On the Quadratic Additive Type Functional Equations

Yang-Hi Lee

Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea
lyhmzi@gjue.ac.kr

Copyright © 2013 Yang-Hi Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate the quadratic additive type functional equations.

Mathematics Subject Classification: 39B82, 39B52

Keywords: quadratic additive type functional equations, quadratic-additive mapping

1 Introduction

Throughout this paper, let G be an abelian group and V a real vector space. For a given mapping $f : G \to V$, we define

$$Af(x, y) := f(x + y) - f(x) - f(y),$$

$$Qf(x, y) := f(x + y) + f(x - y) - 2f(x) - 2f(y)$$

for all $x, y \in G$. A mapping $f : G \to V$ is called an additive mapping (a quadratic mapping, respectively) if f satisfies the functional equation $Af = 0$ ($Qf = 0$, respectively). Observe that the mappings $g, h : R \to R$ given by $g(x) = ax$ and $h(x) = ax^2$ are solutions of $Ag(x, y) = 0$ and $Qh(x, y) = 0$, respectively. On the other hand if a mapping is represented by the sum of an
additive mapping and a quadratic mapping, we call the mapping a quadratic-additive mapping. For a functional equation $Ef = 0$ if all of the solutions of $Ef = 0$ are quadratic-additive mappings and all of quadratic-additive mappings are the solutions of $Ef = 0$, then we call the functional equation $Ef = 0$ a quadratic additive type functional equation. The mapping $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = ax^2 + bx$ is a solution of the quadratic additive type functional equation. The stability problems of quadratic additive type functional equations have been extensively investigated by a number of mathematicians, see [1]-[32].

In this paper, I introduce many kinds of the quadratic additive type functional equations and prove that there is a unique quadratic-additive mapping under the some conditions.

2 Quadratic-additive type functional equations

For a given mapping $f : G \to V$, we use the following abbreviations:

$E_1 f(x,y,z,w) = f(x+y+z+w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)
- f(x+y) - f(x+z) - f(x+w)
- f(y+z) - f(y+w) - f(z+w)$,

$E_2 f(x,y,z) = f(x+y+z) - f(x+y) - f(y+z) - f(x+z)
+ f(x) + f(y) + f(z)$,

$E_3 f(x_1, \cdots, x_n) = f(\sum_{j=1}^{n} x_j) + (n-2)\sum_{j=1}^{n} f(x_j)
- \sum_{1 \leq i < j \leq n} f(x_i + x_j)$,

$E_4 f(x,y) = 2f(x+y) + f(x-y) + f(y-x)
- 3f(x) - f(-x) - 3f(y) - f(-y)$,

$E_5 f(x,y) = \sum_{\delta_2=0}^{1} \cdots \sum_{\delta_n=0}^{1} f\left(x_1 + \sum_{j=2}^{n} (-1)^{\delta_j} x_j\right)
- 2^{n-1} f(x_1) - 2^{n-2} \sum_{j=2}^{n} (f(x_j) + f(-x_j))$,

$E_6 f(x,y) = 2f(x+y) + f(x-y) + f(y-x) - f(2x) - f(2y)$,

$E_7 f(x_1, \cdots, x_n) = 2f(\sum_{j=1}^{n} x_j)
+ \sum_{1 \leq i \leq n, i \neq j} f(x_i - x_j)
- (n+1)\sum_{j=1}^{n} f(x_j)
- (n-1)\sum_{j=1}^{n} f(-x_j)$,

$E_8 f(x,y) = f(x+y) + f(x-y) - 2f(x) - f(y) - f(-y)$,

$E_9 f(x,y) = 3f(x+2y) + 3f(x-2y) - 6f(x) - 4f(2y) - 8f(-y)$,

$E_{10} f(x,y) = f(x+y) - f(x-y) + f(x-2y)$
On the quadratic additive type functional equations

\[E_{11} f(x, y) = f(x + 2y) - f(-x - y) - f(x + y) + f(-x) - 2f(y), \]
\[E_{12} f(x, y, z, w) = f(x + y + z + w) + f(x - y - z + w) + f(x + y - z - w) \]
\[+ f(x + y + z - w) + f(x + y - z + w) + f(x - y + z - w) \]
\[+ f(x + y - z - w) + f(x - y - z - w) - 8f(x) \]
\[- 4f(y) - 4f(-y) - 4f(z) - 4f(-z) - 4f(w) - 4f(-w), \]
\[E_{13} f(x, y, z, w) = f(-x - y + z + w) + f(x - y + z + w) + f(x + y - z + w) \]
\[+ f(-x + y + z - w) + f(-x + y - z + w) + f(x - y + z - w) \]
\[+ 2f(x + y - z + w) - 5f(x) - 3f(-x) - 5f(y) \]
\[- 3f(-y) - 5f(z) - 3f(-z) - 5f(w) - 3f(-w), \]
\[E_{14} f(x_1, \cdots, x_n) = \sum_{1 \leq i, j \leq n, i \neq j} [f(x_i + x_j) + f(x_i - x_j)] \]
\[- (n - 1) \sum_{j=1}^{n} [3f(x_j) + f(-x_j)], \]
\[E_{15} f(x_1, \cdots, x_n) = \sum_{1 \leq i, j \leq n, i \neq j} [f(x_i + x_j) + f(x_i - x_j)] \]
\[- (n - 1) \sum_{j=1}^{n} f(2x_j), \]
\[E_{16} f(x, y, z) = f(x + y + z) + f(x - y + z) + f(x + y - z) \]
\[+ f(-x + y + z) - 3f(x) - f(-x) \]
\[- 3f(y) - f(-y) - 3f(z) - f(-z), \]
\[E_{17} f(x, y, z) = f(x + y + z) + f(x - y - z) + f(x - y + z) \]
\[+ f(x + y - z) - 4f(x) - 2f(y) \]
\[- 2f(-y) - 2f(z) - 2f(-z), \]
\[E_{18} f(x, y, z, w) = f(-x + y + z + w) + f(x - y + z + w) + f(x + y - z + w) \]
\[+ f(x + y + z - w) - 3f(x) - f(-x) - 3f(y) \]
\[- f(-y) - 3f(z) - f(-z) - 3f(w) - f(-w), \]
\[E_{19} f(x, y) = \frac{nC_k}{n - 1} f \left(\sum_{i=1}^{n} x_i \right) + \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} f \left(\sum_{i=1}^{n} x_i - 2 \sum_{j=1}^{k} x_{i_j} \right) \]
\[- nC_k \sum_{i=1}^{n} \left(\frac{n + 1}{2(n - 1)} f(x_i) + \frac{1}{2} f(-x_i) \right) \quad (n = 2k), \]
\[E_{20} f(x, y) = \frac{nC_k}{n} f \left(\sum_{i=1}^{n} x_i \right) + \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} f \left(\sum_{i=1}^{n} x_i - 2 \sum_{j=1}^{k} x_{i_j} \right) \]
\[- nC_k \sum_{i=1}^{n} \left(\frac{k + 2}{n} f(x_i) + \frac{k}{n} f(-x_i) \right), \quad (n = 2k + 1) \]
for all \(x, y, z, w, x_1, x_2, \cdots, x_n \in G \).

We need the following lemmas to prove Theorem 2.3 and Theorem 2.6.

Lemma 2.1 If a mapping \(f : G \to V \) satisfies one of the functional equations \(E_i f = 0, i = 1, 2, \cdots, 20 \), then \(f \) is an additive mapping, where \(f_o(x) := \frac{f(x) - f(-x)}{2} \) for all \(x \in G \).

Proof. The result follows from the following equalities

\[
Af_o(x, y) = -\frac{1}{2} E_1 f_o(x, y, x, y) - \frac{1}{4} E_1 f_o(x + y, x + y, x + y, -x - y) + \frac{1}{4} E_1 f_o(x, x, -x) + \frac{1}{4} E_1 f_o(y, y, y, -y),
\]

\[
Af_o(x, y) = -\frac{1}{2} E_2 f_o(x, y, -x - y),
\]

\[
Af_o(x, y) = \frac{1}{2} E_3 f_o(x + y, -x, -y, 0, \cdots, 0),
\]

\[
Af_o(x, y) = \frac{1}{2} E_4 f_o(x, y),
\]

\[
Af_o(x, y) = \frac{1}{2n} \left(E_5 f_o(x, x, 0, \cdots, 0) + E_5 f_o(y, y, 0, \cdots, 0) - E_5 f_o(x + y, x - y, 0, \cdots, 0) \right),
\]

\[
Af_o(x, y) = \frac{1}{2} \left(E_6 f_o(x, y) - E_6 f_o(x, 0) - E_6 f_o(0, y) \right),
\]

\[
Af_o(x, y) = \frac{1}{2} E_7 f_o(x, y, 0, \cdots, 0),
\]

\[
Af_o(x, y) = -E_8 f_o(x + y, x - y) + E_8 f_o(x, x) + E_8 f_o(y, y),
\]

\[
Af_o(x, y) = -\frac{1}{12} E_9 f_o(2x + 2y, x - y) + \frac{1}{12} E_9 f_o(0, x - y) + \frac{1}{8} E_9 f_o(0, x + y) - \frac{1}{16} E_9 f_o(0, 2x) - \frac{1}{8} E_9 f_o(0, x) - \frac{1}{16} E_9 f_o(0, 2y) - \frac{1}{8} E_9 f_o(0, y),
\]

\[
Af_o(x, y) = -\frac{1}{4} E_{10} f_o(2x + 2y, x - y) - \frac{1}{4} E_{10} f_o(2x + 2y, y - x) + \frac{1}{2} E_{10} f_o(0, x + y) - \frac{1}{4} E_{10} f_o(0, 2x) - \frac{1}{2} E_{10} f_o(0, x) - \frac{1}{4} E_{10} f_o(0, 2y) - \frac{1}{2} E_{10} f_o(0, y),
\]

\[
Af_o(x) = \frac{1}{2} \left(E_{11} f_o(2x, y) - E_{11} f_o(0, x + y) + E_{11} f_o(0, x) + E_{11} f_o(0, y) \right),
\]

\[
Af_o(x, y, z, w) = \frac{E_{12} f_o(x, x, 0, 0) + E_{12} f_o(y, y, 0, 0) - E_{12} f_o(x + y, y, -y, 0, 0)}{8},
\]
\[Af_0(x, y, z, w) = \frac{E_{13}f_0(x, y, 0, 0)}{2}, \]
\[Af_o(x, y) = \frac{1}{2}E_{14}f_0(x, y, 0, 0), \]
\[Af_0(x, y) = \frac{1}{2}E_{15}f_0(x, y, 0, 0) - \frac{1}{2}E_{15}f_0(x, 0, 0, 0) \]
\[- \frac{1}{2}E_{15}f_0(0, y, 0, 0, 0), \]
\[Af_0(x, y, z) = \frac{E_{16}f_0(x, y, 0)}{2}, \]
\[Af_0(x, y, z) = \frac{1}{4}E_{17}f_0(x, x, 0) + \frac{1}{4}E_{17}f_0(y, y, 0) - \frac{1}{4}E_{17}f_0(x + y, x - y, 0), \]
\[Af_0(x, y, z, w) = \frac{1}{2}E_{18}f_0(x, y, 0, 0), \]
\[Af_0(x, y) = \frac{n - 1}{nC_k}E_{19}f_0(x, y, 0, 0, 0), \]
\[Af_0(x, y) = \frac{n}{2 \cdot nC_k}E_{20}f_0(x, y, 0, 0, 0) \]

for all \(x, y \in G \).

Lemma 2.2 If a mapping \(f : G \rightarrow V \) satisfies one of the functional equations \(E_if = 0, \ i = 1, 2, \ldots, 20 \), then \(f_e \) is a quadratic mapping, where \(f_e(x) := \frac{f(x) + f(-x)}{2} \) for all \(x \in G \).

Proof. The result follows from the following equalities
\[Qf_e(x, y) = -\frac{1}{2}E_1f_e(x, y, -x, -y) - \frac{1}{6}E_1f_e(0, 0, 0, 0), \]
\[Qf_e(x, y) = -E_2f_e(x, y, -x) - E_2f_e(0, 0, 0, 0), \]
\[Qf_e(x, y) = -E_3f_e(x, y, -y, 0, \ldots, 0) - \frac{n^2 - 3n - 2}{n^2 - 3n + 2}E_3f_e(0, 0, \ldots, 0), \]
\[Qf_e(x, y) = \frac{1}{2}E_4f_e(x, y), \]
\[Qf_e(x, y) = E_5f_e(x, y, 0, \ldots, 0) - \frac{n^2}{n - 2}E_5f_e(0, 0, \ldots, 0), \]
\[Qf_e(x, y) = \frac{1}{2}E_6f_e(x, y, 0, \ldots, 0) - E_6f_e(0, y) - E_6f_e(x, 0, 0), \]
\[Qf_e(x, y) = \frac{1}{2}E_7f_e(x, y, 0, \ldots, 0) - \frac{(n - 2)(n + 3)}{n^2 + n - 2}E_7f_e(0, 0, \ldots, 0), \]
\[Qf_e(x, y) = E_8f_e(x, y), \]
\[Qf_e(x, y) = \frac{1}{12}E_9f_e(2x, y) - \frac{1}{8}E_9f_e(0, x + y) - \frac{1}{8}E_9f_e(0, x - y) \]
\[+ \frac{1}{4}E_9f_e(0, x) + \frac{1}{6}E_9f_e(0, y) - \frac{1}{12}E_9f_e(0, 0). \]
\[Qf_e(x, y) = \frac{1}{4} E_{10} f_e(2x, y) + \frac{1}{4} E_{10} f_e(2x, -y) - \frac{1}{4} E_{10} f_e(0, x - y) \]
\[- \frac{1}{4} E_{10} f_e(0, x + y) + \frac{1}{2} E_{10} f_e(0, x), \]
\[Qf_e(x, y) = E_{11} f_e(x - y, y), \]
\[Qf_e(x, y, z, w) = \frac{3E_{12} f_e(x, y, 0, 0) - 2E_{12} f_e(0, 0, 0, 0)}{12}, \]
\[Qf_e(x, y, z, w) = \frac{3E_{13} f_e(x, y, 0, 0) - 2E_{13} f_e(0, 0, 0, 0)}{3}, \]
\[Qf_e(x, y) = \frac{1}{2} E_{14} f_e(x, y, 0, \ldots, 0) - \frac{n - 2}{2n} E_{14} f_e(0, 0, \ldots, 0), \]
\[Qf_e(x, y) = \frac{1}{2} E_{15} f_e(x, y, 0, \ldots, 0) - \frac{1}{2} E_{15} f_e(0, y, 0, \ldots, 0) \]
\[- \frac{1}{2} E_{15} f_e(x, 0, 0, \ldots, 0) - \frac{n^2 - n - 4}{2(n^2 - n)} E_{15} f_e(0, 0, \ldots, 0), \]
\[Qf_e(x, y, z) = \frac{2E_{16} f_e(x, y, 0) - E_{16} f_e(0, 0, 0)}{4}, \]
\[Qf_e(x, y, z) = \frac{2E_{17} f_e(x, y, 0) - E_{17} f_e(0, 0, 0)}{4}, \]
\[Qf_e(x, y, z, w) = \frac{3E_{18} f_e(x, y, 0, 0) - 2E_{18} f_e(0, 0, 0, 0)}{6}, \]
\[Qf_e(x, y) = \frac{n - 1}{k \cdot nC_k} E_{19} f_e(x, y, 0, \ldots, 0) \]
\[- \frac{n - 2}{k \cdot nC_k} E_{19} f_e(0, 0, 0, \ldots, 0), \]
\[Qf_e(x, y) = \frac{1}{nC_k} E_{20} f_e(x, y, 0, \ldots, 0) \]
\[- \frac{n - 2}{nC_k(n - 1)} E_{20} f_e(0, 0, 0, \ldots, 0) \]

for all \(x, y \in G \).

Theorem 2.3 If a mapping \(f : G \to V \) satisfies one of the functional equations \(E_i f = 0, i = 1, \ldots, 20 \), then \(f \) is a quadratic-additive mapping.

Proof. Since \(f = f_e + f_o \), the results follows from Lemma 2.1 and Lemma 2.2.

Lemma 2.4 If \(f : G \to V \) is a quadratic mapping, then \(f \) satisfies the functional equations \(E_i f = 0, i = 1, 2, 3, \ldots, 18 \).

Proof. Assume that \(f \) is quadratic mapping. From the following equalities

\[E_1 f(x, y, z, w) = \frac{1}{2}(Qf(x + y, z + w) + Qf(x + w, y + z) \]

...
On the quadratic additive type functional equations

\[E_2 f(x, y, z) = \frac{1}{2} (Qf(x + y, z) - Qf(x - z, y) + Qf(x, y + z) - Qf(x, z)), \]

\[E_4 f(x, y) = Qf(x, y) + \frac{1}{2} (Qf(x, -y) + Qf(y, -x)), \]

\[E_5 f(x_1, \ldots, x_n) = \sum_{\delta_3=0}^1 \cdots \sum_{\delta_n=0}^1 Qf \left(x_1, x_2 + \sum_{j=3}^n (-1)^{\delta_j} x_j \right) \]
\[+ 2 \sum_{\delta_1=0}^1 \sum_{\delta_n=0}^1 Qf \left(x_2, x_3 + \sum_{j=4}^n (-1)^{\delta_j} x_j \right) \]
\[+ \cdots \]
\[+ 2^{n-3} \sum_{\delta_n=0}^1 Qf \left(x_{n-2}, x_{n-1} + \sum_{j=n}^n (-1)^{\delta_j} x_j \right), \]
\[+ 2^{n-2} Qf(x_{n-1}, x_n) + 2^{n-2} \sum_{j=2}^n Qf(0, x_j) \]
\[- 2^{n-2} nQf(0, 0), \]

\[E_6 f(x, y) = -\frac{1}{2} (Qf(x + y, x - y) + (Qf(x + y, y - x)), \]

\[E_8 f(x, y) = \frac{1}{2} (Qf(x, y) + Qf(x, -y)), \]

\[E_9 f(x, y) = 3Qf(x, 2y) + 2Qf(y, -y) - 4Qf(0, y) + 5Qf(0, 0), \]

\[E_{10} f(x, y) = Qf(x - y, y) + Qf(x, -y), \]

\[E_{11} f(x, y) = Qf(x + y, y) - Qf(0, x + y) + Qf(0, x), \]

\[E_{12} f(x, y, z, w) = Qf(x + y, z - w) + Qf(x - y, z + w) + Qf(x - y, z - w) \]
\[+ Qf(x + y, z + w) + 4Qf(x, y) + 4Qf(z, w) \]
\[- 4Qf(0, y) - 4Qf(0, z) - 4Qf(0, w) + 12Qf(0, 0), \]

\[E_{13} f(x, y, z, w) = Qf(x + y, z + w) + Qf(x - y, z - w) + Qf(z + w, x + y) \]
\[+ Qf(z - w, x - y) + \frac{5}{2} Qf(x, y) + \frac{3}{2} Qf(x, y) - \frac{3}{2} Qf(0, x) \]
\[+ \frac{5}{2} Qf(z, w) + \frac{3}{2} Qf(z, w) - \frac{3}{2} Qf(0, z) + 3Qf(0, 0), \]

\[E_{14} f(x_1, \ldots, x_n) = \frac{1}{2} \sum_{1 \leq i, j \leq n, i \neq j} (Qk(x_i, x_j) + Qk(x_i, -x_j)), \]

\[E_{15} f(x_1, \ldots, x_n) = \frac{1}{2} \sum_{1 \leq i, j \leq n, i \neq j} (Qk(x_i, x_j) + Qk(x_i, -x_j)) \]
\[- \frac{n-1}{2} \sum_{i=1}^n (Qk(x_i, x_i) + Qk(x_i, -x_i)), \]

\[E_{16} f(x, y, z) = Qf(x + y, z) + Qf(z, x - y) + 2Qf(x, y) \]
for all \(x, y, z, w, x_1, x_2, \ldots, x_n \in G\), we can show that \(f\) satisfies the functional equations \(E_i f = 0\), where \(i = 1, 2, 4, 5, 6, 8, \ldots, 18\).

Now we want to prove \(E_3 f = 0\) and \(E_7 f = 0\) to complete the proof. We apply an induction on \(j \in \{2, 3, \ldots, n\}\) to prove \(E_3 f(x_1, x_2, \ldots, x_n) = 0\) and \(E_7 f(x_1, x_2, \ldots, x_n) = 0\) for all \(x_1, x_2, \ldots, x_n \in G\). For \(j = 2\), we have

\[
E_3 f(x_1, x_2, 0, \ldots, 0) = \frac{n-2}{n-1} Qf(0, 0) = 0,
\]

\[
E_7 f(x_1, x_2, 0, \ldots, 0) = 2Qf(x_1, x_2) - Qf(0, 0) = 0.
\]

We may assume that \(n > 2\). If \(E_3 f(x_1, \ldots, x_j, 0, \ldots, 0) = 0\) and \(E_7 f(x_1, \ldots, x_j, 0, \ldots, 0) = 0\) for some integer \(j\) \((2 \leq j < n)\) and for all \(x_1, \ldots, x_j \in G\), then a routine calculation yields

\[
E_3 f(x_1, x_2, \ldots, x_{j+1}, 0, \ldots, 0) = Qf(x_1 + \cdots + x_{j+1}, -x_2 - \cdots - x_j + x_{j+1})
\]

\[
- E_3 f(x_1, 2x_2, \ldots, 2x_j, 0, \ldots, 0) + 2E_3 f(-x_2, \ldots, -x_j, x_{j+1} 0, \ldots, 0)
\]

\[
- \sum_{i=1}^{j+1} Qf(x_1 + x_i, x_i) - \sum_{i=2}^{j-1} 2Qf(x_i, x_{j+1})
\]

\[
- \sum_{1 < i < k < j+1} Q(f(x_i + x_k, x_i + x_k) - (j-2)Qf(x_2, x_2) - (j-2)Qf(x_j, x_j)
\]

\[
= 0,
\]

\[
E_7 f(x_1, x_2, \ldots, x_{j+1}, 0, \ldots, 0) = Qf(x_1 + \cdots + x_j, x_{j+1} - x_j) + \frac{1}{2} E_7 f(x_1, x_2, \ldots, x_{j-1}, 2x_j, 0, \ldots, 0)
\]

\[
+ \frac{1}{2} E_7 f(x_1, x_2, \ldots, x_{j-1}, 2x_{j+1}, 0, \ldots, 0)
\]

\[
- \sum_{i=1}^{j-1} (Qf(x_i, x_j + Qf(x_i, x_{j+1}) - \frac{j}{2} Qf(x_{j+1}, x_{j+1}) - \frac{j}{2} Qf(x_j, x_j)
\]

\[
= 0
\]

for all \(x_1, x_2, \ldots, x_{j+1} \in G\). Hence, we conclude that

\[
E_3 f(x_1, x_2, \ldots, x_n) = 0, \quad E_7 f(x_1, x_2, \ldots, x_n) = 0
\]

for all \(x_1, x_2, \ldots, x_n \in G\).
Lemma 2.5 If $f : G \rightarrow V$ is an additive mapping, then f satisfies the functional equations $E_i f = 0$, where $i = 1, \cdots, 20$.

Proof. If f is an additive mapping, then we can easily show that

$$f \left(\sum_{j=1}^{n} a_j x_j \right) = \sum_{j=1}^{n} a_j f(x_j)$$

for all $x_1, x_2, \cdots, x_n \in G$ and all rational numbers a_1, a_2, \cdots, a_n. The result follows from this equality.

The following theorem follows from Lemma 2.1, Lemma 2.2, Lemma 2.4, and Lemma 2.5.

Theorem 2.6 The functional equation $E_i f : G \rightarrow V$ is a quadratic-additive type functional equation, where $i = 1, 2, 3, \cdots, 18$.

3 Quadratic-additive mappings

Throughout this section, let Y be a real normed space.

Theorem 3.1 Let $\varphi : G \setminus \{0\} \rightarrow [0, \infty)$ be a function satisfying one of the following conditions

1. \[\lim_{n \to \infty} \frac{\varphi \left(2^n x \right)}{2^n} = 0, \]
2. \[\lim_{n \to \infty} 2^n \varphi \left(\frac{x}{2^n} \right) = 0 = \lim_{n \to \infty} \frac{\varphi \left(2^n x \right)}{4^n}, \]
3. \[\lim_{n \to \infty} 4^n \varphi \left(\frac{x}{2^n} \right) = 0 \]

for all $x \in X$. Let $f : G \rightarrow Y$ be a given mapping. If there exists a quadratic-additive mapping $F : G \rightarrow Y$ such that

$$\| f(x) - F(x) \| \leq \varphi(x)$$

for all $x \in G \setminus \{0\}$, then F is a unique quadratic-additive mapping satisfying the inequality (4).

Proof. Assume that F and F' are two quadratic-additive mappings satisfying (4) for a given mapping $f : G \rightarrow Y$. Then there are additive mappings A, A'
and quadratic mappings Q, Q' such that $F = Q + A$ and $F' = Q' + A'$.

For the case $\varphi : G \to [0, \infty]$ satisfies the condition (1) or (2), we have

$$\|Q(x) - Q'(x)\| = \frac{1}{4^n} \|Q(2^n x) - Q'(2^n x)\|$$

$$= \frac{1}{4^n} \|F(2^n x) - A(2^n x) - f(2^n x) + f(2^n x) + A'(2^n x) - F'(2^n x)\|$$

$$\leq \frac{1}{4^n} \|F(2^n x) - f(2^n x)\| + \frac{1}{4^n} \|A'(2^n x) - A(2^n x)\|$$

$$+ \frac{1}{4^n} \|f(2^n x) - F'(2^n x)\|$$

$$\leq \frac{2}{4^n} \varphi(2^n x) + \frac{1}{2^n} \|A'(x) - A(x)\|$$

for all $x \in G \setminus \{0\}$ and all $n \in N$. So we obtain the equality $Q(x) = Q'(x)$ for all $x \in G \setminus \{0\}$ by taking the limit of the above inequality as $n \to \infty$. If $\varphi : G \to [0, \infty]$ satisfies the condition (1), we get

$$\|A(x) - A'(x)\| = \frac{1}{2^n} \|A(2^n x) - A'(2^n x)\|$$

$$= \frac{1}{2^n} \|F(2^n x) - f(2^n x) + f(2^n x) - F'(2^n x)\|$$

$$\leq \frac{1}{2^n} \|F(2^n x) - f(2^n x)\| + \frac{1}{2^n} \|f(2^n x) - F'(2^n x)\|$$

$$\leq \frac{2}{2^n} \varphi(2^n x)$$

for all $n \in N$. So we obtain the equality $A(x) = A'(x)$ for all $x \in G \setminus \{0\}$ by taking the limit of the above inequality as $n \to \infty$. Therefore we get $F(x) = F'(x)$ for all $x \in G \setminus \{0\}$.

On the other hand if $\varphi : G \to [0, \infty]$ satisfies the condition (2), then we have

$$\|A(x) - A'(x)\| = 2^n \|A\left(\frac{x}{2^n}\right) - A'\left(\frac{x}{2^n}\right)\|$$

$$= 2^n \|F\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right) + f\left(\frac{x}{2^n}\right) - F'\left(\frac{x}{2^n}\right)\|$$

$$\leq 2^n \|F\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right)\| + 2^n \|f\left(\frac{x}{2^n}\right) - F'\left(\frac{x}{2^n}\right)\|$$

$$\leq 2^{n+1} x \varphi\left(\frac{x}{2^n}\right)$$

for all $n \in N$. So we obtain the equality $A(x) = A'(x)$ for all $x \in G \setminus \{0\}$ by taking the limit of the above inequality as $n \to \infty$. Therefore we get $F(x) = F'(x)$ for all $x \in G \setminus \{0\}$.

For the case $\varphi : G \to [0, \infty]$ satisfies the condition (3), we have

$$\|A(x) - A'(x)\| = 2^n \|A\left(\frac{x}{2^n}\right) - A'\left(\frac{x}{2^n}\right)\|$$
Theorem 3.1 for the case (1), (2), or (3), respectively.

Proof

Inequality (5).

Since F_n taking the limit of the above inequality as $n \to \infty$ for all $n \in \mathbb{N}$, we obtain the equality (\ast) for any $n \in \mathbb{N}$, and for all $x \in G \backslash \{0\}$. Therefore we get $F(x) = F'(x)$ for all $x \in G \backslash \{0\}$. Since $F(0) = F'(0)$, we obtain the equality $F(x) = F'(x)$ for all $x \in G$ for any case.

Corollary 3.2 Let X be a normed space and let p, k be real numbers with $p \neq 1, 2$ and $k \geq 0$. For a given mapping $f : X \to Y$, if there exists a quadratic-additive mapping $F : X \to Y$ such that

$$\|f(x) - F(x)\| \leq k\|x\|^p$$

for all $x \neq 0$, then F is a unique quadratic-additive mapping satisfying the inequality (5).

Proof. Let $\varphi : X \to [0, \infty)$ be a mapping defined by $\varphi(x) = k\|x\|^p$ for all $x \in X \backslash \{0\}$. If $p < 1$, $1 < p < 2$, or $p > 2$, then this corollary follows from Theorem 3.1 for the case (1), (2), or (3), respectively.

References

Received: May 14, 2013