Some Properties of a Semi Dynamical System

Generated by von Forester-Losata Type

Partial Equations

Eman Samir, Iftichar Muder and Eman Jawad

University of Babylon, College of Education for Pure Sciences
Mathematics Department, Babylon, Iraq
emanbhaya@yahoo.com, iftichar_talb@yahoo.com, im_j2012@yahoo.com

Copyright © 2013 Eman Samir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we consider a semi dynamical system, \((T_t)_{t \geq 0}\) generated by different partial equations of Von Forester-Lasota a type. We investigate some of the properties of dynamical system in the space \(L^p\) with \(p < 1\).

Keywords: von Forester-Lasota equation, stability.

1-Introduction

First, we consider the partial differential equation

\[\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = \gamma u, \quad t \geq 0, \quad 0 \leq x \leq 1 \] \hspace{1cm} (1)

with the initial condition

\[u(0,x) = v(x), \quad 0 \leq x \leq 1 \] \hspace{1cm} (2)
where \(v \) belong to some normed vector space \(V \) of functions defined on \([0,1]\).

The function \(\tilde{T}_t \) is given by the formula

\[
(\tilde{T}_t v)(x) = \tilde{u}(t, x) = e^{\gamma t} v(x e^{-t}), \quad x \in [0,1]
\]

(3)

where \(\tilde{u} \) is the unique solution of (1) and (2).

The second considered partial differential equation is

\[
\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = \lambda(x)u , \quad t \geq 0 , \quad 0 \leq x \leq 1
\]

(4)

with the initial condition

\[
u(0,x) = v(x) , \quad 0 \leq x \leq 1
\]

(5)

where \(v \) belongs to some normed vector space \(V \) of functions defined on \([0,1]\) and \(\lambda: [0,1] \rightarrow \mathbb{R} \) is given continuous function. Let a semi dynamical system

\[
T_t: V \rightarrow V \quad \text{Be given by the formula} \quad (T_t v)(x) = u(t,x).
\]

It is clear that the unique of (4), (5) is given by the formula

\[
(T_t v)(x) = u(t,x) = e^{g(x)} e^{-g(x e^{-t})} v(x e^{-t}), \quad x \in [0,1]
\]

(6)

where

\[
g(x) = - \int_x^1 \frac{\lambda(s)}{s} ds \quad \text{with the condition}
\]

\[
\int_0^1 \frac{\lambda(s)}{s} ds = \infty.
\]

(7)

This can be found in Dawidowicz, Poskrobko (2006). There exists a connection between these two equations. It is easy to check that if \(u \) and \(\tilde{u} \) are the solutions of the equation (4) and (1), respectively, we have the equality

\[
\tilde{u}(t, x) = k(x) u(t, x),
\]

(8)

where

\[
k(x) = e^{\int_0^x \frac{\lambda(s)-\gamma}{s} ds} \quad \text{and} \quad \gamma = \lambda(0).
\]

All properties of the system \((\tilde{T}_t)_{t \geq 0} \) and \((T_t)_{t \geq 0} \) depend on the value of the constant \(\gamma = \lambda(0) \).
Definition 1.1 A function \(v_0 \in V \) is a periodic point of the semi group \((T_t)_{t \geq 0}\) with a period \(t_0 \geq 0 \) if and only if \(T_{t_0} v_0 = v_0 \). A number \(t_0 > 0 \) is called a principal period of a periodic point \(v_0 \) if and only if the set of all periods of \(v_0 \) is equal \(N t_0 \).

Definition 1.2 The semi group \((T_t)_{t \geq 0}\) is strongly stable in \(V \) iff for every \(v \in V \), \(\lim_{t \to \infty} T_t v = 0 \) in \(V \).

Definition 1.3 The semi group \((T_t)_{t \geq 0}\) is exponentially stable on \(V \) iff there exists \(D < \infty \) and \(\omega > 0 \) such that
\[
\|T_t\| \leq D e^{-\omega t}, \text{ for } t \geq 0
\]
where \(\|\cdot\| \) is the norm of \(V \).

2. Properties of dynamical system \((T_t)_{t \geq 0}\)

Theorem 2.1 Assume that

\[
\exists C, q > 0 \quad \forall x \in [0, 1] \quad |\lambda(0) - \lambda(x)| \leq C x^q
\] (9)

Holds, then we have the equivalence: the function \(u \) belongs to the space \(\hat{L}_p \) if and only if \(u \in \hat{L}_p, p < 1 \).

Proof: by (9), \(u \in L_p \) iff \(\hat{u} \in L_p \). This can be found in Dawidowicz, Poskrobko (2006). Assume that \(u \in \hat{L}_p \) we have

\[
S_{(0,\alpha)}(\hat{u}) = \sup_{x \in (0,\alpha)} \left(\frac{1}{x} \int_0^x |\hat{u}(t, s)|^p \, ds \right)^{\frac{1}{p}} = \sup_{x \in (0,\alpha)} \left(\frac{1}{x} \int_0^x |k(s)u(t, s)|^p \, ds \right)^{\frac{1}{p}}
\]

\[
\leq \sup_{x \in (0,\alpha)} \left(\frac{1}{x} \int_0^x e^{p f_0 \int_0^s \frac{1}{\sigma} |\lambda(0) - \lambda(\sigma)| \, d\sigma} |u(t, s)|^p \, ds \right)^{\frac{1}{p}}
\]

\[
|\lambda(0) - \lambda(\sigma)| \leq C x^q , \quad e^{pc f_0 \int_0^s \frac{1}{\sigma^q} \, d\sigma} = e^{pcq}\frac{1}{q}
\]

\[
\leq \sup_{x \in (0,1)} \left(\frac{1}{x} \int_0^x e^{pcq}\frac{1}{q} |u(t, s)|^p \, ds \right)^{\frac{1}{p}} \leq e^{pcq} \sup_{x \in (0,\alpha)} \left(\frac{1}{x} \int_0^x |u(t, s)|^p \, ds \right)^{\frac{1}{p}}
\]

\[
\leq e^{pcq} S_{(0,\alpha)}(u), \text{ So } \lim_{\alpha \to 0} S_{(0,\alpha)}(\hat{u}) = 0
\]

In this same manner we can establish the inverse implication.
\[
S_{(0,a)}(u) = \sup_{x \in (0,a)} \left(\frac{1}{x} \int_0^x |u(t,s)|^p \, ds \right)^{\frac{1}{p}} = \sup_{x \in (0,a)} \left(\frac{1}{x} \int_0^x \left| \frac{\tilde{u}(t,s)}{k(s)} \right|^p \, ds \right)^{\frac{1}{p}} \\
\leq \sup_{x \in (0,a)} \left(\frac{1}{x} \int_0^x \left| \frac{\tilde{u}(t,s)}{C_{\alpha}^q} \right|^p \, ds \right)^{\frac{1}{p}} \\
\leq \sup_{x \in (0,a)} \left(\frac{1}{x} \int_0^x e^{-\frac{pC_{\alpha}^q}{q} \left| \tilde{u}(t,s) \right|} \, ds \right)^{\frac{1}{p}} \\
\leq e^{-\frac{pC_{\alpha}^q}{q} \tilde{S}_{(0,a)}(\tilde{u})}, \quad \lim_{a \to 0} S_{(0,a)}(u) = 0 .
\]

Theorem 2.2 If $\lambda(0) > 0$, then for any t, there exists such $v_0 \in \tilde{L}_p$, $p < 1$ that

\[T_{t,v_0} = v_0 \quad (10) \]

Moreover,

\[T_{t,v_0} = v_0 \text{ if and only if } t = nt_0 \text{ for some positive integer } (11) \]

Proof: Let ω be an arbitrary function belong to L_p, defined on the interval $[e^{-t_0}, 1]$ and satisfying the following conditions:

\[e^{-g(e^{-t_0})} \omega(e^{-t_0}) = \omega(1), \quad (12) \]

\[e^{-g(e^{-t})} \omega(e^{-t}) \neq \omega(1) \quad \forall t \in (0, t_0). \quad (13) \]

Consider the function v on the interval $(0, 1)$

\[v(x) = e^{g(x)} e^{-g(x e^{nt_0})} \omega(x e^{nt_0}) \quad \text{for } x \in [e^{-(n+1)t_0}, e^{-nt_0}]. \]

The function v is defining on the whole interval $(0, 1) = \bigcup_{n=0}^{\infty} (e^{-(n+1)t_0}, e^{-nt_0})$ and comes into being squeezing the graph of the function ω into each of the intervals

\[(e^{-(n+1)t_0}, e^{-nt_0}). \]

By assumption of the continuity of ω on $[e^{-t_0}, 1]$ follows its boundedness, i.e.

\[\exists M > 0 \text{ such that } |\omega(x)| \leq M \text{ for each } x \in [e^{-t_0}, 1]. \]

By the above for $x \in [e^{-(n+1)t_0}, e^{-nt_0}]$, we have the estimation

\[|v(x)| = e^{g(x)} e^{-g(x e^{nt_0})} |\omega(x e^{nt_0})| \leq Me^{g(x)} \sup_{x \in [e^{-g(x)_1}, e^{-g(x)}]} |e^{-g(x)}| \leq M_1 e^{g(x)} \]

where $M_1 = M \sup_{x \in [e^{-t_0}, 1]} e^{-g(x)}$, from the assumption (7) $\lim_{x \to 0} e^{g(x)} = 0$ so we deduce that $v(0) = 0$. we obtain the continuous function v defined on the whole interval $[0,1]$. The property (10) follows from (12), while the property (11) from (13). Our next goal is to show that $v \in \tilde{L}_p$. Under theorem (4.1) [6] we know that $\tilde{v} \in \tilde{L}_p$ for
\(\gamma > 0 \), where \(\bar{v} \) is the solution of the equation (1). It clearly the same conclusion for the function \(v \) by theorem (2.1)

Theorem 2.3 if \(\lambda(0) > 0 \) then the set of periodic points of (4) is dense in \(\hat{L}_p, p < 1 \).

Proof: let \(\varepsilon > 0 \) and let \(v \in \hat{L}_p \). let \(v \) be a periodic solution of (4) Defined by the formula (6)

Since \(v \) and \(\omega \) belong to \(\hat{L}_p \) there exist to such that \(S_{(0, e^{-t_1})}(v) < \frac{\varepsilon}{4} \) and \(S_{(0, e^{-t_1})}(\omega) < \frac{\varepsilon}{4} \).

We know that \(v(x) = \frac{\bar{v}(x)}{k(x)} \), where \(\bar{v} \) is the periodic solution of (1)

The assumption \(\lambda(0) > 0 \), guarantees the density of the set of periodic points of (1), so \(S_{(0,1)}(v - \bar{v}) < \frac{\varepsilon}{4} \) and \(S_{(0,1)}(\omega - \bar{v}) < \frac{\varepsilon}{4} \)

Thus

\[
S_{(0,1)}(v - \omega) \leq S_{(0, e^{-t_1})}(v - \omega) + S_{(e^{-t_1})}(v) \leq S_{(0, e^{-t_1})}(v) + S_{(0, e^{-t_1})}(v + \bar{v} - \omega) \leq S_{(0, e^{-t_1})}(v) + S_{(0, e^{-t_1})}(\omega) + S_{(0,1)}(v - \bar{v}) + S_{(0,1)}(\bar{v} - \omega) < \varepsilon.
\]

Theorem 2.4 if \(\lambda(0) \leq 0 \) then for every \(v \in \hat{L}_p \), \(\lim_{t \to \infty} S_{(0,1)}(T_t v) = 0 \).

Moreover, if \(\lambda(0) < 0 \), the semigroup \((T_t)_{t \geq 0} \) is exponentially stable.

Proof: Take any \(v \in \hat{L}_p \), then we have

\[
S_{(0,1)}(T_t v) = \sup_{x \in (0,1)} \left(\frac{1}{x} \int_0^x |u(t, s)|^p ds \right)^{\frac{1}{p}} = \sup_{x \in (0,1)} \left(\frac{1}{x} \int_0^x \left| \frac{1}{k(s)} (T_t \bar{v})(s) \right|^p ds \right)^{\frac{1}{p}}
\]

And, \((s) = e^{\int_0^s \sigma \lambda(0) - \lambda(\sigma) d\sigma} \),

so \(k(s) = e^{c \frac{s^q}{q}} \)

Then

\[
S_{(0,1)}(T_t v) = \sup_{x \in (0,1)} \left(\frac{1}{x} \int_0^x \left| e^{c \frac{s^q}{q}} (T_t \bar{v})(s) \right|^p ds \right)^{\frac{1}{p}}
\]

Since \(\sup_{x \in (0,1)} e^{c \frac{s^q}{q}} \leq e^c \)

then

\[
S_{(0,1)}(T_t v) \leq e^c S_{(0,1)}(T_t \bar{v})
\]
Applying theorem (4.3)[1] we can assert that $S_{(0,1)}(T_t \nu) \to 0$, as $t \to \infty$. This proves the first part of the theorem. The second one follows immediately from the same above inequality and theorem (4.3)[6] with $D = e^{\xi t}$ and $\omega = -\lambda(0)$

$$S_{(0,1)}(T_t \nu) \leq e^{\xi t}S_{(0,1)}(T_t \vartheta) \leq e^{\xi t}e^{\lambda(0)t} = e^{\xi t+\lambda(0)t}.$$

References

Received: April 8, 2013