Faintly \((m, \mu)\)-Continuous Functions

Piyatida Chanapun\(^1\), Chawalit Boonpok\(^2\) and Chokchai Viriyapong\(^3\)

Department of Mathematics, Faculty of Science
Mahasarakham University, Mahasarakham 44150, Thailand
parada2527@gmail.com\(^1\), chawalit.b@msu.ac.th\(^2\), chokchai.v@msu.ac.th\(^3\)

Abstract

A new class of functions, called faintly \((m, \mu)\)-continuous functions, has been defined and studied. Some characterizations and several properties concerning faintly \((m, \mu)\)-continuous functions are obtained. The relationships between faintly \((m, \mu)\)-continuous functions and other related generalized forms of \((m, \mu)\)-continuity are also discussed.

Mathematics Subject Classification: 54A05, 54C08

Keywords: \(m\)-space, generalized topological space, faintly \((m, \mu)\)-continuous function

1 Introduction

In 1982, P. E. Long and L. L. Herrington [5] introduced the notion of faintly continuous functions. Some properties of faintly continuous functions are studied in [8, 11]. In 1990, the present authors [10] introduced and investigated three weaker forms of faint continuity, that is, faint semi-continuity, faint pre-continuity and faint \(\beta\)-continuity. Recently, S. Jafari and T. Noiri [4] have introduced and investigated the notion of faintly \(\alpha\)-continuous functions. A. A. Nasef [7] has also introduced weaker forms of faint continuity, that is, faint \(\alpha\)-continuity and faint \(\gamma\)-continuity (or faint \(b\)-continuity). In 2004, T. Noiri and V. Popa [9] introduced the notion of faintly \(m\)-continuous functions and investigated their properties and the relationships between faint \(m\)-continuity
and other related generalized forms of continuity. On the other hand, the present authors introduced the notions of \((m, \mu)\)-continuous functions, almost \((m, \mu)\)-continuous functions and weakly \((m, \mu)\)-continuous functions [12].

In this paper, we introduce the notion of faintly \((m, \mu)\)-continuous functions as functions from a set \(X\) satisfying some minimal conditions into a generalized topological spaces and investigate their properties and the relationships between faint \((m, \mu)\)-continuity and other related generalized forms of \((m, \mu)\)-continuity.

2 Preliminaries

We recall some notions defined in [2]. Let \(X\) be a nonempty set and \(\text{exp} \ X\) the power set of \(X\). We call a class \(\mu \subseteq \text{exp} \ X\) a generalized topology (briefly, GT) if \(\emptyset \in \mu\) and the arbitrary union of elements of \(\mu\) belongs to \(\mu\). A set \(X\) with a GT \(\mu\) on it is said to be a generalized topological space (briefly, GTS) and is denoted by \((X, \mu)\). For a GTS \((X, \mu)\), the elements of \(\mu\) are called \(\mu\)-open sets and the complements of \(\mu\)-open sets are called \(\mu\)-closed sets. For \(A \subseteq X\), we denote by \(c_\mu(A)\) the intersection of all \(\mu\)-closed sets containing \(A\) and by \(i_\mu(A)\) the union of all \(\mu\)-open sets contained in \(A\). Then, we have \(i_\mu(c_\mu(A)) = c_\mu(A)\) and \(X - i_\mu(A) = c_\mu(X - A)\). According to [3], for \(A \subseteq X\) and \(x \in X\), we have \(x \in c_\mu(A)\) if \(x \in M \in \mu\) implies \(M \cap A \neq \emptyset\). A subset \(R\) of a generalized topological space \((X, \mu)\) is said to be \(\mu_r\)-open [3] (resp. \(\mu_r\)-closed) if \(R = i_\mu(c_\mu(R))\) (resp. \(R = c_\mu(i_\mu(R))\)).

Definition 2.1. [14] A subfamily \(m_X\) of the power set \(\text{P}(X)\) of a nonempty set \(X\) is called a minimal structure (briefly, \(m\)-structure) on \(X\) if \(\emptyset \in m_X\) and \(X \in m_X\).

By \((X, m_X)\) (briefly, \((X, m)\)), we denote a nonempty set of \(X\) with a minimal structure \(m_X\) on \(X\) and call it an \(m\)-space. Each member of \(m_X\) is said to be \(m_X\)-open (briefly, \(m\)-open) and the complement of an \(m_X\)-open set is said to be \(m_X\)-closed (briefly, \(m\)-closed).

Definition 2.2. [6] Let \(X\) be a nonempty set and \(m_X\) a minimal structure on \(X\). For a subset \(A\) of \(X\), the \(m_X\)-closure of \(A\) and the \(m_X\)-interior of \(A\) are defined as follows:

1. \(m_X Cl(A) = \cap \{F : A \subseteq F, X - F \in m_X\}\);
2. \(m_X Int(A) = \cup \{U : U \subseteq A, U \in m_X\}\).

Lemma 2.3. [6] Let \(X\) be a nonempty set and \(m_X\) be an \(m\)-structure on \(X\). For subset \(A\) and \(B\) of \(X\), the following properties hold:

1. \(m_X Cl(X - A) = X - m_X Int(A)\) and \(m_X Int(X - A) = X - m_X Cl(A)\);
Let (X, μ) be a generalized topological space and A be a subset of X. Then a point $x \in X$ is called a ζ-cluster point of A if $c_{\mu}(V) \cap A \neq \emptyset$ for every μ-open set V containing x. The set of all ζ-cluster points of A is called the ζ-closure of A and is denoted by $c_\zeta(A)$. A set A is said to be ζ-closed if $A = c_\zeta(A)$. The complement of a ζ-closed set is said to be ζ-open.

The union of all ζ-open sets contained in a subset A is called the ζ-interior of A and denoted by $i_\zeta(A)$. The set of all ζ-open sets in (X, μ) is denoted by μ_ζ.

Lemma 3.2. Let (X, μ) be a generalized topological space. A subset A of X is ζ-open if and only if for every $x \in A$, there exists a μ-open set U such that $x \in U \subseteq c_{\mu}(U) \subseteq A$.

Proof. Let A be ζ-open and $x \in A$. Then $X - A$ is ζ-closed and $c_\zeta(X - A) = X - A$. There exists a μ-open set U containing x such that $c_{\mu}(U) \cap (X - A) = \emptyset$. Hence, $c_{\mu}(U) \subseteq A$.

Conversely, suppose that $x \notin X - A$. Then $x \in A$ and by the hypothesis there exists a μ-open set U such that $x \in U \subseteq c_{\mu}(U) \subseteq A$. Then $c_{\mu}(U) \cap (X - A) = \emptyset$ and hence $x \notin c_\zeta(X - A)$. Therefore, $X - A$ is ζ-closed. Hence, A is ζ-open. \qed
Definition 3.3. Let \((X, m_X)\) be an \(m\)-space and \((Y, \mu)\) be a generalized topological space. A function \(f : (X, m_X) \rightarrow (Y, \mu)\) is said to be faintly \((m, \mu)\)-continuous at \(x \in X\) if for each \(\zeta\)-open set \(V\) of \(Y\) containing \(f(x)\), there exists \(U \in m_X\) containing \(x\) such that \(f(U) \subseteq V\). The function \(f\) is said to be faintly \((m, \mu)\)-continuous if it is faintly \((m, \mu)\)-continuous at each point \(x \in X\).

Theorem 3.4. A function \(f : (X, m_X) \rightarrow (Y, \mu)\) is faintly \((m, \mu)\)-continuous at \(x \in X\) if and only if for each \(\zeta\)-open set \(V\) of \(Y\) containing \(f(x)\), \(x \in m_X \text{Int}(f^{-1}(V))\).

Proof. Let \(f\) be faintly \((m, \mu)\)-continuous at \(x \in X\) and \(V\) be a \(\zeta\)-open set of \(Y\) containing \(f(x)\). Then, there exists \(U \in m_X\) containing \(x\) such that \(f(U) \subseteq V\). Then we have \(x \in U \subseteq f^{-1}(V)\) and hence \(x \in m_X \text{Int}(f^{-1}(V))\).

Conversely, let \(V\) be a \(\zeta\)-open set containing \(f(x)\). Then by the hypothesis we have \(x \in m_X \text{Int}(f^{-1}(V))\). There exists \(U \in m_X\) containing \(x\) such that \(x \in U \subseteq f^{-1}(V)\); hence \(f(U) \subseteq V\). This shows that \(f\) is faintly \((m, \mu)\)-continuous at \(x \in X\).

Theorem 3.5. For a function \(f : (X, m_X) \rightarrow (Y, \mu)\), the following properties are equivalent:

1. \(f\) is faintly \((m, \mu)\)-continuous;
2. \(f^{-1}(V) = m_X \text{Int}(f^{-1}(V))\) for every \(\zeta\)-open set \(V\) of \(Y\);
3. \(f^{-1}(F) = m_X \text{Cl}(f^{-1}(F))\) for every \(\zeta\)-closed set \(F\) of \(Y\).

Proof. (1)\(\Rightarrow\)(2) Let \(V\) be a \(\zeta\)-open set of \(Y\) and \(x \in f^{-1}(V)\). Then \(f(x) \in V\), there exists \(U \in m_X\) containing \(x\) such that \(f(U) \subseteq V\). It follows that \(x \in U \subseteq f^{-1}(V)\). Hence, \(x \in m_X \text{Int}(f^{-1}(V))\). Therefore, \(f^{-1}(V) \subseteq m_X \text{Int}(f^{-1}(V))\) and hence \(f^{-1}(V) = m_X \text{Int}(f^{-1}(V))\).

(2)\(\Rightarrow\)(3) Let \(F\) be a \(\zeta\)-closed set of \(Y\). Then by (2), we have \(X - f^{-1}(F) = f^{-1}(Y - F) = m_X \text{Int}(f^{-1}(Y - F)) = X - m_X \text{Cl}(f^{-1}(F))\). Hence, \(f^{-1}(F) = m_X \text{Cl}(f^{-1}(F))\).

(3)\(\Rightarrow\)(1) Let \(V\) be a \(\zeta\)-open set of \(Y\) containing \(f(x)\). By (3), we have \(X - f^{-1}(V) = f^{-1}(Y - V) = m_X \text{Cl}(f^{-1}(Y - V)) = X - m_X \text{Int}(f^{-1}(V))\). Therefore, \(f^{-1}(V) = m_X \text{Int}(f^{-1}(V))\). Since \(x \in f^{-1}(V) = m_X \text{Int}(f^{-1}(V))\), there exists \(U \in m_X\) containing \(x\) such that \(x \in U \subseteq f^{-1}(V)\). Hence, \(f(U) \subseteq V\). Therefore, \(f\) is faintly \((m, \mu)\)-continuous.

Definition 3.6. [12] Let \((X, m_X)\) be an \(m\)-space and \((Y, \mu)\) be a generalized topological space. A function \(f : (X, m_X) \rightarrow (Y, \mu)\) is said to be \((m, \mu)\)-continuous at \(x \in X\) if for each \(\mu\)-open set \(V\) of \(Y\) containing \(f(x)\), there exists \(U \in m_X\) containing \(x\) such that \(f(U) \subseteq V\). The function \(f\) is said to be \((m, \mu)\)-continuous if it is \((m, \mu)\)-continuous at each point \(x \in X\).
Lemma 3.7. Let \((X, \mu)\) be a generalized topological space. Then \(\mu_\zeta\) is a generalized topology on \(X\).

Proof. \(\emptyset \in \zeta_\mu\) is evident. Let \(G_k\) be \(\zeta\)-open for all \(k \in K\). Let \(x \in \bigcup_{k \in K} G_k\). Then \(x \in G_{k_0}\) for some \(k_0 \in K\). There exists \(U \in \mu\) such that \(x \in U \subseteq c_\mu(U) \subseteq G_{k_0} \subseteq \bigcup_{k \in K} G_k\). Hence, \(\bigcup_{k \in K} G_k \in \zeta_\mu\). \(\square\)

Theorem 3.8. For a function \(f : (X, m_X) \to (Y, \mu)\), the following properties are equivalent:

1. \(f\) is faintly \((m, \mu)\)-continuous;
2. \(f : (X, m_X) \to (Y, \mu_\zeta)\) is \((m, \mu)\)-continuous;
3. \(f^{-1}(V) = m_X \text{Int}(f^{-1}(V))\) for every \(\zeta\)-open set \(V\) of \(Y\);
4. \(f^{-1}(F) = m_X \text{Cl}(f^{-1}(F))\) for every \(\zeta\)-closed set \(F\) of \(Y\).

Proof. The proof follows from Definition 3.3 and 3.6 and Theorem 3.5. \(\square\)

Corollary 3.9. Let \(m_X\) have property B. For a function \(f : (X, m_X) \to (Y, \mu)\), the following properties are equivalent:

1. \(f\) is faintly \((m, \mu)\)-continuous;
2. \(f : (X, m_X) \to (Y, \mu_\zeta)\) is \((m, \mu)\)-continuous;
3. \(f^{-1}(V)\) is \(m_X\)-open in \(X\) for every \(\zeta\)-open set \(V\) of \(Y\);
4. \(f^{-1}(F)\) is \(m_X\)-closed in \(X\) for every \(\zeta\)-closed set \(F\) of \(Y\).

Proof. The proof follows from Theorem 3.8 and Lemma 2.5. \(\square\)

Theorem 3.10. Let \(m_X\) have property B. For a function \(f : (X, m_X) \to (Y, \mu)\), the following statements are equivalent:

1. \(f\) is faintly \((m, \mu)\)-continuous;
2. \(f^{-1}(V)\) is \(m_X\)-open in \(X\) for every \(\zeta\)-open set \(V\) of \(Y\);
3. \(f^{-1}(F)\) is \(m_X\)-closed in \(X\) for every \(\zeta\)-closed set \(F\) of \(Y\);
4. \(f : (X, m_X) \to (Y, \mu_\zeta)\) is \((m, \mu)\)-continuous;
5. \(m_X \text{Cl}(f^{-1}(A)) \subseteq f^{-1}(c_\zeta(A))\) for every subset \(A\) of \(Y\);
6. \(f^{-1}(i_\zeta(B)) \subseteq m_X \text{Int}(f^{-1}(B))\) for every subset \(B\) of \(Y\).
Proof. (1)⇒(2) Let \(V \) be a \(\zeta \)-open set of \(Y \) and \(x \in f^{-1}(V) \). Since \(f(x) \in V \) and \(f \) is faintly \((m,\mu)\)-continuous, there exists \(U \in m_X \) such that \(f(U) \subseteq V \). Thus \(x \in U \subseteq f^{-1}(V) \), then \(x \in m_X \text{Int}(f^{-1}(V)) \). Therefore, \(f^{-1}(V) \subseteq m_X \text{Int}(f^{-1}(V)) \). Consequently, \(f^{-1}(V) = m_X \text{Int}(f^{-1}(V)) \) and hence \(f^{-1}(V) \) is \(m_X \)-open in \(X \).

(2)⇒(1) Let \(x \in X \) and \(V \) be a \(\zeta \)-open set of \(Y \) containing \(f(x) \). By (2), \(f^{-1}(V) \) is \(m_X \)-open containing \(x \). Take \(U = f^{-1}(V) \). Then \(f(U) \subseteq V \). This shows that \(f \) is faintly \((m,\mu)\)-continuous.

(2)⇒(3) Let \(F \) be any \(\zeta \)-closed set of \(Y \). Since \(Y - F \) is a \(\zeta \)-open set, by (2), it follows that \(f^{-1}(Y - F) = f^{-1}(Y) - f^{-1}(F) = X - f^{-1}(F) \) is \(m_X \)-open. Therefore, \(f^{-1}(F) \) is \(m_X \)-closed in \(X \).

(3)⇒(2) Let \(V \) be a \(\zeta \)-open set of \(Y \). Then \(Y - V \) is \(\zeta \)-closed in \(Y \). By (3), \(f^{-1}(Y - V) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V) \) is \(m_X \)-closed and hence \(f^{-1}(V) \) is \(m_X \)-open in \(X \).

(3)⇒(4) Let \(x \in X \) and \(V \) be a \(\zeta \)-open set of \(Y \) containing \(f(x) \). By (3), it follows that \(X - f^{-1}(V) = f^{-1}(Y - V) = m_X \text{Cl}(f^{-1}(Y - V)) = X - m_X \text{Int}(f^{-1}(V)) \). Therefore, \(f^{-1}(V) = m_X \text{Int}(f^{-1}(V)) \), there exists \(U \in m_X \) containing \(x \) such that \(x \in U \subseteq f^{-1}(V) \). Hence, \(f(U) \subseteq V \). This shows that \(f : (X,m_X) \to (Y,\mu) \) is \((m,\mu)\)-continuous.

(4)⇒(5) Let \(A \) be any subset of \(Y \). Since \(c_\zeta(A) \) is a \(\zeta \)-closed set in \(Y \), by Theorem 3.8(4), \(m_X \text{Cl}(f^{-1}(c_\zeta(A))) = f^{-1}(c_\zeta(A)) \). Thus \(m_X \text{Cl}(f^{-1}(A)) \subseteq m_X \text{Cl}(f^{-1}(c_\zeta(A))) = f^{-1}(c_\zeta(A)) \).

(5)⇒(6) Let \(B \) be any subset of \(Y \). By (5), we have \(X - m_X \text{Int}(f^{-1}(B)) = m_X \text{Cl}(X - f^{-1}(B)) = m_X \text{Cl}(f^{-1}(Y - B)) \subseteq f^{-1}(c_\zeta(Y - B)) = f^{-1}(Y - (i_\zeta(B))) = X - f^{-1}(i_\zeta(B)) \). Hence, \(f^{-1}(i_\zeta(B)) \subseteq m_X \text{Int}(f^{-1}(B)) \).

(6)⇒(3) Let \(F \) be any \(\zeta \)-closed subset of \(Y \). Then \(Y - F = i_\zeta(Y - F) \) because \(Y - F \) is \(\zeta \)-open. By (6), we have \(X - f^{-1}(F) = f^{-1}(Y - F) \subseteq m_X \text{Int}(f^{-1}(Y - F)) = m_X \text{Int}(X - f^{-1}(F)) = X - m_X \text{Cl}(f^{-1}(F)) \). Therefore, \(m_X \text{Cl}(f^{-1}(F)) \subseteq f^{-1}(F) \). Since \(f^{-1}(F) \subseteq m_X \text{Cl}(f^{-1}(F)) \), \(m_X \text{Cl}(f^{-1}(F)) = f^{-1}(F) \). Hence, \(f^{-1}(F) \) is \(m_X \)-closed in \(X \). \[\square \]

Definition 3.11. [12] Let \((X,m_X)\) be an \(m \)-space and \((Y,\mu)\) be a generalized topological space. A function \(f : (X,m_X) \to (Y,\mu) \) is said to be weakly \((m,\mu)\)-continuous at \(x \in X \) if for each \(\mu \)-open set \(V \) containing \(f(x) \), there exists \(U \in m_X \) containing \(x \) such that \(f(U) \subseteq c_\mu(V) \). The function \(f \) is said to be weakly \((m,\mu)\)-continuous if it is weakly \((m,\mu)\)-continuous at each point \(x \in X \).

Theorem 3.12. If a function \(f : (X,m_X) \to (Y,\mu) \) is weakly \((m,\mu)\)-continuous, then it is faintly \((m,\mu)\)-continuous.

Proof. Let \(x \in X \) and \(V \) be a \(\zeta \)-open set containing \(f(x) \). By Lemma 3.2, there exists a \(\mu \)-open set \(W \) such that \(f(x) \in W \subseteq c_\mu(W) \subseteq V \). Since
f is weakly (m, μ)-continuous, there exists $U \in m_X$ containing x such that $f(U) \subseteq c_\mu(W) \subseteq V$. Therefore, f is faintly (m, μ)-continuous.

Definition 3.13. [12] Let (X, m_X) be an m-space and (Y, μ) be a generalized topological space. A function $f : (X, m_X) \to (Y, \mu)$ is said to be almost (m, μ)-continuous at a point $x \in X$ if for each μ-open set V containing $f(x)$, there exists $U \in m_X$ containing x such that $f(U) \subseteq i_\mu(c_\mu(V))$. The function f is said to be almost-(m, μ)-continuous if it is (m, μ)-continuous at each point $x \in X$.

Definition 3.14. A generalized topological space (X, μ) is said to be μ-almost regular if for each μ_r-closed set F of X and each point $x \notin F$, there exist disjoint μ-open sets U and V of X such that $x \in U$ and $F \subseteq V$.

Lemma 3.15. Let (Y, μ) be a μ-almost regular space. Then, every μ_r-open set is ζ-open.

Theorem 3.16. If a function $f : (X, m_X) \to (Y, \mu)$ is faintly (m, μ)-continuous and (Y, μ) is μ-almost regular, then f is almost (m, μ)-continuous.

Proof. Let $x \in X$ and V be any μ-open set of Y containing $f(x)$. Since $i_\mu(c_\mu(V))$ is μ_r-open, by Lemma 3.15, $i_\mu(c_\mu(V))$ is ζ-open. Since f is faintly (m, μ)-continuous, there exists $U \in m_X$ containing x such that $f(U) \subseteq i_\mu(c_\mu(V))$. This shows that f is almost (m, μ)-continuous.

Corollary 3.17. Let (Y, μ) be a μ-almost regular space. Then for a function $f : (X, m_X) \to (Y, \mu)$, the following properties are equivalent:

1. f is almost (m, μ)-continuous;
2. f is weakly (m, μ)-continuous;
3. f is faintly (m, μ)-continuous.

Proof. The proof follows from Theorem 3.12 and 3.16.

Acknowledgement

This research was financially supported by Mahasarakham University.

References

Received: May 30, 2013