Volume-Preserving Diffeomorphisms with Periodic Shadowing

Manseob Lee

Department of Mathematics, Mokwon University
Daejeon, 302-729, Korea
lmsds@mokwon.ac.kr

Copyright © 2013 Manseob Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We show that if a volume-preserving diffeomorphism belongs to the \(C^1 \)-interior of the set of all volume preserving diffeomorphisms having the periodic shadowing property then it is Anosov.

Mathematics Subject Classification: 37C10, 37C50, 37D20

Keywords: volume-preserving, star condition, periodic shadowing, Anosov

1 Introduction

The shadowing theory is closely related to the stability condition (see [8, 9]). We will study a kind of the shadowing property which is called periodic shadowing property. The notion of the periodic shadowing property was well studied by [7]. They showed that the following.

Theorem 1.1 [7, Theorem] Let \(f \in \text{Diff}(M) \). The following are equivalent;

(a) \(f \) has the Lipschitz periodic shadowing property.

(b) \(f \) belongs to the \(C^1 \)-interior of the set of diffeomorphisms having the periodic shadowing property.

(c) \(f \) satisfies both Axiom A and the no-cycle condition.
Let M be a d-dimensional ($d \geq 2$) Riemannian closed and connected manifold and let $d(\cdot, \cdot)$ denotes the distance on M inherited by the Riemannian structure. We endow M with a volume-form (cf. [5]) and let μ denote the Lebesgue measure related to it. Let $\text{Diff}_1^\mu(M)$ denote the set of volume-preserving diffeomorphisms defined on M, i.e. those diffeomorphisms such that $\mu(B) = \mu(f(B))$ for any μ-measurable subset B. Consider this space endowed with the C^1 Whitney topology. The Riemannian inner-product induces a norm $\| \cdot \|$ on the tangent bundle $T_x M$. We will use the usual uniform norm of a bounded linear map A given by $\|A\| = \sup_{\|v\|=1} \|Av\|$. Let $f \in \text{Diff}_1^\mu(M)$. Given $\delta > 0$, we say that a sequence of points $\{x_i\}_{i \in \mathbb{Z}} \subset M$ is a δ-pseudo orbit of f if $d(f(x_i), x_i) < \delta$ for all $i \in \mathbb{Z}$. We say that a δ-pseudo orbit $\{x_i\}_{i \in \mathbb{Z}}$ is a δ-periodic pseudo orbit if $x_{n+i} = x_i$ for some $n \in \mathbb{Z}$. We say that f has the periodic shadowing property if for any $\epsilon > 0$ there is $\delta > 0$ such that for any periodic δ-pseudo orbit $\{x_i\}_{i \in \mathbb{Z}}$ with $x_{n+i} = x_i$, there is $y \in P(f)$ such that $d(f^n(y), x_i) < \epsilon$ for all $i \in \mathbb{Z}$.

Let Λ be a closed f-invariant set. We say that Λ is hyperbolic if the tangent bundle $T_\Lambda M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants $C > 0$ and $0 < \lambda < 1$ such that

$$
\|D_x f^n|_{E^s}\| \leq C\lambda^n \text{ and } \|D_x f^{-n}|_{E^u}\| \leq C\lambda^n
$$

for all $x \in \Lambda$ and $n \geq 0$. If $\Lambda = M$ then f is Anosov.

We say that f has the C^1-robustly periodic shadowing property if there is a C^1-neighborhood $U(f) \subset \text{Diff}_1^\mu(M)$ of f such that for any $g \in U(f)$, g has the periodic shadowing property. In [2], Bessa proved that if f has the C^1-robustly shadowing property then it is Anosov. Bessa, Lee and Wen shown in [3] that if f has the C^1-robustly specification property then it is Anosov, and f is C^1-robustly expansive then it is Anosov. From the results, we study the C^1-robustly periodic shadowing property. Then we have

Theorem 1.2 Let $f \in \text{Diff}_1^\mu(M)$. The following are equivalent:

(a) f has the C^1-robustly periodic shadowing property,

(b) f is Anosov.

2 Proof of Theorem 1.2

Let M be as before, and let $f \in \text{Diff}_1^\mu(M)$. To prove, we will use the following version of the Franks’ lemma for the conservative case which is stated and proved in [4, Proposition 7.4].

Lemma 2.1 Let $f \in \text{Diff}_1^\mu(M)$, and $U(f)$ be a C^1-neighborhood of f in $\text{Diff}_1^\mu(M)$. Then there exist a C^1-neighborhood $U_0(f) \subset U(f)$ of f and $\epsilon > 0$ such that
if $g \in U_0(f)$, any finite f-invariant set $E = \{x_1, \ldots, x_m\}$, any neighborhood U of E and any volume-preserving linear maps $L_j : T_{x_j}M \to T_{g(x_j)}M$ with $\|L_j - D_{x_j}g\| \leq \epsilon$ for all $j = 1, \ldots, m$, there is a conservative diffeomorphism $g_1 \in U(f)$ coinciding with f on E and out of U, and $D_{x_j}g_1 = L_j$ for all $j = 1, \ldots, m$.

In the volume preserving case, the Axiom A condition is equivalent to the diffeomorphism be Anosov, since $\Omega(f) = M$ by Poincaré Recurrence Theorem. We define the set $F_\mu(M)$ as the set of diffeomorphisms $f \in \text{Diff}_\mu(M)$ which has a C^1-neighborhood $U(f) \subset \text{Diff}_\mu(M)$ such that if for any $g \in U(f)$, every periodic point of g is hyperbolic. Note that $F_\mu(M) \subset \mathcal{F}(M)$ (see [1, Corollary 1.2]). Very recently, Arbieto and Catalan [1] proved that if a volume preserving diffeomorphism is contained in $F_\mu(M)$ then it is Anosov. We can restate as follows.

Theorem 2.2 [1, Theorem 1.1] If $f \in F_\mu(M)$ then f is Anosov.

To prove Theorem 1.2, it is enough to show that $f \in F_\mu(M)$.

Remark 2.3 From the Moser’s Theorem (see [5]), there is a smooth conservative change of coordinates $\varphi_x : U(x) \to T_xM$ such that $\varphi_x(x) = \overline{0}$, where $U(x)$ is a small neighborhood of $x \in M$.

Lemma 2.4 Let $f \in \text{Diff}_\mu(M)$. If f has the C^1-robustly periodic shadowing property, then $f \in F_\mu(M)$.

Proof. Suppose that f has the C^1-robustly periodic shadowing property. Let $U(f) \subset \text{Diff}_\mu(M)$ be a C^1-neighborhood of f. Then for any $g \in U(f)$, g has the periodic shadowing property. To derive a contradiction, we may assume that $f \notin F_\mu(M)$. Then there is a nonhyperbolic periodic point $p \in P(g)$ for some $g \in U(f)$. For simplicity, we assume that $g(p) = p$. Then there is an eigenvalue λ of D_pg such that $|\lambda| = 1$, and $T_pM = E_p^s \oplus E_p^u \oplus E_p^c$, where E_p^s is the eigenspace corresponding to the eigenvalues of the smaller than 1, and E_p^u is the eigenspace corresponding to the eigenvalues of the greater than 1, and E_p^c the eigenspace corresponding to λ. Then we see that if $\lambda \in \mathbb{R}$ then $\dim E_p^c = 1$, and if $\lambda \in \mathbb{C}$ then $\dim E_p^c = 2$.

First, we consider $\dim E_p^c = 1$. For simplicity, we may assume that $\lambda = 1$ (the other case is similar). By making use of the Lemma 2.1, we linearize g at p with respect to Moser’s Theorem; that is, by choosing $\alpha > 0$ sufficiently small we construct $g_1 C^1$-nearby g such that

$$g_1(x) = \begin{cases} \varphi_p^{-1} \circ D_pg \circ \varphi_p(x) & \text{if } x \in B_\alpha(p), \\ g(x) & \text{if } x \notin B_{4\alpha}(p). \end{cases}$$
Then \(g_1(p) = g(p) = p \). Since the eigenvalue \(\lambda \) of \(D_p g_1 \) is one, \(D_p g_1(v) = v \) for any \(v \in E^s_p(\alpha) \). Take \(v_0 \in E^s_p(\alpha) \) such that \(\|v_0\| = \alpha/4 \). We set

\[
J_{v_0} = \{ t \cdot v_0 : -1 \leq t \leq 1 \} \subset \varphi_p(B_{\alpha}(p)),
\]

and \(\varphi_p^{-1}(J_{v_0}) = J_p \). Since \(g_1(J_p) = J_p \) is the identity map, \(\varphi_p^{-1}(J_{v_0}) = J_p \) is \(g_1 \)-invariant. Take \(\epsilon = \alpha/8 \). Let \(0 < \delta = \delta(\epsilon) < \epsilon \) be the number of the periodic shadowing property of \(g_1 \). Take \(x_0 = x, x_1, \ldots, x_m \in J_p \) such that \(d(x_i, x_j) < \delta \) for all \(0 \leq i \neq j \leq m \), and \(d(x_i, x_m) = 4\epsilon \). We have \(\xi_1 = \{ x(=x_0), x_1, \ldots, x_m, x_{m-1}, \ldots, x \} \) is a finite \(\delta \)-2m-periodic pseudo orbit of \(g_1 \). Then \(\xi = \{ \ldots, \xi_1, \xi_1, \ldots \} = \{ x_i \}_{i \in \mathbb{Z}} \) is \(\delta \)-periodic pseudo orbit of \(g_1 \) and it is clear \(\xi \in J_p \). By the periodic shadowing property, there is a periodic shadowing point \(y \in P(g_1) \) such that \(d(g_1(y), x_i) < \epsilon \) for all \(i \in \mathbb{Z} \). If \(y \in P(g_1) \setminus J_p \) then by Moser’s Theorem, \(y = \varphi_p^{-1}(w) = \varphi_p^{-1}(w^s, w^u, w^c) \), where \(w = (w^s, w^u, w^c) \in E^s_p \oplus E^u_p \oplus E^c_p \). Since \(g_1 : J_p \to J_p \) is the identity map,

\[
g_1^{j}(\varphi_p^{-1}(0, 0, w^c)) = \varphi_p^{-1}(0, 0, w^c) \in J_p
\]

for all \(i \in \mathbb{Z} \). Thus one can find \(k \in \mathbb{Z} \) such that

\[
d(g_1^{k}(\varphi_p^{-1}(w^s, w^u, 0)), g_1^{k}(\varphi_p^{-1}(0, 0, w^c))) = d(g_1^{k}(\varphi_p^{-1}(w^s, w^u, 0)), \varphi_p^{-1}(0, 0, w^c)) \geq \epsilon.
\]

This is a contradiction by the periodic shadowing property. Thus the periodic shadowing point have to be in \(J_p \). But, \(g_1 : J_p \to J_p \) is the identity map, for every point \(y \in J_p \) is the fixed point of \(g_1 \). Thus \(d(g_1^{k}(y), x_i) = d(y, x_i) < \epsilon \) for all \(i \in \mathbb{Z} \). Since \(d(x_0, x_m) = 2\epsilon \) there is \(k > 0 \) such that \(d(g_1^{k}(y), x_k) = d(y, x_k) > \epsilon \). This is a contradiction by the periodic shadowing property.

Finally, if \(\lambda \in \mathbb{C} \), then \(\dim E^c_p = 2 \). To avoid the notational complexity, we may assume that \(g(p) = p \). As in the first case, by Lemma 2.1, there are \(\alpha > 0 \) and \(g_1 \in \mathcal{V}(f) \) such that \(g_1(p) = g(p) = p \) and

\[
g_1(x) = \begin{cases}
\varphi_p^{-1} \circ D_p g \circ \varphi_p(x) & \text{if } x \in B_{\alpha}(p), \\
g(x) & \text{if } x \notin B_{4\alpha}(p).
\end{cases}
\]

With a \(C^1 \)-small modification of the map \(D_p g \), we may suppose that there is \(l > 0 \) (the minimum number) such that \(D_p g^i(v) = v \) for any \(v \in \varphi_p(B_{\alpha}(p)) \subset T_p M \). Take \(v_0 \in \varphi_p(B_{\alpha}(p)) \) such that \(\|v_0\| = \alpha/4 \), and set

\[
\mathcal{L}_p = \varphi_p^{-1}(\{ t \cdot v_0 : 1 \leq t \leq 1 + \alpha/4 \}).
\]

Then \(\mathcal{L}_p \) is an arc such that (a) \(g_1^{j}(\mathcal{L}_p) \cap g_1^{j}(\mathcal{L}_p) = \emptyset \) for \(0 \leq i \neq j \leq l - 1 \), (b) \(g_1^{j}(\mathcal{L}_p) = \mathcal{L}_p \), and (c) \(g_1^{j}|_{\mathcal{L}_p} \) is the identity map. Note that \(g_1 \) has the periodic shadowing property if and only if \(g_1^{k} \) has the periodic shadowing property, for all \(k \in \mathbb{Z} \). As in the first case, we can show that \(g_1 \) does not have the periodic shadowing property, which contradicts the fact that \(g_1 \in \mathcal{U}(f) \). Thus,
if f belongs to the C^1-interior of the set of a volume preserving diffeomorphism having the periodic shadowing property, every periodic point of f is hyperbolic.

□

Proof of Theorem 1.2. Let $f \in \text{Diff}_\mu(M)$ has the C^1-robustly periodic shadowing property. Then by Lemma 2.4, $f \in \mathcal{F}_\mu(M)$. By Theorem 2.2, f is Anosov. □

Acknowledgement. This work is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology, Korea (No. 2011-0007649).

References

Received: July 25, 2013