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^{N-1}} f(x)(-1)^x,$$

see [1, 2, 3, 4]. \hfill (1.1)

For $n \in \mathbb{N}$, let $g_n(x) = g(x + n)$ be translation. As well known equation, by (1.1), we have

$$\int_{\mathbb{Z}_p} g(x + n)d\mu_{-1}(x) = (-1)^n \int_{\mathbb{Z}_p} g(x)d\mu_{-1}(x) + 2 \sum_{l=0}^{n-1} (-1)^{n-1-l}g(l). \hfill (1.2)$$

In [4], we introduced the tangent numbers T_n and polynomials $T_n(x)$ and investigate their properties. Let us define the tangent numbers T_n and polynomials $T_n(x)$ as follows:

$$I_{-1}(e^{2yt}) = \int_{\mathbb{Z}_p} e^{2yt} d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_n \frac{t^n}{n!}, \hfill (1.3)$$

$$I_{-1}(e^{(2y+x)t}) = \int_{\mathbb{Z}_p} e^{(2y+x)t} d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_n(x) \frac{t^n}{n!}. \hfill (1.4)$$

The following elementary properties of the tangent numbers T_n and polynomials $T_n(x)$ are readily derived form (1.3) and (1.4)(see, for details, [4]).

Theorem 1.1 For any positive integer n, we have

$$\int_{\mathbb{Z}_p} (2x)^n d\mu_{-1}(x) = T_n, \quad \int_{\mathbb{Z}_p} (2y + x)^n d\mu_{-1}(y) = T_n(x).$$

Theorem 1.2 For any positive integer n, we have

$$T_n(x) = \sum_{k=0}^{n} \binom{n}{k} T_k x^{n-k}.$$

2 The alternating sums of powers of consecutive even integers

By using (1.3), we give the alternating sums of powers of consecutive even integers as follows:

$$\sum_{n=0}^{\infty} T_n \frac{t^n}{n!} = \frac{2}{e^{2t} + 1} = 2 \sum_{n=0}^{\infty} (-1)^n e^{2nt}.$$
From the above, we obtain
\[-\sum_{n=0}^{\infty}(-1)^ne^{(2n+2k)t} + \sum_{n=0}^{\infty}(-1)^{n-k}e^{2nt} = \sum_{n=0}^{k-1}(-1)^{n-k}e^{2nt}. \]

By using (1.3) and (1.4), we obtain
\[-\frac{1}{2}\sum_{j=0}^{\infty}T_j(2k)\frac{t^j}{j!} + \frac{1}{2}(-1)^{-k}\sum_{j=0}^{\infty}T_j\frac{t^j}{j!} = \sum_{j=0}^{\infty}\left((-1)^{-k}\sum_{n=0}^{k-1}(-1)^{n}(2n)^j\right)\frac{t^j}{j!}.\]

By comparing coefficients of \(\frac{t^j}{j!}\) in the above equation, we obtain
\[2\sum_{n=0}^{k-1}(-1)^{n}(2n)^j = (-1)^{k+1}T_j(2k) + T_j.\]

By using the above equation we arrive at the following theorem:

\textbf{Theorem 2.1} Let \(k\) be a positive integer. Then we obtain
\[T_j(k-1) = \sum_{n=0}^{k-1}(-1)^n(2n)^j = \frac{(-1)^{k+1}T_j(2k) + T_j}{2}.\]

3 The symmetry property of the deformed fermionic integral on \(\mathbb{Z}_p\)

In this section, we obtain recurrence identities the tangent polynomials and the alternating sums of powers of consecutive even integers. If \(n\) is odd from (1.2), we obtain
\[I_{-1}(g_n) + I_{-1}(g) = 2\sum_{k=0}^{n-1}(-1)^{n-1-k}g(k) \text{ (see [1], [2], [3], [5]).} \quad (3.1)\]

It will be more convenient to write (3.1) as the equivalent integral form
\[\int_{\mathbb{Z}_p} g(x + n)d\mu_{-1}(x) + \int_{\mathbb{Z}_p} g(x)d\mu_{-1}(x) = 2\sum_{k=0}^{n-1}(-1)^{n-1-k}g(k). \quad (3.2)\]

Substituting \(g(x) = e^{2xt}\) into the above, we have
\[\int_{\mathbb{Z}_p} e^{(2x+2n)t}d\mu_{-1}(x) + \int_{\mathbb{Z}_p} e^{2xt}d\mu_{-1}(x) = 2\sum_{j=0}^{n-1}(-1)^je^{(2j)t}. \quad (3.3)\]
After some elementary calculations, we obtain

\[
\int_{\mathbb{Z}_p} e^{2xt} d\mu_{-1}(x) = \frac{2}{e^{2t}+1}, \quad \int_{\mathbb{Z}_p} e^{(2x+2n)t} d\mu_{-1}(x) = e^{2nt} \frac{2}{e^{2t}+1}. \tag{3.4}
\]

By using (3.3) and (3.4), we have

\[
\int_{\mathbb{Z}_p} e^{(2x+2n)t} d\mu_{-1}(x) + \int_{\mathbb{Z}_p} e^{2xt} d\mu_{-1}(x) = \frac{2(1 + e^{2nt})}{e^{2t}+1}.
\]

From the above, we get

\[
\int_{\mathbb{Z}_p} e^{(2x+2n)t} d\mu_{-1}(x) + \int_{\mathbb{Z}_p} e^{2xt} d\mu_{-1}(x) = \frac{2 \int_{\mathbb{Z}_p} e^{2xt} d\mu_{-1}(x)}{\int_{\mathbb{Z}_p} e^{2nt} d\mu_{-1}(x)}. \tag{3.5}
\]

By substituting Taylor series of \(e^{2xt}\) into (3.3), we obtain

\[
\sum_{m=0}^{\infty} \left(\int_{\mathbb{Z}_p} \frac{(2x + 2n)^m + (2x)^m}{m!} d\mu_{-1}(x) \right) \frac{t^m}{m!} = \sum_{m=0}^{\infty} \left(\sum_{j=0}^{n-1} (-1)^j (2j)^m \right) \frac{t^m}{m!}.
\]

By comparing coefficients \(\frac{t^m}{m!}\) in the above equation, we obtain

\[
\sum_{k=0}^{m} \binom{m}{k} (2n)^{m-k} \int_{\mathbb{Z}_p} (2x)^k d\mu_{-1}(x) + \int_{\mathbb{Z}_p} (2x)^m d\mu_{-1}(x) = 2 \sum_{j=0}^{n-1} (-1)^j (2j)^m
\]

By using (2.1), we have

\[
\sum_{k=0}^{m} \binom{m}{k} (2n)^{m-k} \int_{\mathbb{Z}_p} (2x)^k d\mu_{-1}(x) + \int_{\mathbb{Z}_p} (2x)^m d\mu_{-1}(x) = 2T_m(n-1). \tag{3.6}
\]

By using (3.5) and (3.6), we arrive at the following theorem:

Theorem 3.1 Let \(n\) be odd positive integer. Then we obtain

\[
\frac{2 \int_{\mathbb{Z}_p} e^{2xt} d\mu_{-1}(x)}{\int_{\mathbb{Z}_p} e^{2nt} d\mu_{-1}(x)} = \sum_{m=0}^{\infty} \left(2T_m(n-1) \right) \frac{t^m}{m!}. \tag{3.7}
\]

Let \(w_1\) and \(w_2\) be odd positive integers. By using (3.7), we have

\[
\frac{\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} e^{(w_1 x_1 + w_2 x_2 + w_1 w_2 x_1 x_2)t} d\mu_{-1}(x_1) d\mu_{-1}(x_2)}{\int_{\mathbb{Z}_p} e^{2w_1 w_2 t} d\mu_{-1}(x)} = \frac{2e^{w_1 w_2 t}(e^{2w_1 w_2 t} + 1)}{(e^{2w_1 t} + 1)(e^{2w_2 t} + 1)}. \tag{3.8}
\]
By using (3.7) and (3.8), after elementary calculations, we obtain
\[
a = \left(\frac{1}{2} \int_{\mathbb{Z}_p} e^{(w_1^2 x_1 + w_2 x_2)^t} d\mu_{-1}(x_1) \right) \left(\frac{2 \int_{\mathbb{Z}_p} e^{2x_1 x_2^t} d\mu_{-1}(x_2)}{\int_{\mathbb{Z}_p} e^{2w_1 x_2} d\mu_{-1}(x)} \right) = \left(\frac{1}{2} \sum_{m=0}^{\infty} T_m(w_2 x) w_1^m \frac{t^m}{m!} \right) \left(2 \sum_{m=0}^{\infty} T_m(w_1 - 1) w_2^m \frac{t^m}{m!} \right).
\] (3.9)

By using Cauchy product in the above, we have
\[
a = \sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} \binom{m}{j} T_j(w_2 x) w_1^j T_{m-j}(w_1 - 1) w_2^{m-j} \right) \frac{t^m}{m!}.
\] (3.10)

By using the symmetry in (3.9), we have
\[
a = \left(\frac{1}{2} \int_{\mathbb{Z}_p} e^{(w_2^2 x_2 + w_1 x_2)^t} d\mu_{-1}(x_2) \right) \left(\frac{2 \int_{\mathbb{Z}_p} e^{2x_1 x_2^t} d\mu_{-1}(x_1)}{\int_{\mathbb{Z}_p} e^{2w_2 x_2} d\mu_{-1}(x)} \right) = \left(\frac{1}{2} \sum_{m=0}^{\infty} T_m(w_1 x) w_2^m \frac{t^m}{m!} \right) \left(2 \sum_{m=0}^{\infty} T_m(w_2 - 1) w_1^m \frac{t^m}{m!} \right).
\]

Thus we have
\[
a = \sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} \binom{m}{j} T_j(w_1 x) w_2^j T_{m-j}(w_2 - 1) w_1^{m-j} \right) \frac{t^m}{m!}.
\] (3.11)

By comparing coefficients \(\frac{t^m}{m!} \) in the both sides of (3.10) and (3.11), we arrive at the following theorem:

Theorem 3.2 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we obtain
\[
\sum_{j=0}^{m} \binom{m}{j} T_j(w_1 x) T_{m-j}(w_2 - 1) w_1^{m-j} w_2^{j} = \sum_{j=0}^{m} \binom{m}{j} T_j(w_2 x) T_{m-j}(w_1 - 1) w_1^{j} w_2^{m-j},
\]
where \(T_k(x) \) and \(T_m(k) \) denote the tangent polynomials and the alternating sums of powers of consecutive even integers, respectively.

By using Theorem 3.2, we have the following corollary:

Corollary 3.3 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we obtain
\[
\sum_{j=0}^{m} \sum_{k=0}^{j} \binom{m}{j} \binom{j}{k} w_1^{m-k} w_2^{j-k} T_k T_{m-j}(w_2 - 1)
= \sum_{j=0}^{m} \sum_{k=0}^{j} \binom{m}{j} \binom{j}{k} w_1^{j} w_2^{m-j-k} T_k T_{m-j}(w_1 - 1).
\]
By using (3.8), we have
\[a = \left(\frac{1}{2} e^{w_1 x} \int_{\mathbb{Z}_p} e^{2x_1 w_1 t} d\mu_{-1}(x_1) \right) \left(\frac{2 \int_{\mathbb{Z}_p} e^{2x_2 w_2 t} d\mu_{-1}(x_2)}{\int_{\mathbb{Z}_p} e^{2w_1 x w_2 t} d\mu_{-1}(x)} \right) \]
\[= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{w_1-1} (-1)^j T_n \left(w_2 x + \frac{2j w_2}{w_1} \right) \right) \frac{t^n}{n!}. \]
(3.12)

By using the symmetry property in (3.12), we also have
\[a = \left(\frac{1}{2} e^{w_2 x} \int_{\mathbb{Z}_p} e^{2x_2 w_2 t} d\mu_{-1}(x_2) \right) \left(\frac{2 \int_{\mathbb{Z}_p} e^{2x_1 w_1 t} d\mu_{-1}(x_1)}{\int_{\mathbb{Z}_p} e^{2w_1 x w_2 t} d\mu_{-1}(x)} \right) \]
\[= \sum_{n=0}^{w_2-1} (-1)^j \int_{\mathbb{Z}_p} e^{2x_2 x + \frac{2j w_1}{w_2} (w_2 t)} d\mu_{-1}(x_1) \]
\[= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{w_2-1} (-1)^j T_n \left(w_1 x + \frac{2j w_1}{w_2} \right) \right) \frac{t^n}{n!}. \]
(3.13)

By comparing coefficients \(\frac{t^n}{n!} \) in the both sides of (3.12) and (3.13), we have the following theorem.

Theorem 3.4 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we obtain
\[\sum_{j=0}^{w_1-1} (-1)^j T_n \left(w_2 x + \frac{2j w_2}{w_1} \right) w_1^n = \sum_{j=0}^{w_2-1} (-1)^j T_n \left(w_1 x + \frac{2j w_1}{w_2} \right) w_2^n. \]
(3.14)

Substituting \(w_1 = 1 \) into (3.14), we arrive at the following corollary.

Corollary 3.5 Let \(w_2 \) be odd positive integer. Then we obtain
\[T_n(x) = w_2^n \sum_{j=0}^{w_2-1} (-1)^j T_n \left(\frac{x + 2j}{w_2} \right). \]

References

Received: August 9, 2013