An Intelligent Gradient Detector with Minimization of Visual Landmarks Distortion for Monitoring of Passenger Flows

Anna Gorbenko
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com

Vladimir Popov
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@usu.ru

Abstract

In this paper, we study the problem of monitoring of passenger flows. We consider an intelligent gradient algorithm to solve the problem. We use a method of minimization of visual landmarks distortion to improve the quality of recognition.

Mathematics Subject Classification: 47E05

Keywords: technical vision, visual landmarks, distortion, energy function

The problem of monitoring of passenger flows extensively studied recently (see e.g. [1] – [3]). In particular, an intelligent gradient algorithm to solve
the problem was proposed in [3]. This algorithm uses the intelligent visual landmarks model from [1]. This model allow the algorithm re-adjust reference images. In this paper, we consider a method of minimization of visual landmarks distortion to improve the quality of recognition.

Let $V(\text{Im})$ be the set of detected visual landmarks of the image Im. We can consider two consecutive images $\text{Im}[1]$ and $\text{Im}[2]$. We can define each mapping from $V(\text{Im}[1])$ to $V(\text{Im}[2])$ as a function F. We can assume that

$$F(x) \in V(\text{Im}[2]) \cup \{\infty\},$$

for any $x \in V(\text{Im}[1])$. Also, we assume that if

$$x[1] \neq x[2],$$

then

$$F(x[1]) \neq F(x[2]).$$

Let

$$W(\text{Im}[1]) \subseteq V(\text{Im}[1])$$

such that $x \in W(\text{Im}[1])$ if and only if $F(x) \neq \infty$.

Let $K = |W(\text{Im}[1])|$. We assume that

$$W(\text{Im}[1]) = \{x[1], x[2], \ldots, x[K]\}.$$

To minimize the distortion of visual landmarks in space of the image, we can minimize the following energy function [4]:

$$E = \sum_{i=1}^{K} \| F(x[i]) - x[i] \| + \lambda E_F$$

where

$$E_F = \int \int_{\text{Im}} (F''_{xx} + 2F''_{xy} + F''_{yy}) dxdy,$$

λ is the regularization parameter.

Usage of minimization of visual landmarks distortion allows us to use more similar landmarks in different positions. Let $N(m)$ be the number of visual landmarks that can be used without visual landmarks distortion for m consecutive images. Let $N_d(m)$ be the number of visual landmarks that can be used with visual landmarks distortion for m consecutive images. Selected experimental results are given in Tab. 1.

ACKNOWLEDGEMENTS. The reported study was partially supported by RFBR, research project No. 13-01-00048 a.
An intelligent gradient detector with minimization

<table>
<thead>
<tr>
<th>m</th>
<th>2</th>
<th>10</th>
<th>10^2</th>
<th>10^3</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{N(m)}{N_d(m)}$</td>
<td>84 %</td>
<td>82 %</td>
<td>76 %</td>
<td>71 %</td>
<td>42 %</td>
<td>12 %</td>
<td>0.3 %</td>
</tr>
</tbody>
</table>

Table 1: The number of visual landmarks for m consecutive images.

References

Received: June 15, 2013