Approximate Fixed Point of Uniform Hemicontactive Mapping and to Apply to Iterative Solution of Equation with Uniform-accretive Mapping

Xian Lia,b, Huaxian Caia, Fang Xiea and Yuguang Xua

aDepartment of Mathematics, Kunming University
Puxin Road No: 2, Kunming Yunnan 650214, P. R. China
bDepartment of Mathematics, University of Connecticut
Auditorium Road No: 196, Storrs CT 06269, USA
math.lixian1980@gmail.com

Abstract

The objective of this paper is to introduce the uniform-hemicontactive mapping and to study iterative approximative method for the fixed point of the mappings by Mann iterative sequence with random errors. Let X be a real Banach space and $T : X \to X$ an uniform-hemicontactive the results presented in this paper show that Mann iterative sequence with random errors converges strongly to an unique fixed point if T is uniformly continuous. Furthermore, if X is uniformly smooth then any continuity of T is unnecessary for the convergence of Mann iterative sequence. As applications, using these results, the iterative solution of nonlinear equation with uniform-accretive mapping is obtained.

Mathematics Subject Classification: 47H17, 47H06, 47H10

Keywords: ϕ-hemicontactive mapping, uniform-hemicontactive mapping, uniform-accretive mapping, Mann iteration sequence

1 Introduction and Main Conclusions

Throughout this paper, X is assumed a real Banach space with dual X^*, (\cdot, \cdot) denotes the generalized duality pairing of X and X^*. The mapping
$J : X \to 2^{X^*}$ defined by

$$Jx = \{ j \in X^* : (x, j) = \|x\|\|j\|, \|j\| = \|x\| \} \quad \forall x \in X$$

(1)

is called the normalized duality mapping. In particular, X is an uniformly smooth (equivalently, X^* is uniformly convex) Banach space if and only if J is single-valued and uniformly continuous on any bounded subset of X(see, Browder[2]).

The ϕ-hemicontractive mapping was introduced and studied by Osilike[6] in 1996. He proved that both the Mann[14] and Ishikawa[12] iterative sequences converge strongly to the unique fixed point of T under certain conditions where T is Lipschitz ϕ-hemicontractive. Recently, Z. Q. Liu[18] proved that if X is an arbitrary real Banach space and $T : X \to X$ is an uniformly continuous ϕ-hemicontractive mapping, the Mann or Ishikawa iteration sequences with random errors introduced by Y. Xu[17] converge strongly to the fixed point of T under certain conditions.

The objective of this paper is to introduce the uniform-hemicontractive mappings – a class of mappings which is much more general than the important class of ϕ-hemicontractive mappings, and to study iterative approximation method for the fixed point of uniform-hemicontractive mapping and the solution of equation with uniform-accretive mapping by Mann iterative process with random errors defined by Definition 1.2 below. The results presented in this paper show that Mann iteration sequence $\{x_n\}$ converges strongly to an unique fixed point of T if it is uniformly continuous. Furthermore, if X is uniformly smooth then any continuity of T is unnecessary for the convergence of $\{x_n\}$. As application, using these results, the iterative solution of nonlinear equation with uniform-accretive mapping is obtained in the more general settings.

To set the framework, we recall some basic notations as follows.

Definition 1.1 Let T or A be mappings with domain $D(T) \subset X$ (or $D(A) \subset X$) and range $R(T) \subset X$ (or $R(A) \subset X$).

a) T is called ϕ-hemicontractive if for all $x \in D(T)$ and $q \in F(T) := \{ x \in D(T) : Tx = x \}$ there exist $j(x - q) \in J(x - q)$ and a strictly increasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$ such that

$$(Tx - q, j(x - q)) \leq \|x - q\|^2 - \phi(\|x - q\|)\|x - q\|. \quad (2)$$

b) T is called uniform-hemicontractive if for all $x \in D(T)$ and $q \in F(T)$ there exist $j(x - q) \in J(x - q)$ and a strictly increasing function $\Phi : [0, \infty) \to [0, \infty)$ with $\Phi(0) = 0$ such that

$$(Tx - q, j(x - q)) \leq \|x - q\|^2 - \Phi(\|x - q\|). \quad (3)$$
c) A is called uniform-accretive if for all \(x, y \in D(A) \) there exist \(j(x - y) \in J(x - y) \) and a strictly increasing function \(\Phi : [0, \infty) \to [0, \infty) \) with \(\Phi(0) = 0 \) such that
\[
(Ax - Ay, j(x - y)) \geq \Phi(\|x - y\|). \tag{4}
\]
d) A is called accretive if for all \(x, y \in D(A) \) there exist \(j(x - y) \in J(x - y) \) such that
\[
(Ax - Ay, j(x - y)) \geq 0.
\]

Obvious, if \(q \) is a fixed point of uniform-hemicontactive mapping \(T \), then \(q \) is unique. And every \(\phi \)-hemicontactive mapping must be an uniform-hemicontactive mapping defined by \(\Phi(s) = \phi(s)s \). The following example shows that the class of \(\phi \)-hemicontactive mappings is a proper subset of the class of uniform-hemicontactive mappings.

Example. Let \(E = \mathbb{R} \) (the reals with the usual norm) and let \(K = [0, +\infty) \). Define \(T : K \to K \) by
\[
Tx = x - \frac{x}{1 + x^2}.
\]
It is easy to verify that \(T \) is uniform-hemicontactive with a fixed point \(x = 0 \) and \(\Phi : [0, +\infty) \to [0, +\infty) \) defined by \(\Phi(s) = s^2/(1 + s^2) \). However, \(T \) is not \(\phi \)-hemicontactive. In fact, if there exists a strictly increasing function \(\phi^* : [0, \infty) \to [0, \infty) \) with \(\phi^*(0) = 0 \) satisfying (2), we get an inequality \(\phi^*(x) \leq x/(1 + x^2) \) for all \(x \in (0, +\infty) \), and so \(\lim_{x \to +\infty} \phi^*(x) \leq \lim_{x \to +\infty} x/(1 + x^2) = 0 \). This is incompatible with the strictly monotonicity of \(\phi^* \) on \([0, \infty)\) and \(\phi^*(0) = 0 \).

Let \(K \) be a nonempty convex subset of \(X \), and \(T : K \to K \) be a mapping. For any given \(x_0 \in K \) the sequence \(\{x_n\} \) defined by
\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTx_n \quad (n \geq 0)
\]
is called Mann iteration sequence, where \(\{\alpha_n\} \) is a sequences in \([0, 1]\) satisfying some conditions. The consideration of error terms is an important part of any theory of iteration methods, for this reason, we introduced the following definition.

Definition 1.2 Let \(T : X \to X \) be a mapping. For any given \(x_0 \in X \) the sequence \(\{x_n\} \) defined by
\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTx_n + \gamma_nu_n \quad (n \geq 0)
\]
is called Mann iteration sequence with random errors. Here \(\{u_n\} \) is a bounded sequence in \(X \); \(\{\alpha_n\} \), and \(\{\gamma_n\} \) are sequences in \([0, 1]\).

The following Lemma play crucial role in the proofs of our main results.
Lemma 1.3 \cite{1,10}. If X be a real Banach space then there exists $j(x+y) \in J(x+y)$ such that
\[
\|x+y\|^2 \leq \|x\|^2 + 2(y, j(x+y)) \quad \forall x, y \in X. \tag{6}
\]

Now we provide approximative theorems as follows.

Theorem 1.4 Suppose that $T : X \to X$ is an uniformly continuous and uniform-hemicontractive mapping with bounded range. If the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by (5) satisfying
\[
\lim_{n \to \infty} \alpha_n = 0 \text{ and } \sum_{n=0}^{+\infty} \alpha_n = +\infty;
\]
then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique fixed point of T.

Theorem 1.5 Let $T : X \to X$ be an uniform-hemicontractive mapping with bounded range and X be uniformly smooth. Suppose that the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by (5) satisfying the conditions (1.4.1) and (1.4.2) in Theorem 1.4, then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique fixed point of T.

The accretive mappings were introduced independently in 1967 by Browder\cite{3} and Kato\cite{13}. An early fundamental result in the theory of accretive mappings, due to Browder, states that the initial value problem $dx/dt + Ax = 0, \quad x(0) = x_0$ is solvable if A is locally Lipschitzian and accretive on X. Martin\cite{9} generalized the result of Browder to the continuous strongly accretive mapping. That is, he proved that if $A : X \to X$ is strongly accretive and continuous, then A is surjective, so that the equation
\[
Ax = f \tag{7}
\]
has a solution for any given $f \in X$. On the other hand, he established also that if $A : X \to X$ is accretive and continuous, then the equation $x + Ax = f$ has a solution for any given $f \in X$.

Remark 1.1. Suppose that $A : X \to X$ is an uniform-accretive mapping and $S : X \to X$ is defined by $Sx = f + x - Ax$ for all $x \in X$ and any given $f \in X$, it is easy to verify that q is a solution of Eq. (7) if and only if q is a fixed point of S. Hence, the solution of Eq. (7) is intimately connected with the fixed point of the mapping.

Corollary 1.6 Suppose that $A : X \to X$ is an uniformly continuous and uniform-accretive mapping and the range of $(I - A)$ is bounded. If the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by
\[
x_0 \in X, \quad x_{n+1} = (1-\alpha_n)x_n + \alpha_n Sx_n + \gamma_n u_n \quad (n \geq 0)
\]
satisfying the conditions (1.4.1) and (1.4.2) in Theorem 1.4, where $S : X \to X$ defined by $Sx = f + x - Ax$, and for any given $f \in X$ the equation $Ax = f$ has a solution, then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique solution of $Ax = f$.

Similarly, we have

Corollary 1.7 Let $A : X \to X$ be an uniform-accretive mapping, the range of $(I - A)$ be bounded and X be uniformly smooth. Suppose that the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_0 \in X, \quad x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Sx_n + \gamma_n u_n \quad (n \geq 0)$$

satisfying the conditions (1.4.1) and (1.4.2) in Theorem 1.4, where $S : X \to X$ defined by $Sx = f + x - Ax$, and for any given $f \in X$ the equation $Ax = f$ has a solution, then for arbitrary $x_0 \in X$, $\{x_n\}$ converges strongly to the unique solution of $Ax = f$.

As a consequence of Corollary 1.6, we obtain

Corollary 1.8 Suppose that $A : X \to X$ is an uniformly continuous and uniform-accretive mapping with bounded range. If the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_0 \in X, \quad x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Sx_n + \gamma_n u_n \quad (n \geq 0)$$

satisfying the conditions (1.4.1) and (1.4.2) in Theorem 1.4, where $S : X \to X$ defined by $Sx = f - Ax$, then for arbitrary $x_0 \in X$ and for any given $f \in X$, $\{x_n\}$ converges strongly to the unique solution of $x + Ax = f$.

Similarly, we also have

Corollary 1.9 Let $A : X \to X$ be an uniform-accretive mapping with bounded range and X be uniformly smooth. If the Mann iteration sequence with random errors $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_0 \in X, \quad x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Sx_n + \gamma_n u_n \quad (n \geq 0)$$

satisfying the conditions (1.4.1) and (1.4.2) in Theorem 1.4, where $S : X \to X$ defined by $Sx = f - Ax$, then for arbitrary $x_0 \in X$ and for any given $f \in X$, $\{x_n\}$ converges strongly to the unique solution of $x + Ax = f$.
Remark 1.2. Theorem 1.4, Theorem 1.5 and Corollary 1.6—Corollary 1.9 have been shown that we can approximate to the fixed point of uniform-hemicontractive mapping or the solution of equations with uniform-accretive mapping by the Mann iteration sequence with random errors. The corresponding results (see, for example, Theorem 4.1 and Theorem 4.2 of [11], Theorem 3 and Theorem 4 of [8], Corollary 2.4 of [7], Corollary 3.3 of [18], Corollary 3.2 and Corollary 3.4 of [17], Theorem 2 of [4], Corollary 3.2 of [15] and Corollary 3.2 of [16]) are improved in the following senses:

i) for the convergence of the mann iterative sequence with random errors, if \(X \) is arbitrary Banach space, the mapping may not be Lipschitz, if \(X \) is an uniformly smooth Banach space, the mapping may not be continuous or demi-continuous, therefore, it may not be Lipschitz, also;

ii) the mapping may not be \(\phi \)-hemicontractive or \(\phi \)-strongly accretive;

iii) the random errors of iterative process have been considered appropriately again.

Remark 1.3. The Mann iteration process with errors on a nonempty convex subset of Banach space was introduced in 1995 by L.S. Liu [5] first. Xu, one of authors, revised the definition of Liu in 1998 (see, Xu [17]). Definition 1.2 differs from the definitions in [5] and [17]. Note that the Mann iterative process is a special case of the Mann iteration process with random errors. By the way, the iterative parameters \(\{\alpha_n\} \) and \(\{\gamma_n\} \) do not depend on any geometric structure of space \(X \) and on any property of the mappings, but, the selection of the parameters is deal with the convergence rate of the iterative sequence. In this paper, a prototype of iteration parameters is

\[
\alpha_n = \frac{1}{n+1} \quad \text{and} \quad \gamma_n = \frac{1}{n!} \quad \forall \quad n \geq 0.
\]

2 Proofs of Main Conclusions

Now we prove the approximative theorems.

The proof of Theorem 1.4.

Proof. We know that \(F(T) = \{q\} \).

Putting

\[
\begin{align*}
c &= \sup \{\|Tx - q\| : x \in X\} + \|x_0 - q\| \\
d &= \sup \{\|u_n\| : n \geq 0\}.
\end{align*}
\]

For any \(n \geq 0 \), using induction, we obtain

\[
\|x_n - q\| \leq c + d \sum_{i=0}^{n-1} \gamma_i \leq c + d \sum_{i=0}^{+\infty} \gamma_i.
\]

Hence, we set

\[
M = c + d \sum_{i=0}^{+\infty} \gamma_i.
\]
Since
\[\lim_{n \to \infty} \|x_n - x_{n+1}\| = \lim_{n \to \infty} \|\alpha_n x_n - \alpha_n T x_n - \gamma_n u_n\| = 0, \]
therefore,
\[e_n := \|T x_n - T x_{n+1}\| \to 0 \quad (as \ n \to \infty) \]
by the uniformly continuity of \(T\).

Let \(\sigma = \inf\{\|x_{n+1} - q\| : n \geq 0\}\). If \(\sigma > 0\) then \(\Phi(\|x_{n+1} - q\|) > \Phi(\sigma/2) > 0\)
for all \(n \geq 0\). Thus, there exists a natural number \(N \in \mathbb{N}\) such that
\[\alpha_n \leq \frac{1}{6} \quad \text{and} \quad M^2 \alpha_n + 2M e_n \leq \Phi\left(\frac{\sigma}{2}\right) \quad \forall \ n \geq N, \]
respectively. By (3), (6) and (9), we have
\[
\begin{align*}
\|x_{n+1} - q\|^2 &= \|(1 - \alpha_n)(x_n - q) + \alpha_n (T x_n - q) + \gamma_n u_n\|^2 \\
&\leq \|(1 - \alpha_n)(x_n - q)\|^2 \\
&\quad + 2 \alpha_n (T x_n - q) + \gamma_n u_n, \ j(x_{n+1} - q) \\
&\leq \|(1 - \alpha_n)(x_n - q)\|^2 + 2 \alpha_n (T x_n - T x_{n+1}, \ j(x_{n+1} - q) \\
&\quad + 2 \alpha_n (T x_{n+1} - q, \ j(x_{n+1} - q)) + 2M^2 \gamma_n \\
&\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2M \alpha_n e_n + 2 \alpha_n \|x_{n+1} - q\|^2 \\
&\quad - 2 \alpha_n \Phi(\|x_{n+1} - q\|) + 2M^2 \gamma_n \\
&\leq (1 - 2 \alpha_n) \|x_n - q\|^2 + 2 \alpha_n \|x_{n+1} - q\|^2 \\
&\quad + \alpha_n [M^2 \alpha_n + 2M e_n - \Phi(\sigma/2)] + 2M^2 \gamma_n - \Phi(\sigma/2) \alpha_n \\
&\leq \|x_n - q\|^2 + \frac{2}{1 - 2 \alpha_n} M^2 \gamma_n - \Phi(\sigma/2) \alpha_n \\
&\leq \|x_n - q\|^2 + 3M^2 \gamma_n - \Phi(\sigma/2) \alpha_n
\end{align*}
\]
for all \(n \geq N\).

By induction, we have
\[0 \leq \|x_N - q\|^2 + 3M^2 \sum_{j=N}^{+\infty} \gamma_j - \Phi\left(\frac{\sigma}{2}\right) \sum_{j=N}^{+\infty} \alpha_j. \]
I.e.,
\[\Phi\left(\frac{\sigma}{2}\right) \sum_{j=N}^{+\infty} \alpha_j \leq \|x_N - q\|^2 + 3M^2 \sum_{j=N}^{+\infty} \gamma_j < +\infty. \tag{11} \]

(11) is in contradiction with \(\sum_{j=0}^{+\infty} \alpha_j = +\infty\). From this contradiction, we know
that \(\sigma = 0\). Therefore, there exists a subsequence \(\{x_{n_j+1}\} \subset \{x_{n+1}\}\) such that
\(x_{n_j+1} \to q\) (as \(n_j \to \infty\)). By induction, we can prove
\[x_{n_j+k} \to q \quad (as \ n_j \to \infty) \quad \forall k > 0. \]
This implies that \(x_n \to q\). The Proof is completed.
The proof of Theorem 1.5.

Proof. We know that the fixed point of \(T \) is unique. Let \(q \) be the fixed point of \(T \) in \(X \). By similar arguments as in the proof of Theorem 1.4, we set

\[
M = c + d \sum_{i=0}^{+\infty} \gamma_i.
\]

Using (8) and the uniformly continuity of \(J \), we have

\[
e_n := \|J(x_{n+1} - q) - J(x_n - q)\| \to 0 \text{ (as } n \to \infty)\]

From (3), (6) and (9), we have

\[
\|x_{n+1} - q\|^2 = \|(1 - \alpha_n)(x_n - q) + \alpha_n(Tx_n - q) + \gamma_n u_n\|^2 \\
\leq \|(1 - \alpha_n)(x_n - q)\|^2 + 2\alpha_n(Tx_n - q, J(x_{n+1} - q)) \\
+ 2\gamma_n(u_n, J(x_{n+1} - q)) \\
\leq \|(1 - \alpha_n)(x_n - q)\|^2 + 2\alpha_n(Tx_n - q, J(x_n - q)) \\
+ 2\alpha_n(Tx_n - q, J(x_{n+1} - q) - J(x_n - q)) + 2M^2\gamma_n \\
\leq (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n\|x_n - q\|^2 \\
- 2\alpha_n\Phi(\|x_n - q\|) + 2M\alpha_n e_n + 2M^2\gamma_n \\
\leq (1 + \alpha_n^2)\|x_n - q\|^2 - 2\alpha_n\Phi(\sigma/2) + 2M\alpha_n e_n + 2M^2\gamma_n \\
\leq \|x_n - q\|^2 + 2M^2\gamma_n - \Phi(\sigma/2)\alpha_n \\
+ \alpha_n[M^2\alpha_n + 2Me_n - \Phi(\sigma/2)] \\
\leq \|x_n - q\|^2 + 2M^2\gamma_n - \Phi(\sigma/2)\alpha_n.
\]

(12)

By similar arguments as in the proof of Theorem 1.4, we have that \(\{x_n\} \) converges strongly to the unique fixed point \(q \) of \(T \). The Proof is completed.

Now, we prove corollaries as follows.

The proof of Corollary 1.6.

Proof. Putting \(S : X \to X \) by \(Sx = f + x - Ax \) for all \(x \in X \). Obvious, if \(q \in X \) is a solution of Eq. (7) then \(q \) is a fixed point of \(S \) and \(S \) is uniform-hemicontractive. Thus Corollary 1.6 follows from Theorem 1.4.

The proof of Corollary 1.7.

Proof. Similarly, the conclusion from Theorem 1.5.

The proof of Corollary 1.8.

Proof. Since \(A \) is accretive and continuous then \(A \) is \(m \)-accretive, so that the equation \(x + Ax = f \) has a solution \(x = q \) for any given \(f \in X \). Putting \(A_0 = I + A \), the equation \(x + Ax = f \) becomes \(A_0x = f \). It is easy to see that \(A_0 \) is uniformly continuous and uniform-accretive. Thus Corollary 1.8 follows from Corollary 1.6.
The proof of Corollary 1.9.

Proof. In fact, Corollary 1.9 is a direct result of Corollary 1.7.

ACKNOWLEDGEMENTS. This work is supported by the Scientific Research Project of Kunming University(XJL12007).

References

Received: January, 2013