On Intra-Regular Ternary Semihypergroups

Somsak Lekkoksung

Rajamangala University of Technology Isan
Khon Kaen Campus
Khon Kaen, 40000 Thailand
Lekkoksung_somsak@hotmail.com

Abstract

In this paper we give some characterizations of the intra-regular ternary semihypergroups in terms of bi-hyperideals and quasi-hyperideals, bi-hyperideals and left hyperideals, bi-hyperideals and right hyperideals of ternary semihypergroups.

Mathematics Subject Classification: 06F05

Keywords: Ternary semihypergroup, intra-regular, bi-hyperideal, quasi-hyperideal, left (right) hyperideal

1 Introduction

Hyperstructures represent a natural extension of classical algebraic structures and they were introduced by the French mathematician F. Marty [3]. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. In this paper we give some characterizations of the intra-regular ternary semihypergroups in terms of bi-hyperideals and quasi-hyperideals, bi-hyperideals and left hyperideals, bi-hyperideals and right hyperideals of ternary semihypergroups.

2 Preliminary Notes

Definition 2.1 A map $\circ : H \times H \times H \to \mathcal{P}^*(H)$ is called ternary hyper-operation on the set H, where H is a nonempty set and $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$ denotes the set of all nonempty subset of H.
Definition 2.2 A ternary hyperstructure is called the pair (H, \circ), where \(\circ \) is a ternary hyperoperation on the set \(H \).

Definition 2.3 A hyperstructure (H, \circ) is called a ternary semihypergroup if for all \(x, y, z, a, b \in H \)
\[(x \circ a \circ y) \circ b \circ z = x \circ (a \circ y \circ b) \circ z = x \circ a \circ (y \circ b \circ z),\]
which means that
\[
\bigcup_{u \in x \circ a \circ y} u \circ b \circ z = \bigcup_{v \in a \circ y \circ b} x \circ v \circ z = \bigcup_{w \in y \circ b \circ z} x \circ a \circ w.
\]

If \(x \in H \) and \(A, B, C \) are nonempty subsets of \(H \), then
\[A \circ B \circ C = \bigcup_{a \in A, b \in B, c \in C} a \circ b \circ c, \quad A \circ H \circ x = A \circ H \circ \{x\}, \quad x \circ H \circ B = \{x\} \circ H \circ B.\]

Definition 2.4 A nonempty subset \(B \) of a ternary semihypergroup \(H \) is called a ternary subsemihypergroup of \(H \) if \(B \circ B \circ B \subseteq B \).

Definition 2.5 Let \(H \) be a ternary semihypergroup. \(\emptyset \neq A \subseteq H \), \(A \) is called a right (resp. left) hyperideal of \(H \) if \(A \circ H \circ H \subseteq A \) (resp. \(H \circ H \circ A \subseteq A \)).

Definition 2.6 Let \(H \) be a ternary semihypergroup. \(\emptyset \neq A \subseteq H \), \(A \) is called a lateral hyperideal of \(H \) if \(H \circ A \circ H \subseteq A \).

If \(A \) is a right, left and lateral hyperideal of \(H \), then it is called an hyperideal of \(H \).

Definition 2.7 Let \(H \) be a ternary semihypergroup. \(\emptyset \neq B \subseteq H \), \(B \) is called a bi-hyperideal of \(H \) if \(B \circ H \circ B \subseteq B \).

Definition 2.8 Let \(H \) be a ternary semihypergroup. \(\emptyset \neq Q \subseteq H \), \(Q \) is called a quasi-hyperideal of \(H \) if \((Q \circ H \circ H) \cap (H \circ H \circ Q) \subseteq Q \).

Let \(H \) be a ternary semihypergroup and \(a \in H \). The right (resp. left) hyperideal of \(H \) generated by \(a \), denoted by \(R(a) \) (resp. \(L(a) \)) is of the form:
\[R(a) = a \cup a \circ H \circ H \text{ and } L(a) = a \cup H \circ H \circ a.\]

The ideal of \(H \) generated by \(a \), denoted by \(I(a) \), is the form
\[I(a) = a \cup H \circ H \circ a \cup a \circ H \circ H \cup H \circ H \circ a \circ H \circ H.\]

The quasi- (resp. bi-) hyperideal of \(H \) generated by \(a \), denoted by \(Q(a) \) (resp. \(B(a) \)), is of the form
\[Q(a) = a \cup (a \circ H \circ H \cap H \circ H \circ a) \text{ and } B(a) = a \cup a \circ H \circ a \cup a \circ H \circ H \circ H \circ a.\]
3 Main Results

Now we give some characterizations of the intra-regular ternary semihypergroups in terms of bi-hyperideals, quasi-hyperideals, left hyperideals and right hyperideals of ternary semihypergroups.

Definition 3.1 A ternary semihypergroup H is said to be intra-regular if

$$a \in H \circ H \circ a \circ H \circ a \circ H \circ H$$

for all $a \in H$.

Theorem 3.2 Let H be a ternary semihypergroup. Then:

1. H is intra-regular if and only if for a bi-hyperideal B and a quasi-hyperideal Q of H, we have $B \cap Q \subseteq H \circ H \circ B \circ H \circ Q \circ H \circ H$.

2. H is intra-regular if and only if for a bi-hyperideal B and a quasi-hyperideal Q of H, we have $B \cap Q \subseteq H \circ H \circ Q \circ H \circ B \circ H \circ H$.

Proof.

(1) Assume that H is intra-regular. Let B be a bi-hyperideal of H and Q a quasi-hyperideal of H. Let $a \in B \cap Q$. By assumption, $a \in H \circ H \circ a \circ H \circ a \circ H \circ H$. Then $a \in H \circ H \circ a \circ H \circ a \circ H \circ H \subseteq H \circ H \circ a \circ H \circ (H \circ H \circ a \circ H \circ a \circ H \circ H \circ a \circ H \subseteq H \circ H \circ B \circ H \circ Q \circ H \circ H$.

Hence $B \cap Q \subseteq H \circ H \circ B \circ H \circ Q \circ H \circ H$.

Conversely, assume that for a bi-hyperideal B and a quasi-hyperideal Q of H, we have $B \cap Q \subseteq H \circ H \circ B \circ H \circ Q \circ H \circ H$. Let $a \in H$. Consider:

$$a \in B(a) \cap Q(a)$$

$$\subseteq H \circ H \circ B(a) \circ H \circ Q(a) \circ H \circ H$$

$$= H \circ H \circ (a \cup a \circ H \circ a \cup a \circ H \circ H \circ H \circ a) \circ H \circ (a \cup (a \circ H \circ H \circ H \circ a) \circ a \circ H \circ H \circ a) \circ H \circ H$$

$$\subseteq (H \circ H \circ a \cup H \circ a \cup H \circ a \circ H \circ H \circ H \circ a \circ H \circ H \circ a \circ H) \circ H \circ H$$

$$\subseteq H \circ H \circ a \circ H \circ a \circ H \circ H \cup a \circ H \circ H \circ a \circ H \circ H \circ H \circ H$$

$$\subseteq H \circ H \circ a \circ H \circ a \circ H \circ H$$

This proves that H is intra-regular.

(2) Assume that H is intra-regular. Let B be a bi-hyperideal of H and Q a quasi-hyperideal of H. Let $a \in B \cap Q$. By assumption, $a \in H \circ H \circ a \circ H \circ a \circ H \circ H \circ H \subseteq H \circ H \circ (H \circ H \circ a \circ H \circ a \circ H \circ H \circ a \circ H \circ H \circ a \circ H \circ a \circ H \circ H \circ H \circ H \circ H \circ H \subseteq H \circ H \circ Q \circ H \circ (B \circ H \circ H \circ B \circ H \circ H \circ H \circ H \subseteq H \circ H \circ Q \circ H \circ B \circ H \circ H \circ H \circ H$.

Hence $B \cap Q \subseteq H \circ H \circ Q \circ H \circ B \circ H \circ H$.

Conversely, assume that for a bi-hyperideal B and a quasi-hyperideal Q of H, we have $B \cap Q \subseteq H \circ H \circ Q \circ H \circ B \circ H \circ H$. Let $a \in H$. Consider
\[
\begin{align*}
a & \in B(a) \cap Q(a) \\
& \subseteq H \circ H \circ Q(a) \circ H \circ B(a) \circ H \circ H \\
& = H \circ H \circ (a \cup (a \circ H \circ H \cap H \cup H \circ a)) \circ H \circ (a \cup a \circ H \circ a \cup a \circ H \circ a) \circ H \\
& \subseteq H \circ H \circ (a \cup H \circ H \cup H \circ a \circ a \circ H \circ H \cup a \circ H \circ H \circ a \circ H \circ a) \circ H \\
& \subseteq (H \circ H \circ a \cup H \circ H \circ a \circ H \circ H \circ a \circ H \circ a) \circ H \circ (a \circ H \circ H \cup a \circ H \circ a \circ H \circ H \cup a \circ H \circ H \cup H \circ a \circ H \circ a \circ H \circ H) \\
& \subseteq (H \circ H \circ a \cup H \circ H \circ a \circ H \circ a) \circ H \circ (a \circ H \circ H) \\
& \subseteq H \circ H \circ a \circ H \circ a \circ H \circ H \circ H \circ a \circ H \circ a \circ H \circ H \\
& \subseteq H \circ H \circ a \circ H \circ a \circ H \circ H.
\end{align*}
\]
Therefore H is intra-regular.

Theorem 3.3 Let H be a ternary semihypergroup. Then:

1. H is intra-regular if and only if for a left hyperideal L and a bi-hyperideal B of H, we have $L \cap B \subseteq L \circ H \circ B \circ H \circ H$.

2. H is intra-regular if and only if for a right hyperideal R and a bi-hyperideal B of H, we have $B \cap R \subseteq H \circ H \circ B \circ H \circ R$.

Proof. (1) Assume that H is intra-regular. Let L be a left hyperideal of H and B a bi-hyperideal of H. Let $a \in L \cap B$. By assumption, $a \in H \circ a \circ B \circ H \circ H$. Since $a \in H \circ H \circ a \circ H \circ a \circ H \circ H \subseteq H \circ H \circ L \circ H \circ B \circ H \circ H \subseteq L \circ H \circ B \circ H \circ H$, we have $a \in L \circ H \circ B \circ H \circ H$.

Conversely, for a left hyperideal L and a bi-hyperideal B of H, we have $L \cap B \subseteq L \circ H \circ B \circ H \circ H$.

For $a \in H$, we have
\[
\begin{align*}
a & \in L(a) \cap B(a) \\
& \subseteq L(a) \circ H \circ B(a) \circ H \circ H \\
& = (a \cup H \circ H \circ a) \circ H \circ (a \cup a \circ H \circ a \cup a \circ H \circ H \circ a \circ H \circ a) \circ H \circ H \\
& \subseteq (a \cup H \circ H \circ a) \circ H \circ (a \circ H \circ H \cup a \circ H \circ H) \\
& \subseteq (a \cup H \circ H \circ a) \circ H \circ (a \circ H \circ H) \\
& \subseteq (a \circ H \circ a \circ H \circ H \cup H \circ a \circ H \circ a \circ H \circ H). \quad \text{(if $a \in a \circ H \circ a \circ H \circ H$, then $a \in a \circ H \circ a \circ H \circ H \subseteq a \circ H \circ a \circ H \circ a \circ H \circ a \circ H \circ H \subseteq H \circ H \circ a \circ H \circ a \circ H \circ H$. If $a \in H \circ H \circ a \circ H \circ a \circ H \circ H$, it is obvious.)
\]
Therefore H is intra-regular.

(2) Assume that H is intra-regular. Let R be a right hyperideal of H and B a bi-hyperideal of H. Let $a \in R \cap B$. By assumption, $a \in H \circ H \circ a \circ H \circ a \circ H \circ H$. Since $a \in H \circ H \circ a \circ H \circ a \circ H \circ H \subseteq H \circ H \circ B \circ H \circ R \circ H \circ H \subseteq H \circ H \circ B \circ H \circ R$, we have $B \cap R \subseteq H \circ H \circ B \circ H \circ R$.

Conversely, for a right hyperideal \(R \) and a bi-hyperideal \(B \) of \(H \), we have
\[B \cap R \subseteq H \circ H \circ B \circ H \circ R. \]

For \(a \in H \), we have
\[a \in B(a) \cap R(a) \subseteq H \circ H \circ B(a) \circ H \circ R(a) \]

\[= H \circ H \circ (a \cup a \circ H \circ a \cup a \circ H \circ H \circ a) \circ H \circ (a \cup a \circ H \circ H) \]

\[\subseteq (H \circ H \circ a \cup H \circ a \circ H \circ a \cup H \circ a \circ H \circ H \circ a) \circ H \circ H \circ a \circ H \circ H \]

\[\subseteq (H \circ H \circ a \circ H \circ a) \cup (H \circ H \circ a \circ H \circ a \circ H \circ H). \]

If \(a \in H \circ H \circ a \circ H \circ a \circ a \circ a \circ a \circ a \circ H \circ a \subseteq H \circ H \circ a \circ H \circ a \circ H \circ a \circ H \circ H \circ a \subseteq H \circ H \circ a \circ H \circ a \circ H \circ a \circ H \circ a \), then \(a \in H \circ H \circ a \circ H \circ a \circ H \circ a \circ H \), it is obvious. Therefore \(a \in H \circ H \circ a \circ H \circ a \circ H \circ H \) for any cases. Hence \(H \) is intra-regular.

Using Theorem 3.2 and Theorem 3.3, we obtain:

Theorem 3.4 Let \(H \) be a ternary semihypergroup and \(a \in H \). Then the following are equivalent:

1. \(H \) is intra-regular.
2. \(B(a) \cap Q(a) \subseteq H \circ H \circ B(a) \circ H \circ Q(a) \circ H \circ H. \)
3. \(B(a) \cap Q(a) \subseteq H \circ H \circ Q(a) \circ H \circ B(a) \circ H \circ H. \)
4. \(L(a) \cap B(a) \subseteq L(a) \circ H \circ B(a) \circ H \circ H. \)
5. \(B(a) \cap R(a) \subseteq H \circ H \circ H \circ H \circ B(a) \circ H \circ R(a). \)

References

Received: January 10, 2012