Some Relationships between the Tangent Polynomials and Bernstein Polynomials

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2013 C. S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we give some interesting identities on the tangent polynomials and Bernstein polynomials.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: tangent numbers and polynomials, Bernstein polynomials

1 Introduction

Throughout this paper, let p be a fixed odd prime number. The symbol, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+=\mathbb{N} \cup \{0\}$. As well known definition, the p-adic absolute value is given by $|x|_p = p^{-r}$ where $x = p^{-t}t$ with $(t,p) = (s,p) = (t,s) = 1$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. In this paper we assume that $q \in \mathbb{C}_p$ with $|1-q|_p < 1$. We assume that $UD(\mathbb{Z}_p)$ is the space of the uniformly differentiable function on \mathbb{Z}_p. For $g \in UD(\mathbb{Z}_p)$, the fermionic p-adic invariant integral on \mathbb{Z}_p is defined by Kim as follows:

$$I_{-1}(f) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x)(-1)^x,$$

where $[1, 2, 3, 4]$.
For $n \in \mathbb{N}$, let $g_n(x) = g(x + n)$ be translation. As well known equation, by (1.1), we have

$$\int_{\mathbb{Z}_p} g(x + n)d\mu_1(x) = (-1)^n \int_{\mathbb{Z}_p} g(x)d\mu_1(x) + 2 \sum_{l=0}^{n-1}(-1)^{n-1-l}g(l). \quad (1.2)$$

The tangent polynomials are defined by the generating function as follows:

$$\left(\frac{2}{e^{2t} + 1}\right)e^{xt} = \sum_{n=0}^{\infty} T_n(x) \frac{t^n}{n!}. \quad (1.3)$$

In the special case, $x = 0$, $T_n(0) = T_n$ are called the n-th tangent numbers (see [4]). From (1.3), we note that

$$T_n(x) = \sum_{l=0}^{n} \binom{n}{l} T_l x^{n-l}. \quad (1.4)$$

From (1.2) and (1.3), for $n = 1$, we have

$$\int_{\mathbb{Z}_p} e^{(x+2y)t} d\mu_1(y) = \left(\frac{2}{e^{2t} + 1}\right)e^{xt} = \sum_{n=0}^{\infty} T_n(x) \frac{t^n}{n!}. \quad (1.5)$$

By (1.5), we obtain

$$\int_{\mathbb{Z}_p} (x + 2y)^n d\mu_1(y) = T_n(x), \text{ for } n \in \mathbb{Z}_+. \quad (1.6)$$

In [1], Kim introduced p-adic extension of Bernstein polynomials as follows:

$$B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \text{ where } x \in \mathbb{Z}_p \text{ and } n, k \in \mathbb{Z}_+. \quad (1.6)$$

In this paper, we investigate some properties for the tangent numbers and polynomials. By using these properties, we give some interesting identities on the tangent polynomials and Bernstein polynomials.

2 Some identities on the Bernstein and tangent polynomials

From (1.2), we can derive the following recurrence formula for the tangent numbers:

$$T_0 = 1, \text{ and } (T + 2)^n + T_n = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n > 0, \end{cases} \quad (2.1)$$
with usual convention about replacing T^n by T_n.

By (1.3), we easily get
\[
\sum_{n=0}^{\infty} T_n(2-x)(-1)^n \frac{t^n}{n!} = \left(\frac{2}{e^{2t} + 1} \right) e^{xt} = \sum_{n=0}^{\infty} T_n(x) \frac{t^n}{n!}.
\] (2.2)

By (2.2), we obtain the following theorem.

Theorem 2.1 For $n \in \mathbb{Z}_+$ and $w \in T_p$, we have

\[
T_n(x) = (-1)^n T_n(2-x).
\]

From (1.6), we note that
\[
\int_{\mathbb{Z}_p} (2x)^n d\mu_{-1}(x) = T_n, \text{ for } n \in \mathbb{Z}_+.
\] (2.3)

By (2.1), for $n \in \mathbb{N}$, we get
\[
T_n(4) - 2^{n+1} = (T + 2 + 2)^n - 2^{n+1}
= \sum_{l=0}^{n} \binom{n}{l} 2^{n-l}(T + 2)^l - 2^{n+1}
= -\sum_{l=0}^{n} \binom{n}{l} 2^{n-l}T_l
= T_n.
\] (2.4)

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.2 For $n \in \mathbb{N}$, we have

\[
T_n(4) = 2^{n+1} + T_n.
\]

By (2.3) and Theorem 2.1, we have the following corollary.

Corollary 2.3 For $n \in \mathbb{N}$, we have

\[
\int_{\mathbb{Z}_p} (2x + 4)^n d\mu_{-1}(x) = 2^{n+1} + T_n.
\]
By (2.3), Theorem 2.1, and Corollary 2.3, we know that
\[\int_{\mathbb{Z}_p} (2 - 2x)^n d\mu_{-1}(x) = (-1)^n \int_{\mathbb{Z}_p} (2x - 2)^n d\mu_{-1}(x) \]
\[= (-1)^n T_n(-2) \]
\[= T_n(4) \]
\[= \int_{\mathbb{Z}_p} (2x + 4)^n d\mu_{-1}(x) \]
\[= 2^{n+1} + T_n \]
\[= 2^{n+1} + \int_{\mathbb{Z}_p} (2x)^n d\mu_{-1}(x). \]

Therefore, we have the following theorem.

Theorem 2.4 For \(n \in \mathbb{N} \), we have
\[\int_{\mathbb{Z}_p} (2 - 2x)^n d\mu_{-1}(x) = 2^{n+1} + \int_{\mathbb{Z}_p} (2x)^n d\mu_{-1}(x). \]

In (1.7), we take the fermionic \(p \)-adic invariant integral on \(\mathbb{Z}_p \) for one Bernstein polynomials as follows:
\[\int_{\mathbb{Z}_p} 2^n B_{k,n}(x) d\mu_{-1}(x) \]
\[= \left(\begin{array}{c} n \\vspace{1em} \\vspace{1em} \\vspace{1em} \vspace{1em} k \end{array} \right) \sum_{l=0}^{n-k} \left(\begin{array}{c} n-k \\vspace{1em} \\vspace{1em} \\vspace{1em} \\vspace{1em} l \end{array} \right) (-1)^{n-k-l}2^l \int_{\mathbb{Z}_p} (2x)^{n-l} d\mu_{-1}(x) \]
\[= \left(\begin{array}{c} n \\vspace{1em} \\vspace{1em} \\vspace{1em} \vspace{1em} k \end{array} \right) \sum_{l=0}^{n-k} \left(\begin{array}{c} n-k \\vspace{1em} \\vspace{1em} \\vspace{1em} \\vspace{1em} l \end{array} \right) (-1)^{n-k-l}2^l T_{n-l}, \text{ where } n, k \in \mathbb{Z}_+. \]

From the reflection symmetric properties of Bernstein polynomials, we note that
\[B_{k,n}(x) = B_{n-k,n}(1-x), \text{ where } n, k \in \mathbb{Z}_+ \text{ and } x \in \mathbb{Z}_p. \]

(2.6)

For \(n, k \in \mathbb{Z}_+ \) with \(n > k \), we have
\[\int_{\mathbb{Z}_p} 2^n B_{k,n}(x) d\mu_{-1}(x) \]
\[= \left(\begin{array}{c} n \\vspace{1em} \\vspace{1em} \\vspace{1em} \vspace{1em} k \end{array} \right) \sum_{l=0}^{k} \left(\begin{array}{c} k \\vspace{1em} \\vspace{1em} \\vspace{1em} \\vspace{1em} l \end{array} \right) (-1)^{k-l}2^l \int_{\mathbb{Z}_p} (2-2x)^{n-l} d\mu_{-1}(x) \]
\[= \left(\begin{array}{c} n \\vspace{1em} \\vspace{1em} \\vspace{1em} \vspace{1em} k \end{array} \right) \sum_{l=0}^{k} \left(\begin{array}{c} k \\vspace{1em} \\vspace{1em} \\vspace{1em} \\vspace{1em} l \end{array} \right) (-1)^{k-l}2^l \left(2^{n-l+1} + \int_{\mathbb{Z}_p} (2x)^{n-l} d\mu_{-1}(x) \right) \]

Therefore, we have the following theorem.
Therefore, we obtain the following theorem.

Theorem 2.5 For \(n, k \in \mathbb{Z}_+ \) with \(n > k \), we have

\[
\int_{\mathbb{Z}_p} 2^n B_{k,n}(x) d\mu_{-1}(x) = \left(\frac{n}{k} \right) \sum_{l=0}^{k} \left(\frac{k}{l} \right) (-1)^{k-l} 2^l \left(2^{n-l+1} + T_{n-l} \right).
\]

By (2.5) and Theorem 2.5, we have the following theorem.

Theorem 2.6 Let \(n, k \in \mathbb{Z}_+ \) with \(n > k \). Then we have

\[
\sum_{l=0}^{n-k} \left(\frac{n-k}{l} \right) (-1)^{n-k-l} 2^l T_{n-l} = \sum_{l=0}^{k} \left(\frac{k}{l} \right) (-1)^{k-l} 2^l \left(2^{n-l+1} + T_{n-l} \right).
\]

Let \(n_1, n_2, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 > 2k \). Then we get

\[
\int_{\mathbb{Z}_p} 2^{n_1+n_2} B_{k,n_1}(x) B_{k,n_2}(x) d\mu_{-1}(x)
\]

\[
= \left(\prod_{i=1}^{2} \left(\frac{n_i}{k} \right) \right) \sum_{l=0}^{2k} \left(\frac{2k}{l} \right) (-1)^{2k-l} 2^l \int_{\mathbb{Z}_p} (2 - 2x)^{n_1+n_2-l} d\mu_{-1}(x)
\]

\[
= \left(\prod_{i=1}^{2} \left(\frac{n_i}{k} \right) \right) \sum_{l=0}^{2k} \left(\frac{2k}{l} \right) (-1)^{2k-l} 2^l \left(2^{n_1+n_2-l+1} + \int_{\mathbb{Z}_p} (2x)^{n_1+n_2-l} d\mu_{-1}(x) \right).
\]

Therefore, we obtain the following theorem.

Theorem 2.7 For \(n_1, n_2, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 > 2k \), we have

\[
\int_{\mathbb{Z}_p} 2^{n_1+n_2} B_{k,n_1}(x) B_{k,n_2}(x) d\mu_{-1}(x)
\]

\[
= \left(\prod_{i=1}^{2} \left(\frac{n_i}{k} \right) \right) \sum_{l=0}^{n_1+n_2-2k} \left(\frac{n_1+n_2-2k}{l} \right) (-1)^{n_1+n_2-2k-l} 2^l \int_{\mathbb{Z}_p} (2x)^{n_1+n_2-l} d\mu_{-1}(x)
\]

\[
= \left(\prod_{i=1}^{2} \left(\frac{n_i}{k} \right) \right) \sum_{l=0}^{n_1+n_2-2k} \left(\frac{n_1+n_2-2k}{l} \right) (-1)^{n_1+n_2-2k-l} 2^l T_{n_1+n_2-l}.
\]

Therefore, by (2.7) and Theorem 2.7, we obtain the following theorem.
Theorem 2.8 Let \(n_1, n_2, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 > 2k \). Then we have
\[
\sum_{l=0}^{2k} \binom{2k}{l} (-1)^{2k-l} 2^l \left(2^{n_1+n_2-l+1} + T_{n_1+n_2-l} \right)
\]
\[= \sum_{l=0}^{n_1+n_2-2k} \binom{n_1 + n_2 - 2k}{l} (-1)^{n_1+n_2-2k-l} 2^l T_{n_1+n_2-l}.
\]

For \(n_1, n_2, n_3, k \in \mathbb{Z}_+ \) with \(N_3 = n_1 + n_2 + n_3 > 3k \), by the symmetry of Bernstein polynomials, we see that
\[
\int_{\mathbb{Z}_p} 2^{N_3} B_{k,n_1}(x) B_{k,n_2}(x) B_{k,n_3}(x) \, d\mu_{-1}(x)
\]
\[= \left(\prod_{i=1}^{3} \binom{n_i}{k} \right) \sum_{l=0}^{3k} \binom{3k}{l} (-1)^{3k-l} 2^l \left(2^{n_1+n_2+n_3-l+1} + T_{n_1+n_2+n_3-l} \right).
\]

Therefore, we have the following theorem.

Theorem 2.9 For \(n_1, n_2, n_2, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 + n_3 > 3k \), we have
\[
\int_{\mathbb{Z}_p} 2^{n_1+n_2+n_3} B_{k,n_1}(x) B_{k,n_2}(x) B_{k,n_3}(x) \, d\mu_{-1}(x)
\]
\[= \left(\prod_{i=1}^{3} \binom{n_i}{k} \right) \sum_{l=0}^{3k} \binom{3k}{l} (-1)^{3k-l} 2^l \left(2^{n_1+n_2+n_3-l+1} + T_{n_1+n_2+n_3-l} \right).
\]

In the same manner, multiplication of three Bernstein polynomials can be given by the following relation:
\[
\int_{\mathbb{Z}_p} 2^{N_3} B_{k,n_1}(x) B_{k,n_2}(x) B_{k,n_3}(x) \, d\mu_{-1}(x)
\]
\[= \left(\prod_{i=1}^{3} \binom{n_i}{k} \right) \sum_{l=0}^{N_3-3k} (-1)^{N_3-3k-l} 2^l \binom{N_3-3k}{l} T_{N_3-l},
\]
where \(n_1, n_2, n_3, k \in \mathbb{Z}_+ \) with \(N_3 = n_1 + n_2 + n_3 > 3k \).

Therefore, by Theorem 2.9, we obtain the following theorem.

Theorem 2.10 Let \(n_1, n_2, n_3, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 + n_3 > 3k \). Then we have
\[
\sum_{l=0}^{3k} \binom{3k}{l} (-1)^{3k-l} 2^l \left(2^{n_1+n_2+n_3-l+1} + T_{n_1+n_2+n_3-l} \right)
\]
\[= \sum_{l=0}^{n_1+n_2+n_3-3k} (-1)^{n_1+n_2+n_3-3k-l} 2^l \binom{n_1 + n_2 + n_3 - 3k}{l} T_{n_1+n_2+n_3-l}.
\]
Using the above theorem and mathematical induction, we obtain the following theorem.

Theorem 2.11 Let \(m \in \mathbb{N} \). For \(n_1, n_2, \ldots, n_m, k \in \mathbb{Z}_+ \) with \(N_m = n_1 + \cdots + n_m > mk \), the multiplication of the sequence of Bernstein polynomials \(B_{k,n_1}(x), \ldots, B_{k,n_m}(x) \) with different degrees under fermionic \(p \)-adic invariant integral on \(\mathbb{Z}_p \) can be given as

\[
\int_{\mathbb{Z}_p} \left(\prod_{i=1}^{m} 2^{n_i} B_{k,n_i}(x) \right) d\mu(x)
= \left(\prod_{i=1}^{m} \binom{n_i}{k} \right) \sum_{l=0}^{mk} \binom{mk}{l} (-1)^{mk-l} 2^l (2^{N_m-l+1} T_{N_m-l}).
\]

We also easily see that

\[
\int_{\mathbb{Z}_p} \left(\prod_{i=1}^{m} 2^{n_i} B_{k,n_i}(x) \right) d\mu(x)
= \left(\prod_{i=1}^{m} \binom{n_i}{k} \right) \sum_{l=0}^{N_m-mk} \binom{N_m-mk}{l} (-1)^{N_m-mk-l} 2^l T_{N_m-l}.
\tag{2.8}
\]

By Theorem 2.11 and (2.8), we have the following corollary.

Corollary 2.12 Let \(m \in \mathbb{N} \). For \(n_1, n_2, \ldots, n_m, k \in \mathbb{Z}_+ \) with \(n_1 + \cdots + n_m > mk \), we have

\[
\sum_{l=0}^{mk} \binom{mk}{l} (-1)^{mk-l} 2^l (2^{n_1+\cdots+n_m-l+1} + T_{n_1+\cdots+n_m-l})
= \sum_{l=0}^{n_1+\cdots+n_m-mk} \binom{n_1+\cdots+n_m-mk}{l} (-1)^{n_1+\cdots+n_m-mk-l} 2^l T_{n_1+\cdots+n_m-l}.
\]

ACKNOWLEDGEMENT. This paper has been supported by the 2013 Hannam University Research Fund.

References

Received: April 30, 2013