Solutions to Semipositone Eigenvalue Problems

Qinfu Sun

School of Mathematical Sciences
Qufu Normal University, Qufu, 273165, China
sqf@mail.qfnu.edu.cn

Copyright © 2013 Qinfu Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate a class of third-order three-point semipositone eigenvalue problems under the conditions that the nonlinear term is continuous, semipositone and lower unbounded.

Mathematics Subject Classification: 34B15

Keywords: lower unbounded, positive solutions, fixed-point index theory

1 Introduction

In this paper, we study the following third-order three-point semipositone eigenvalue boundary value problems (SEBVP):

\[
\begin{align*}
&u'''(t) - \lambda f(t, u) = 0, \quad t \in (0, 1); \\
&u(0) = u'(\eta) = u''(1) = 0,
\end{align*}
\]

where \(\lambda > 0\) is a positive parameter, \(1/2 < \eta < 1\), \(f(t, u) : (0, 1) \times [0, +\infty) \to (-\infty, +\infty)\).

In recent years, the existence of positive solutions for nonlinear boundary value problems received wide attention. But they all request the positive continuous or lower bounded of the nonlinear term (see [1-8]). The motivation for the present paper does back to a pioneering paper by Anuradha [1], which has been so influential as to motivate several authors to develop further theory of [1] in other directions. For example, in 1998, D. Aanderson [3] considered the
problem (1.1) and obtained an existence result about positive solutions when
\(f(t, l) = g(l) \) and \(g : [0, +\infty) \to [0, +\infty) \). Recently, Yao [4] has investigated
(1.1) when \(f \) is semipositone and lower bounded, and he obtained the following
existence theorem.

Theorem A. Suppose that
1. \(\inf \{ f(t, l) : (t, l) \in [0, 1] \times [0, +\infty) \} = -M > -\infty \), where \(M \geq 0 \).
2. \(B = \max \{ f(t, l) : (t, l) \in [0, 1] \times [0, 1] \} + M \geq 0 \).
3. There exist \(0 < \alpha < \beta < 1 \) such that \(\lim_{t \to +\infty} \min_{\alpha \leq t \leq \beta} f(t, l) = +\infty \).

Then the problem (1.1) has at least one positive solution, provided
\(0 < \lambda < \min \left\{ \frac{6}{B\eta^2(3 - 2\eta)}, \frac{6(2\eta - 1)}{M[1 - 3(1 - \eta)^2]}, \frac{1}{M} \right\} \).

For semipositone nonlinear problem, Kosmatov [5] make the following as-\nsumptions for nonlinear term \(f \):
- \((A_1) \ f(t, z) \) is a continuous function on \([0, 1] \times [0, \infty) \);
- \((A_2) \) There exists \(M > 0 \) such that \(f(t, z) + M \geq 0 \) on \([0, 1] \times [0, \infty) \);
- \((A_3) \) There exist continuous nonnegative nondecreasing on \([0, \infty) \) functions\n\(\psi_a(z) \) and \(\psi_b(z) \) with \(\psi_b(z) \leq f(t, z) + M \leq \psi_a(z) \) on \([0, 1] \times [0, \infty) \).

All the above mentioned paper, the authors discuss the semipositone eigen-
value boundary value problem (SEBVP) under the key conditions that there
exists \(M > 0 \) such that \(f \geq -M \) or/and there exists upper control-function
for nonlinear term.

In this paper, we delete the restriction on lower bounded and on upper
control-function of the nonlinear term, \(f(t, u) : [0, 1] \times (0, +\infty) \to (-\infty, +\infty) \) is continuous, i.e., we allow that the nonlinear term \(f \) is both semipositone
and lower unbounded is guaranteed.

Our main tool of this paper is the following fixed point index theory.

Theorem 1.1[6,7]. Suppose \(E \) is a real Banach space, \(K \subset E \) is a cone,\nlet \(\Omega_r = \{ u \in K : \| u \| \leq r \} \). Let operator \(T : \Omega_r \to K \) be completely
continuous and satisfy \(Tx \neq x, \forall x \in \partial \Omega_r \). Then:
- (i) If \(\| Tx \| \leq \| x \|, \forall x \in \partial \Omega_r \), then \(i(T, \Omega_r, K) = 1 \);
- (ii) If \(\| Tx \| \geq \| x \|, \forall x \in \partial \Omega_r \), then \(i(T, \Omega_r, K) = 0 \).

2 Preliminary Notes

Let \(I = [0, 1] \), \(E = C[I, R] \), then \(E \) is a Banach space with norm \(\| x \| = \max_{t \in I} |x(t)| \). We also introduce the space \(L^1(0, 1) \) with norm \(\| x \|_1 = \int_0^1 |x(t)| dt \).
Throughout this paper, we shall use the following notation:

\[
G(t, s) = \begin{cases}
 ts - \frac{1}{2}t^2, & 0 \leq s \leq \eta, 0 \leq t \leq s; \\
 \frac{1}{2}s^2, & 0 \leq s \leq \eta, 0 \leq s \leq t; \\
 \eta t - \frac{1}{2}t^2, & \eta \leq s \leq 1, 0 \leq t \leq s; \\
 \frac{1}{2}s^2 - ts + \eta t, & \eta \leq s \leq 1, 0 \leq s \leq t.
\end{cases}
\]

It is well known that \(G(t, s)\) is the Green’s function of homogeneous boundary value problem:

\[
\begin{align*}
u'''(t) &= 0, \quad 0 \leq t \leq 1; \\
u(0) &= u'(\eta) = u''(1) = 0.
\end{align*}
\]

Obviously, \(G(t, s)\) is nonnegative continuous function.

By direct account, we can easily obtain the following results.

Lemma 2.1 ([4]). \(G(t, s)\) defined as above have the following properties:

\[
q(t)J(s) \leq G(t, s) \leq J(s), \quad 0 \leq t, s \leq 1,
\]

where

\[
J(s) = \max_{t \in I} G(t, s) = \begin{cases}
 \frac{1}{2}s^2, & 0 \leq s \leq \eta, \\
 \frac{1}{2}\eta^2, & \eta \leq s \leq 1,
\end{cases} \quad q(t) = \begin{cases}
 \eta t, & 0 \leq t \leq \eta; \\
 2\eta t - t^2, & \eta \leq t \leq 1,
\end{cases}
\]

Lemma 2.2. For the unique position solution \(u(t)\) of the following BVP:

\[
\begin{align*}
u'''(t) &= h(t), \quad 0 < t < 1; \\
u(0) &= u'(\eta) = u''(1) = 0,
\end{align*}
\]

where \(h \in L^1(0, 1), \ h \geq 0\). Then \(u(t) \geq \|u\|q(t), \ 0 \leq t \leq 1\).

Proof. By \(q(t)J(s) \leq G(t, s) \leq J(s), \ 0 \leq t, s \leq 1\), we have

\[
u(t) = \int_0^1 G(t, s)h(s)ds \leq \int_0^1 J(s)h(s)ds,
\]

so, \(\|u\| \leq \int_0^1 J(s)h(s)ds\). Therefore, for \(0 \leq t \leq 1\), we have

\[
u(t) = \int_0^1 G(t, s)h(s)ds \geq q(t) \int_0^1 J(s)h(s)ds \geq \|u\|q(t).
\]

This completes the proof of Lemma 2.2.

Lemma 2.3. For the unique position solution \(u(t)\) of the following BVP:

\[
\begin{align*}
u'''(t) &= h(t), \quad 0 < t < 1; \\
u(0) &= u'(\eta) = u''(1) = 0,
\end{align*}
\]
where \(h \in L^1(0, 1), h \geq 0 \). Then, for any \(\theta \in (0, 1/2) \), there exists constant \(\delta > 0 \) such that \(u(t) \geq \delta \| u \|, \ \theta \leq t \leq 1 - \theta \).

Proof. Let \(\delta = \max_{\theta \leq t \leq 1-\theta} q(t) \), then by the Lemma 2.2, we can obtain the results. This completes the proof of Lemma 2.3.

Lemma 2.4. Suppose that \(\overline{w}(t) \) is the solution of the following BVP,

\[
\begin{align*}
&\begin{cases}
 u''(t) = M(t), \quad t \in (0, 1); \\
 u(0) = u'(\eta) = u''(1) = 0,
\end{cases}
\end{align*}
\]

where \(M(t) \in L^1(0, 1), \ M(t) > 0 \). Then, there constant \(C \geq 1 \) such that

\[
\overline{w}(t) \leq C\| M \|_1 q(t), \ 0 \leq t \leq 1.
\]

Proof. For \(t \in [\eta, 1] \), we can have

\[
\overline{w}(t) = \int_0^1 G(t, s)M(s)ds
\]

\[
= \int_0^\eta \frac{1}{2}s^2 M(s)ds + \int_\eta^t (\frac{1}{2}s^2 - ts + \eta t) M(s)ds + \int_t^1 (\eta t - \frac{1}{2}t^2) M(s)ds
\]

\[
\leq \int_0^\eta \frac{1}{2}s^2 M(s)ds + \int_\eta^t (\frac{1}{2}s^2 - ts + \eta t) M(s)ds + \int_t^1 (\eta t - \frac{1}{2}t^2) M(s)ds
\]

\[
\leq \left[\frac{1}{2}t^2 + \left(\frac{1}{2}t^2 - t\eta + \eta t \right) + 2(\eta t - \frac{1}{2}t^2) \right] \int_0^1 M(s)ds
\]

\[
\leq 2\eta t \int_0^1 M(s)ds \leq 3(2\eta t - t^2)\| M \|_1.
\]

In fact, by \(1/2 < \eta \leq t \leq 1 \), we have \(3(2\eta t - t^2) - 2\eta t = 4\eta t - t^2 \geq 4\eta^2 - t^2 \geq 0 \).

For \(t \in [0, \eta] \), we can have

\[
\overline{w}(t) = \int_0^1 G(t, s)M(s)ds
\]

\[
= \int_0^t \frac{1}{2}s^2 M(s)ds + \int_t^\eta (ts - \frac{1}{2}t^2) M(s)ds + \int_\eta^1 (\eta t - \frac{1}{2}t^2) M(s)ds
\]

\[
\leq \int_0^t \frac{1}{2}s^2 M(s)ds + \int_t^\eta (ts - \frac{1}{2}t^2) M(s)ds + \int_\eta^1 (\eta t - \frac{1}{2}t^2) M(s)ds
\]

\[
\leq \left[\frac{1}{2}t^2 + \eta t + (\eta t - \frac{1}{2}t^2) \right] \int_0^1 M(s)ds
\]

\[
= 2\eta t \int_0^1 M(s)ds \leq 2\| M \|_1 \eta t.
\]

Then, we choose constant \(C = 3 > 1 \), by the above, we have

\[
\overline{w}(t) \leq C\| M \|_1 q(t), \ 0 \leq t \leq 1.
\]
This completes the proof of Lemma 2.4.

In the rest of the paper, we also make the following assumptions:

(H) \(f \in C([0, 1] \times [0, +\infty), [-\infty, +\infty)) \), and there exists function \(M(t) \in L^1(0, 1) \), \(M(t) > 0 \) and \(0 < \int_0^1 J(s)M(s)ds < \infty \) such that \(f(t, u) \geq -M(t), \forall t \in (0, 1), u \geq 0 \), where \(J(s) \) is defined in Lemma 2.1.

By Lemma 2.3, for \(\theta \in (0, 1/2) \), we denote a cone \(K \) of \(E \):

\[
K = \{ u \in E : u(t) \geq \|u\|_q(t), \theta \leq t \leq 1 - \theta \},
\]

For convenience, we set

\[
k_0 = \min_{\theta < t, s < 1-\theta} G(t, s), \quad K_0 = \max_{0 < t, s < 1} G(t, s), \quad \delta = \min_{\theta \leq t \leq 1-\theta} q(t),
\]

\[
f_0 = \lim_{u \to 0} \max_{0 \leq t \leq 1} \frac{f(t, u)}{u}, \quad f_\infty = \lim_{u \to \infty} \min_{0 \leq t \leq 1} \frac{f(t, u)}{u}.
\]

3 Main Results

In this section, we present our main results.

Theorem 3.1. Suppose that condition (H) hold. Then, if \(0 < 2K_0 f_0^1 (f_0 + M(s))ds < k_0 \delta f_\infty < \infty \), then for each \(\lambda \in \left(0, \frac{2K_0 f_0^1 (f_0 + M(s))ds}{k_0 \delta f_\infty} \right) \), the SEBVP (1.1) has at least one positive solution.

Corollary 3.2. Suppose that condition (H) hold. Then, If \(f_0 = 0 \) and \(f_\infty = \infty \), then for any \(\lambda \in \left(0, \frac{1}{K_0 \|M\|_1} \right) \), the SEBVP (1.1) has at least one positive solution.

Corollary 3.3. Suppose that condition (H) hold. Then, If \(f_\infty = \infty \), \(0 < f_0 < \infty \), then for each \(\lambda \in \left(0, \frac{1}{K_0 \int_0^1 (f_0 + M(s))ds} \right) \), the SEBVP (1.1) has at least one positive solution.

Corollary 3.4. Suppose that condition (H) hold. Then, If \(f_0 = 0 \), \(0 < f_\infty < \infty \), then for each \(\lambda \in \left(0, \frac{1}{k_0 \delta f_\infty} \right), \frac{1}{K_0 \|M\|_1} \), the SEBVP (1.1) has at least one positive solution.

The proof of Theorem 3.1. By Lemma 2.4, we set \(w(t) = \overline{w}(t) \). Then \(u(t) \) is the positive solutions of the SEBVP (1.1) if and only if \(\overline{u}(t) = u(t) + w(t) \) is the positive solutions of the EBVP

\[
\begin{align*}
\begin{cases}
u''(t) - \lambda F(t, u(t) - w(t)) = 0, & t \in (0, 1); \\
u(0) = u'(\eta) = u''(1) = 0,
\end{cases}
\end{align*}
\]

and \(\overline{u}(t) \geq w(t), t \in I \), where for \(t \in I \),

\[
F(t, u) = H(t, u) + M(t), \quad H(t, u) = \begin{cases} f(t, u), & u \geq 0, \\
f(t, 0), & u < 0,
\end{cases}
\]
Obviously, EBVP (3.1) is equivalent to the equation

\[u(t) = \int_0^1 G(t, s)\lambda F(s, u(s) - w(s))ds. \quad (3.2) \]

and consequently, it’s solution is equivalent to the fixed point problem \(u = Tu \) with operator \(T : E \to E \) given by

\[(Tu)(t) = \int_0^1 G(t, s)\lambda F(s, u(s) - w(s))ds. \quad (3.3) \]

Then we shall divide the rather long proof into three steps.

(I) \(T : K \to K \) is completely continuous.

(a) Firstly, we proof that \(T(K) \subset K \). By Lemma 2.1, (3.4), for any \(u(t) \in K, \ t \in J \), we have

\[(Tu)(t) = \int_0^1 G(t, s)\lambda F(s, u(s) - w(s))ds \leq \int_0^1 J(s)\lambda F(s, u(s) - w(s))ds. \]

So,

\[\|Tu\| \leq \int_0^1 J(s)\lambda F(s, u(s) - w(s))ds. \quad (3.4) \]

Then, by Lemma 2.1 and (3.4), for \(\theta \leq t \leq 1 - \theta, \ u \in K \), we have

\[(Tu)(t) = \int_0^1 G(t, s)\lambda F(s, u(s) - w(s))ds \geq q(t) \int_0^1 J(s)\lambda F(s, u(s) - w(s))ds \geq \|Tu\|q(t). \]

Then \(T(K) \subset K \).

(b) Secondly, we will show that \(T \) ia compact operator. Let \(D \subset K \) be any bounded set, then there exists a constant \(M > 0 \) such that \(\|u\| \leq M, \ u \in D \). Then, we have

\[\|(Tu)(t)\| \leq \int_0^1 J(s)\lambda (L + M(s))ds. \]

where \(L = \sup_{0 \leq t \leq 1, \|u\| \leq M} H(t, u) \). Therefore, \(T(D) \) is uniformly bounded.

Next, we will show \(|(Tu)'| \in L^1[0, 1], \ u \in D \). In fact, by (3.3), we know that if \(t \in [\eta, 1] \), we can get

\[|(Tu)'(t)| = \left| \int_\eta^t (\eta - s)\lambda F(s, u(s) - w(s))ds + \int_t^1 (\eta - t)\lambda F(s, u(s) - w(s))ds \right| \]

\[\leq \left| \int_\eta^t (\eta - s)\lambda (L + M(s))ds + \int_t^1 (\eta - t)\lambda (L + M(s))ds \right| \]

\[\leq (L + 1)\lambda \left(\int_\eta^t (s - \eta)(1 + M(s))ds + \int_t^1 (t - \eta)(1 + M(s))ds \right) \]

\[=: (L + 1)\lambda h(t), \]

where \(h(t) = \int_\eta^t (s - \eta)(1 + M(s))ds + \int_t^1 (t - \eta)(1 + M(s))ds \).
Then, we have
\[
\int_0^1 |h(t)| dt = \int_0^1 \left| \int_0^t (s-\eta)(1+M(s))ds + \int_0^t (t-\eta)(1+M(s))ds \right| dt
\]
\[
= \int_0^1 (s-\eta)(1+M(s))ds \int_0^1 dt + \int_0^1 (1+M(s))ds \int_0^1 (t-\eta)dt
\]
\[
\leq \int_0^1 (s-\eta)(1+M(s))ds \int_0^1 dt + \int_0^1 (1+M(s))(\frac{1}{2}s^2 - \eta s)ds
\]
\[
\leq \int_0^1 (1+M(s))ds < \infty.
\]

Then, \(0 \leq \int_0^1 |(Tu)'(t)| dt < \infty\).

Similar to the above, for \(t \in [0, \eta]\), we can also get \(0 \leq \int_0^1 |(Tu)'(t)| dt < \infty\).

Then, for any \(0 \leq t_1 \leq t_2 \leq 1, u \in D\), we have
\[
|(Tu)(t_1) - (Tu)(t_2)| = \left| \int_{t_1}^{t_2} (Tu)'(t) dt \right| \leq \int_{t_1}^{t_2} |(Tu)'(t)| dt.
\]

So by the absolute continuity of the integral, we know that \(T(D)\) is equicontinuous on \([0,1]\). Thus, according to Ascoli-Arzela’s theorem, we know that \(T(D)\) is a relatively compact set, i.e., \(T\) is compact operator.

In the following, we show that \(T\) is continuous. Assume \(y_n, y_0 \in K\) such that \(\|y_n - y_0\| \to 0\), \((n \to +\infty)\). Then there exists \(L_2 > 0\) such that \(\|y_n\| \leq L_2\) and \(\|y_0\| \leq L_2\).

And further by Lemma 2.1, for any \(t \in [0,1]\),
\[
|Ty_n(t) - Ty_0(t)|
\]
\[
= \left| \lambda \int_0^1 G(t,s)F(s,[y_n(s) - w(s)]) - F(s,[y_0(s) - w(s)]) ds \right|
\]
\[
\leq \lambda \int_0^1 J(s) \left| f(s,[y_n(s) - w(s)]) - f(s,[y_0(s) - w(s)]) \right| ds.
\]

So, we set \(Y_n(s) := J(s)[f(s,[y_n(s) - x(s)]) - f(s,[y_0(s) - x(s)])]\).

Next, we will show that \(Y_n(s) \to 0\), \((n \to +\infty)\) for any fixed \(s \in (0,1)\).

In fact, in view of the continuity of \(f\) with respect to \(u\), for any \(\varepsilon > 0\), there exists a constant \(\delta > 0\) such that for any \(v_1, v_2 \geq 0\), if \(|v_1 - v_2| < \delta\), we have
\[
\left| f(s,v_1) - f(s,v_2) \right| < \frac{\varepsilon}{J(s)}.
\]

By \(y_n(s) \to y_0(s)\), there exists a constant \(N > 0\) such that \(|y_n(s) - y_0(s)| < \delta\) for \(n > N\). Noting that
\[
\left| [y_n(s) - w(s)] - [y_0(s) - w(s)] \right| = |y_n(s) - y_0(s)|,
\]
so for \(n > N \), we have that
\[
\left| f(s, [y_n(s) - w(s)]) - f(s, [y_0(s) - w(s)]) \right| < \frac{\varepsilon}{J(s)}.
\]

Thus, for any fixed \(s \in (0, 1) \), and for any \(\varepsilon > 0 \), \(\exists N > 0 \) such that as \(n > N \), we have
\[
\left| Y_n(s) - 0 \right| = J(s)\left| f(s, [y_n(s) - w(s)]) - f(s, [y_0(s) - w(s)]) \right| < \varepsilon,
\]
i.e., for any fixed \(s \in (0, 1) \), we have \(Y_n(s) \to 0 \), \((n \to \infty) \).

Furthermore, by using Lebesgue dominated convergence theorem and the above mentioned, we can easily obtain that
\[
\|Ty_n - Ty_0\| \leq \int_0^1 Y_n(s)ds \to 0, \ (n \to +\infty).
\]
Therefore, \(T : K \to K \) is continuous, and thus is a completely continuous operator.

(II) Next, we will discuss the positive solution of the EBVP (3.1).

By the definition of \(f_0 \) and \(\frac{2}{\kappa_0f_\infty} < \lambda < \frac{1}{\kappa_0\int_0^1(f_0 + M(s))ds} \), we have that there exist \(r \geq 1 \) and \(\varepsilon > 0 \) such that: \(f(t, u) \leq (f_0 + \varepsilon)u \), \(0 \leq u \leq r \), \(t \in [0, 1] \),
\[
\frac{2}{\kappa_0\delta(f_\infty - \varepsilon)} \leq \lambda \leq \frac{1}{\kappa_0\int_0^1(f_0 + \varepsilon + M(s))ds}.
\]
Set \(\Omega_1 = \{ u \in E : \| u \| \leq r \} \). Then, for \(t \in [0, 1] \) and \(u \in \partial\Omega_1 \), we have
\[
u(t) - w(t) = u(t) - \overline{w}(t) \geq u(t) - C\|M\|_1q(t) \geq u(t) - \frac{C\|M\|_1}{r}u(t) \geq 0,
\]
and \(u(t) - w(t) \leq \| u \| = r \), i.e., \(\| u(t) - w(t) \| \leq r \). So, for \(t \in [0, 1] \) and \(u \in \partial\Omega_1 \), we have
\[
(Tu)(t) = \int_0^1 G(t, s)\lambda F(s, u(s) - w(s))ds
\]
\[
= \int_0^1 G(t, s)\lambda(\int_0^1 (f(s, u(s) - w(s)) + M(s))ds
\]
\[
\leq K_0\lambda \int_0^1 ((f_0 + \varepsilon)r + M(s))ds
\]
\[
\leq K_0r\lambda \int_0^1 (f_0 + \varepsilon + M(s))ds \leq r = \| u \|.
\]
Therefore, we have \(\| Tu \| \leq \| u \|, \ \forall u \in K \cap \partial\Omega_1 \). Then by Theorem 1.1, we have
\[
i(T, \Omega_1, K) = 1.
\] (3.5)
On the other hand, by the definition of \(f_\infty \) and for the above \(\varepsilon > 0 \), we have that there exist \(l \geq 1 \) such that: \(f(t, u) \geq (f_\infty - \varepsilon)u, \ u \geq l, \ t \in [0, 1] \).

Set \(R > \max \{ r, 2C\|M\|_1, 2l/\delta \} \) and \(\Omega_2 = \{ u \in E : \|u\| \leq R \} \). Then, for \(t \in [0, 1] \) and \(u \in \partial \Omega_2 \), we have

\[
u(t) - w(t) = u(t) - \overline{w}(t) \geq u(t) - C\|M\|_1q(t) \geq u(t) - \frac{C\|M\|_1}{R}u(t) \geq \frac{1}{2}u(t),\]

so, for \(t \in [\theta, 1 - \theta] \), we have \(u(t) - w(t) \geq \frac{1}{2}u(t) \geq \frac{\|u\|}{2}q(t) \geq \frac{\delta R}{2} \geq l \).

So, for \(t \in [0, 1] \), \(u \in \partial \Omega_2 \) and Lemma 2.3, we have

\[
(Tu)(t) = \int_0^1 G(t, s)\lambda F(s, u(s) - w(s))ds
\]
\[
= \int_0^1 G(t, s)\lambda(f(s, u(s) - w(s)) + M(s))ds
\]
\[
\geq k_0\lambda \int_\theta^{1-\theta} ((f_\infty - \varepsilon)(u(s) - w(s)) + M(s))ds
\]
\[
\geq \frac{1}{2}k_0\lambda \int_0^1 (f_\infty - \varepsilon)u(s)ds
\]
\[
\geq \frac{1}{2}k_0\lambda(f_\infty - \varepsilon) \int_0^1 \delta\|u\|ds \geq \|u\|.
\]

Therefore, we have \(\|Tu\| \geq \|u\|, \ \forall \ u \in K \cap \partial \Omega_2 \). Then by Theorem 1.1, we have

\[
i(T, \Omega_2, K) = 0. \quad (3.6)
\]

Therefore, by (3.5), (3.6), \(r < R \), we have \(i(T, \Omega_2 \setminus \overline{\Omega_1}, K) = -1 \). Then operator \(T \) has a fixed point \(\bar{u} \in K \cap (\Omega_2 \setminus \overline{\Omega_1}) \), and \(r \leq \|\bar{u}\| \leq R \).

(III) Finally, we will show that \(\bar{u}(t) \geq w(t), \ \varepsilon \leq \|\bar{u}\| \leq R \).

By, Lemma 2.3 and 2.4, for \(t \in (\theta, 1 - \theta) \), we have

\[
\bar{u}(t) \geq \|\bar{u}\|q(t) \geq rq(t) > C\|M\|_1q(t) \geq \overline{w}(t) = w(t),
\]

i.e., \(u(t) = \bar{u}(t) - w(t) \) is the positive solution of SBVP (1.1). This completes the proof of Theorem 3.1.

The corollary (3.2), (3.3), (3.4) are the direct of the Theorem(3.1).

4 Example

Example 5.1. Consider the following semipositone eigenvalue boundary value problem (SEBVP):

\[
\begin{align*}
u'''' - \lambda \left(u(t) \ln(1 + u(t)) - \frac{1}{2}t^2 \right) &= 0, \quad 0 < t < 1, \\
u(0) = u'(2/3) = u''(1) = 0.
\end{align*}
\]
We can easily show that \(f(t, u) = u(t) \ln(1 + u(t)) - \frac{1}{2} t^2 \) satisfy:

\[
f(t, u) = u(t) \ln(1 + u(t)) - \frac{1}{2} t^2 \geq -\frac{1}{2} t^2 = -M(t),
\]

So, condition (H) holds.

Next, we can easily know that \(f_0 = 0, f_{\infty} = \infty \).

By direct account, we can easily obtain

\[
K_0 = \frac{2}{9}, \|M\|_1 = \int_0^1 M(s)ds = \int_0^1 \frac{1}{2} t^2 dt = \frac{1}{6}.
\]

So, by the case (2) in Theorem 3.1, we can show that for \(\lambda \in (0, \frac{1}{K_0 \|M\|_1}) = (0, 27) \), the SEBVP (5.1) have at least one positive solution.

5 Acknowledgments

The paper was supported financially by a Project of Shandong Province Higher Educational Science and Technology Program(J13LI12) and Natural Science Foundation of China (11071141).

References

Received: May 26, 2013