Bipolar (λ, δ)-Fuzzy Ideals in Ternary Semigroups

1Naveed Yaqoob and 2Moin A. Ansari

1Department of Mathematics
Quaid-i-Azam University, Islamabad, Pakistan
nayaqoob@ymail.com

2Department of Mathematics, Faculty of Science
Jazan University, Jazan, Kingdom of Saudi Arabia
moinakhtar83@gmail.com

Copyright © 2013 Naveed Yaqoob and Moin A. Ansari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce the concept of bipolar (λ, δ)-fuzzification of a ternary semigroup and discuss some structural properties of bipolar (λ, δ)-fuzzy ideals of a ternary semigroup.

Mathematics Subject Classification: 20N10, 20M12, 03E72

Keywords: Ternary semigroups; Bipolar (λ, δ)-fuzzy ideals; Bipolar (λ, δ)-fuzzy bi-ideals

1 Introduction

Lehmer [1], studied certain ternary algebraic structures called triplexes in 1932. The notion of ternary semigroup was introduced by Banach. Sioson [2], worked on the ideal theory in ternary semigroups.

A fuzzy subset of a set S is an arbitrary mapping $f : S \rightarrow [0, 1]$, where $[0, 1]$ is the unit segment of a real line. This fundamental concept of fuzzy set was given by Zadeh [3] in 1965. Fuzzy groups have been first considered by Rosenfeld [4] and fuzzy semigroups by Kuroki [5], also see [6, 7].
Lee [8] introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0, 1]$ to $[-1, 1]$, also see [9]. Bipolar fuzzy sets have been studied in various algebraic structures, see [10, 11, 12, 13, 14].

Yao introduced (λ, θ)-fuzzy normal subfields [15]. Khan et al. [16], characterized ordered semigroups in terms of (λ, θ)-fuzzy bi-ideals, also see [17].

In this paper, we introduced a notion of bipolar (λ, δ)-fuzzy ideals of ternary semigroups and some properties of these ideals are studied.

2 Review of Literature

In this section, we will recall some concepts related to ternary semigroups and bipolar fuzzy sets. Throughout the paper T will be considered as a ternary semigroup unless otherwise specified.

Definition 2.1. [1] A ternary semigroup T is a non-empty set whose elements are closed under the ternary operation of multiplication and satisfy the associative law defined as

$$[(abc) de] = [a (bcd) e] = [ab [cde]], \quad \text{for all } a, b, c, d, e \in T.$$

For simplicity, we shall write $[abc]$ as abc. A non-empty subset A of a ternary semigroup T is called a ternary subsemigroup of T if $AAA = A^3 \subseteq A$. By a left (right, lateral) ideal of T we mean a non-empty subset A of T such that $TTA \subseteq A$ ($ATT \subseteq A$, $TAT \subseteq A$) and an ideal is that which is a left, a right and a lateral ideal of T. A ternary subsemigroup A of T is called a bi-ideal of T if $ATATA \subseteq A$.

Definition 2.2. [8] A bipolar fuzzy subset (briefly, BF-subset) B in a non-empty set X is an object having the form

$$B = \{ (x, \mu_B^+(x), \mu_B^-(x)) \mid x \in X \}.$$

Where $\mu_B^+ : X \rightarrow [0, 1]$ and $\mu_B^- : X \rightarrow [-1, 0]$.

The positive membership degree μ_B^+ denote the satisfaction degree of an element x to the property corresponding to a BF-subset B, and the negative membership degree μ_B^- denotes the satisfaction degree of x to some implicit counter property of BF-subset B. Bipolar fuzzy sets and intuitionistic fuzzy sets look similar to each other. However, they are different from each other, see [9].

Definition 2.3. Let $B = (\mu_B^+, \mu_B^-)$ be a bipolar fuzzy set and $(s, t) \in [-1, 0] \times [0, 1]$. Define:
1) the sets $\mathcal{B}_t^+ = \{x \in X \mid \mu^+_B(x) \geq t\}$ and $\mathcal{B}_s^- = \{x \in X \mid \mu^-_B(x) \leq s\}$, which are called positive t-cut of $\mathcal{B} = (\mu^+_B, \mu^-_B)$ and the negative s-cut of $\mathcal{B} = (\mu^+_B, \mu^-_B)$, respectively.

2) the sets $\mathcal{B}_t^+ = \{x \in X \mid \mu^+_B(x) > t\}$ and $\mathcal{B}_s^- = \{x \in X \mid \mu^-_B(x) < s\}$, which are called strong positive t-cut of $\mathcal{B} = (\mu^+_B, \mu^-_B)$ and the strong negative s-cut of $\mathcal{B} = (\mu^+_B, \mu^-_B)$, respectively.

3) the set $X_{\mathcal{B}}^{(s,t)} = \{x \in X \mid \mu^+_B(x) \geq t, \mu^-_B(x) \leq s\}$ is called an (s,t)-level subset of \mathcal{B}.

4) the set $\mathcal{B}_s^2 = \{x \in X \mid \mu^+_B(x) > t, \mu^-_B(x) < s\}$ is called a strong (s,t)-level subset of \mathcal{B}.

3 Bipolar (λ, δ)-Fuzzy Ideals in Ternary Semigroups

In this section, we will define the notion of bipolar (λ, δ)-fuzzy ideals in ternary semigroups and discuss some properties of these ideals.

In what follows, let $\lambda, \delta \in [0, 1]$ be such that $0 \leq \lambda < \delta \leq 1$. Both λ and δ are arbitrary but fixed.

Definition 3.1. A bipolar fuzzy subset $\mathcal{B} = (\mu^+_B, \mu^-_B)$ of a ternary semigroup T is called a bipolar (λ, δ)-fuzzy ternary subsemigroup of T if

1. $\max \{\mu^+_B(xyz), \lambda\} \geq \min \{\mu^+_B(x), \mu^-_B(y), \mu^+_B(z), \delta\}$
2. $\min \{\mu^-_B(xyz), -\lambda\} \leq \max \{\mu^-_B(x), \mu^-_B(y), \mu^-_B(z), -\delta\}$

for all $x, y, z \in T$.

Definition 3.2. A bipolar fuzzy subset $\mathcal{B} = (\mu^+_B, \mu^-_B)$ of a ternary semigroup T is called a bipolar (λ, δ)-fuzzy left (right, lateral) ideal of T if

1. $\max \{\mu^+_B(xyz), \lambda\} \geq \min \{\mu^+_B(z), \delta\}
 \left(\begin{array}{c}
 \max \{\mu^+_B(xyz), \lambda\} \geq \min \{\mu^+_B(x), \delta\}, \\
 \max \{\mu^+_B(xyz), \lambda\} \geq \min \{\mu^+_B(y), \delta\},
 \end{array}\right)$
2. $\min \{\mu^-_B(xyz), -\lambda\} \leq \max \{\mu^-_B(z), -\delta\}
 \left(\begin{array}{c}
 \min \{\mu^-_B(xyz), -\lambda\} \leq \max \{\mu^-_B(x), -\delta\}, \\
 \min \{\mu^-_B(xyz), -\lambda\} \leq \max \{\mu^-_B(y), -\delta\},
 \end{array}\right)$

for all $x, y, z \in T$.

A bipolar fuzzy subset $\mathcal{B} = (\mu^+_B, \mu^-_B)$ of a ternary semigroup T is called a bipolar (λ, δ)-fuzzy ideal of T if it is a bipolar (λ, δ)-fuzzy left ideal, bipolar (λ, δ)-fuzzy right ideal and bipolar (λ, δ)-fuzzy lateral ideal of T.

Example 3.3. Let $T = \{1, 2, 3, 4\}$ be a ternary semigroup with the follow-
Define a bipolar fuzzy subset \(\mathcal{B} = (\mu^+_B, \mu^-_B) \) in \(T \) as follows:

\[
\mu^+_B(x) = \begin{cases}
0.6 & \text{if } x = 1 \\
0.4 & \text{if } x = 2, 3, 4
\end{cases}
\quad \text{and} \quad
\mu^-_B(x) = \begin{cases}
-0.7 & \text{if } x = 1 \\
-0.5 & \text{if } x = 2, 3, 4
\end{cases}
\]

By routine calculations, it can be seen that the bipolar fuzzy set \(\mathcal{B} = (\mu^+_B, \mu^-_B) \) is a bipolar \((0.2, 0.3)\)-fuzzy ideal of \(T \).

Definition 3.4. A bipolar fuzzy subset \(\mathcal{B} = (\mu^+_B, \mu^-_B) \) of a ternary semigroup \(T \) is called a bipolar \((\lambda, \delta)\)-fuzzy generalized bi-ideal of \(T \) if

1. \(\max \{ \mu^+_B(xuyvz), \lambda \} \geq \min \{ \mu^+_B(x), \mu^+_B(y), \mu^+_B(z), \delta \} \),
2. \(\min \{ \mu^-_B(xuyvz), -\lambda \} \leq \max \{ \mu^-_B(x), \mu^-_B(y), \mu^-_B(z), -\delta \} \),

for all \(x, y, z, u, v \in T \).

Definition 3.5. A bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup \(\mathcal{B} = (\mu^+_B, \mu^-_B) \) of a ternary semigroup \(T \) is called a bipolar \((\lambda, \delta)\)-fuzzy bi-ideal of \(T \) if

1. \(\max \{ \mu^+_B(xuyvz), \lambda \} \geq \min \{ \mu^+_B(x), \mu^+_B(y), \mu^+_B(z), \delta \} \),
2. \(\min \{ \mu^-_B(xuyvz), -\lambda \} \leq \max \{ \mu^-_B(x), \mu^-_B(y), \mu^-_B(z), -\delta \} \),

for all \(x, y, z, u, v \in T \).

Theorem 3.6. A bipolar fuzzy subset \(\mathcal{B} = (\mu^+_B, \mu^-_B) \) of a ternary semigroup \(T \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of \(T \) if and only if \(\emptyset \neq \mathcal{T}^{(t,s)}_B \) is a ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of \(T \) for all \((s, t) \in [-\delta, -\lambda] \times (\lambda, \delta] \).

Proof. Let \(\mathcal{B} = (\mu^+_B, \mu^-_B) \) be a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup of \(T \). Let \(x, y, z \in T \), \((s, t) \in [-\delta, -\lambda] \times (\lambda, \delta] \) and \(x, y, z \in \mathcal{T}^{(t,s)}_B \). Then \(\mu^+_B(x) \geq t \), \(\mu^+_B(y) \geq t \) and \(\mu^+_B(z) \geq t \) also \(\mu^-_B(x) \leq s \), \(\mu^-_B(y) \leq s \) and \(\mu^-_B(z) \leq s \). As \(\mathcal{B} = (\mu^+_B, \mu^-_B) \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup of \(T \). Therefore,

\[
\max \{ \mu^+_B(xyz), \lambda \} \geq \min \{ \mu^+_B(x), \mu^+_B(y), \mu^+_B(z), \delta \} \geq \min \{ t, t, t, \delta \} = t,
\]

and

\[
\min \{ \mu^-_B(xyz), -\lambda \} \leq \max \{ \mu^-_B(x), \mu^-_B(y), \mu^-_B(z), -\delta \} \leq \max \{ s, s, s, -\delta \} = s.
\]
This implies that $\mu_B^+ (xyz) \geq t$ and $\mu_B^- (xyz) \leq s$. Thus $xyz \in T_B^{(t,s)}$. Hence $T_B^{(t,s)}$ is a ternary subsemigroup of T.

Conversely, suppose that $T_B^{(t,s)}$ is a ternary subsemigroup of T. Let $x, y, z \in T$ such that

$$\max \{ \mu_B^+ (xyz), \lambda \} < \min \{ \mu_B^+ (x), \mu_B^+ (y), \mu_B^+ (z), \delta \},$$

and

$$\min \{ \mu_B^- (xyz), -\lambda \} > \max \{ \mu_B^- (x), \mu_B^- (y), \mu_B^- (z), -\delta \}.$$

Then there exist $(s, t) \in [-\delta, -\lambda) \times (\lambda, \delta]$ such that

$$\max \{ \mu_B^+ (xyz), \lambda \} < t \leq \min \{ \mu_B^+ (x), \mu_B^+ (y), \mu_B^+ (z), \delta \},$$

and

$$\min \{ \mu_B^- (xyz), -\lambda \} > s \geq \max \{ \mu_B^- (x), \mu_B^- (y), \mu_B^- (z), -\delta \}.$$

This shows that $\mu_B^+ (x) \geq t$, $\mu_B^+ (y) \geq t$, $\mu_B^+ (z) \geq t$ and $\mu_B^+ (xyz) < t$, also $\mu_B^-(x) \leq s$, $\mu_B^- (y) \leq s$, $\mu_B^- (z) \leq s$ and $\mu_B^- (xyz) > s$. Thus $x, y, z \in T_B^{(t,s)}$, since $T_B^{(t,s)}$ is a ternary subsemigroup of T. Therefore $xyz \in T_B^{(t,s)}$, but this is a contradiction to $\mu_B^+ (xyz) < t$ and $\mu_B^- (xyz) > s$. Thus,

$$\max \{ \mu_B^+ (xyz), \lambda \} \geq \min \{ \mu_B^+ (x), \mu_B^+ (y), \mu_B^+ (z), \delta \},$$

and

$$\min \{ \mu_B^- (xyz), -\lambda \} \leq \max \{ \mu_B^- (x), \mu_B^- (y), \mu_B^- (z), -\delta \}.$$

Hence $B = (\mu_B^+, \mu_B^-)$ is a bipolar (λ, δ)-fuzzy ternary subsemigroup of T. The other cases can be seen in a similar way. \hfill \square

Corollary 3.7. Every bipolar fuzzy ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal $B = (\mu_B^+, \mu_B^-)$ is a bipolar (λ, δ)-fuzzy ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of T with $\lambda = 0$ and $\delta = 1$.

Theorem 3.8. If a bipolar fuzzy subset $B = (\mu_B^+, \mu_B^-)$ is a bipolar (λ, δ)-fuzzy ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of T. Then the set $B_\lambda = (\geq B_\lambda, \leq B_\lambda)$ is a ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of T, where $\geq B_\lambda = \{ x \in T \mid \mu_B^+ (x) > \lambda \}$ and $\leq B_\lambda = \{ x \in T \mid \mu_B^- (x) < -\lambda \}$.

Proof. Suppose that $B = (\mu_B^+, \mu_B^-)$ is a bipolar (λ, δ)-fuzzy ternary subsemigroup of T. Let $x, y, z \in T$ such that $x, y, z \in B_\lambda$. Then $\mu_B^+ (x) > \lambda$, $\mu_B^- (y) > \lambda$,
\[\mu_B^+(z) > \lambda \text{ and } \mu_B^-(x) < -\lambda, \mu_B^-(y) < -\lambda, \mu_B^-(z) < -\lambda. \]

Since \(\mathcal{B} = (\mu_B^+, \mu_B^-) \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup therefore,

\[
\max \left\{ \mu_B^+ (xyz), \lambda \right\} \geq \min \left\{ \mu_B^+ (x), \mu_B^+ (y), \mu_B^+ (z), \delta \right\} \\
\geq \min \left\{ \lambda, \lambda, \lambda, \delta \right\} = \lambda,
\]

and

\[
\min \left\{ \mu_B^- (xyz), -\lambda \right\} \leq \max \left\{ \mu_B^- (x), \mu_B^- (y), \mu_B^- (z), -\delta \right\} \\
< \max \left\{ -\lambda, -\lambda, -\lambda, -\delta \right\} = -\lambda.
\]

Hence \(\mu_B^+(xyz) > \lambda \) and \(\mu_B^-(xyz) < -\lambda \). This shows that \(xyz \in \mathcal{B}_\lambda \). Hence \(\mathcal{B}_\lambda \) is a ternary subsemigroup of \(T \). The other cases can be seen in a similar way.

\[\square \]

Theorem 3.9. A non-empty subset \(A \) of \(T \) is a ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of \(T \) if and only if the bipolar fuzzy subset \(\mathcal{B} = (\mu_B^+, \mu_B^-) \) of \(T \) defined as follows:

\[
\mu_B^+(x) = \begin{cases}
\geq \delta & \text{if } x \in A \\
\lambda & \text{if } x \notin A,
\end{cases}
\quad \text{and} \quad
\mu_B^-(x) = \begin{cases}
\leq -\delta & \text{if } x \in A \\
-\lambda & \text{if } x \notin A,
\end{cases}
\]

is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of \(T \).

Proof. Suppose that \(A \) is a ternary subsemigroup of \(T \). Let \(x, y, z \in T \) be such that \(x, y, z \in A \) then \(xyz \in A \). Hence \(\mu_B^+(xyz) \geq \delta \) and \(\mu_B^-(xyz) \leq -\delta \). Therefore

\[
\max \left\{ \mu_B^+(xyz), \lambda \right\} \geq \delta = \min \left\{ \mu_B^+ (x), \mu_B^+ (y), \mu_B^+ (z), \delta \right\},
\]

and

\[
\min \left\{ \mu_B^- (xyz), -\lambda \right\} \leq -\delta = \max \left\{ \mu_B^- (x), \mu_B^- (y), \mu_B^- (z), -\delta \right\}.
\]

If \(x \notin A \) or \(y \notin A \) or \(z \notin A \), then \(\min \left\{ \mu_B^+ (x), \mu_B^+ (y), \mu_B^+ (z), \delta \right\} = \lambda \) and \(\max \left\{ \mu_B^- (x), \mu_B^- (y), \mu_B^- (z), -\delta \right\} = -\lambda \). Thus

\[
\max \left\{ \mu_B^+ (xyz), \lambda \right\} \geq \lambda = \min \left\{ \mu_B^+ (x), \mu_B^+ (y), \mu_B^+ (z), \delta \right\},
\]

and

\[
\min \left\{ \mu_B^- (xyz), -\lambda \right\} \leq -\lambda = \max \left\{ \mu_B^- (x), \mu_B^- (y), \mu_B^- (z), -\delta \right\}.
\]

Consequently \(\mathcal{B} = (\mu_B^+, \mu_B^-) \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup of \(T \).
Conversely: Let \(x, y, z \in A \). Then \(\mu_B^+(x) \geq \delta, \mu_B^+(y) \geq \delta, \mu_B^+(z) \geq \delta \) and \(\mu_B^-(x) \leq -\delta, \mu_B^-(y) \leq -\delta, \mu_B^-(z) \leq -\delta \). As \(B = (\mu_B^+, \mu_B^-) \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup of \(T \), therefore

\[
\max \{ \mu_B^+(xyz), \lambda \} \geq \min \{ \mu_B^+(x), \mu_B^+(y), \mu_B^+(z), \delta \} \geq \min \{ \delta, \delta, \delta, \delta \} = \delta,
\]

and

\[
\min \{ \mu_B^-(xyz), -\lambda \} \leq \max \{ \mu_B^-(x), \mu_B^-(y), \mu_B^-(z), -\delta \} \leq \max \{ -\delta, -\delta, -\delta, -\delta \} = -\delta.
\]

This implies that \(xyz \in A \). Hence \(A \) is a ternary subsemigroup of \(T \). The other cases can be seen in a similar way.

Theorem 3.10. A non-empty subset \(A \) of \(T \) is ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of \(T \) if and only if \(B_A = (\mu_{B_A}^+, \mu_{B_A}^-) \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup, left (right, lateral, generalized bi-, bi-) ideal of \(T \).

Proof. Let \(A \) be a ternary subsemigroup of \(T \). Then \(B_A = (\mu_{B_A}^+, \mu_{B_A}^-) \) is a bipolar fuzzy ternary subsemigroup of \(T \) and by Corollary 3.7, \(B_A \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup of \(T \).

Conversely, let \(x, y, z \in T \) be such that \(x, y, z \in A \). Then \(\mu_{B_A}^+(x) = \mu_A^+(y) = \mu_A^+(z) = 1 \) and \(\mu_{B_A}^-(x) = \mu_A^-(y) = \mu_A^-(z) = -1 \). Since \(B_A \) is a bipolar \((\lambda, \delta)\)-fuzzy ternary subsemigroup of \(T \), Therefore

\[
\max \{ \mu_{B_A}^+(xyz), \lambda \} \geq \min \{ \mu_{B_A}^+(x), \mu_{B_A}^+(y), \mu_{B_A}^+(z), \delta \} = \min \{ 1, 1, 1, \delta \} = \delta,
\]

and

\[
\min \{ \mu_{B_A}^-(xyz), -\lambda \} \leq \max \{ \mu_{B_A}^-(x), \mu_{B_A}^-(y), \mu_{B_A}^-(z), -\delta \} = \max \{ -1, -1, -1, -\delta \} = -\delta.
\]

It implies that \(\mu_{B_A}^+(xyz) \geq \delta \) and \(\mu_{B_A}^-(xyz) \leq -\delta \). Thus \(xyz \in A \). Therefore \(B_A = (\mu_{B_A}^+, \mu_{B_A}^-) \) is a ternary subsemigroup of \(T \). The other cases can be seen in a similar way.

References

Received: May 5, 2013