Subclass of Multivalent Functions Defined by Hadamard Product Involving a Linear Operator

Waggas Galib Atshan
Department of Mathematics
College of Computer Science and Mathematics
University of Al-Qadisiya, Diwaniya, Iraq
waggashnd@gmail.com, waggas_hnd@yahoo.com

Hadi Jabber Mustafa and Emad Kadhim Mouajeeb
Department of Mathematics
College of Mathematics and Computer Science
University of Kufa, Najaf, Kufa, Iraq
eallamy@yahoo.com

Copyright © 2013 Waggas Galib Atshan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In the present paper, we introduce a subclass $R_p(γ, β, m, A, B, α)$ of multivalent analytic functions in the open unit disc U. We study coefficient inequalities, closure theorem, neighborhood property and partial sums, radii of starlikeness, convexity and close-to-convexity. We also obtain weighted mean, arithmetic mean and linear combination.

Mathematics Subject Classification: 30C45, 30C50

Keywords: multivalent function, convolution, neighborhoods, partial sums, weighted mean, arithmetic mean, linear operator and linear combination

1 Introduction

Let A_p denote the class of all functions of the form:
\[
f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad (p \in N = \{1, 2, \cdots \}),
\]
which are analytic and multivalent in the open unit disk

\[U = \{ z \in \mathbb{C} : |z| < 1 \}. \]

Let \(M_p \) denote the subclass of \(\mathcal{A}_p \) containing functions of the form:

\[
f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad (a_k \geq 0, p \in \mathbb{N}),
\]

which are analytic and multivalent in the open unit disk \(U \).

For the functions \(f \in M_p \) given by (2) and \(g \in M_p \) defined by

\[
g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k, \quad (b_k \geq 0, p \in \mathbb{N}).
\]

We define the convolution (or Hadamard product) of \(f \) and \(g \) by

\[(f * g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k.\]

A function \(f \in M_p \) is said to be \(p \)-valently starlike of order \(\rho \) if and only if

\[\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \rho, \quad (0 \leq \rho < p; z \in U).\]

A function \(f \in M_p \) is said to be \(p \)-valently convex of order \(\rho \) if and only if

\[\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \rho, \quad (0 \leq \rho < p; z \in U).\]

It follows from expression (5), (6) that \(f \) is convex if and only if \(zf'(z) \) is starlike. A function \(f \in M_p \) is close-to-convex of order \(\rho \) if

\[\Re \left\{ \frac{f'(z)}{z^{p-1}} \right\} > \rho, \quad (0 \leq \rho < p; z \in U).\]

Definition 1 [6]: Let \(\gamma, \beta, m \in \mathbb{R}, \gamma \geq 0, \beta \geq 0, m \geq 0, p \in \mathbb{N} \) and

\[f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k.\]

Then, we define the linear operator

\[D_{p,m}^{\gamma,\beta} : \mathcal{A}_p \to \mathcal{A}_p \]

by
Subclass of multivalent functions

\[D_{p,m}^{\gamma,\beta} f(z) = z^p + \sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m a_k z^k, \quad z \in U. \]

(8)

Definition 2: Let \(g \) be a fixed function defined by (3). The function \(f \in M_p \) given by (2) is said to be in the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \) if and only if

\[
\frac{z(D_{p,m}^{\gamma,\beta}(f * g)(z))' - p(D_{p,m}^{\gamma,\beta}(f * g)(z))}{\lambda z(D_{p,m}^{\gamma,\beta}(f * g)(z))' + (A + B)(D_{p,m}^{\gamma,\beta}(f * g)(z))} < \alpha,
\]

where

\[0 < \lambda < 1, 0 < A < 1, 0 < B < 1, 0 < \alpha < 1, \gamma, \beta, m \in R, \gamma \geq 0, \beta \geq 0, m \geq 0, p \in N. \]

Some of the following properties studied for other classes in [1], [2], [4] and [5].

2 Coefficient Inequalities

Theorem 1: Let \(f \in M_p \). Then \(f \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \) if and only if

\[
\sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m [(k-p) - \alpha(\lambda k + (A+B))] a_k b_k \leq \alpha[p\lambda + (A+B)],
\]

where

\[0 < \lambda < 1, 0 < A < 1, 0 < B < 1, 0 < \alpha < 1, \gamma, \beta, m \in R, \gamma \geq 0, \beta \geq 0, m \geq 0, p \in N. \]

The result is sharp for the function

\[f(z) = z^p + \frac{\alpha[p\lambda + (A+B)]}{1 + \frac{(k-p)\gamma}{(p+\beta)}} [(k-p) - \alpha(\lambda k(A+B))] b_k z^k. \]

(11)

Proof: Suppose that the inequality (10) holds true and \(|z| = 1\). Then we have

\[
\begin{align*}
\frac{z(D_{p,m}^{\gamma,\beta}(f * g)(z))' - p(D_{p,m}^{\gamma,\beta}(f * g)(z))}{\lambda z(D_{p,m}^{\gamma,\beta}(f * g)(z))' + (A + B)(D_{p,m}^{\gamma,\beta}(f * g)(z))} & = |z(D_{p,m}^{\gamma,\beta}(f * g)(z))' - p(D_{p,m}^{\gamma,\beta}(f * g)(z))| \\
& \quad - \alpha |\lambda z(D_{p,m}^{\gamma,\beta}(f * g)(z))' + (A + B)(D_{p,m}^{\gamma,\beta}(f * g)(z))| \\
& = \sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m (k-p) a_k b_k z^k.
\end{align*}
\]
Let H be the given function. Hence, by maximum modulus principle, f by hypothesis. Conversely, suppose that $f \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then from (9), we have

$$
\left| \frac{(D^\gamma_p f(z))^\prime - p(D^\gamma_p f(z))}{\lambda z(D^\gamma_p f(z))^\prime + (A + B)(D^\gamma_p f(z))} \right| \leq \sum_{k=p+1}^\infty \left(1 + \frac{(k-p)\gamma}{(p+\beta)}\right)^m (k-p)a_k b_k |z|^k
$$

Since $Re(z) \leq |z|$ for all $z \in U$ we get

$$
Re \left\{ \sum_{k=p+1}^\infty \left(1 + \frac{(k-p)\gamma}{(p+\beta)}\right)^m (k-p)a_k b_k |z|^k \right\} < \alpha.
$$

We choose the value of z on the real axis so that $(D^\gamma_p f(z))^\prime$ is real. Letting $z \to 1^-$ through real values, we obtain inequality (10).

Finally, sharpness follows if we take

$$
f(z) = z^p + \frac{\alpha[p\lambda + (A + B)]}{1 + \frac{(k-p)\gamma}{(p+\beta)}} [(k-p) - \alpha(\lambda k + (A + B))]z^k,
$$

$k = p + 1, p + 2, \ldots$.

The proof is complete.

Corollary 1: Let $f \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then

$$
a_k \leq \frac{\alpha[p\lambda + (A + B)]}{1 + \frac{(k-p)\gamma}{(p+\beta)}} [(k-p) - \alpha(\lambda k + (A + B))]z^k, \quad k = p+1, p+2, \ldots
$$
3 Closure Theorem

Theorem 2: Let the functions f_s defined by

$$f_s(z) = z^p + \sum_{k=p+1}^{\infty} a_{k,s} z^k, \quad (a_{k,s} \geq 0, p \in N, s = 1, 2, \cdots, l),$$

be in the class $R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$ for every $s = 1, 2, \cdots, l$. Then the function h defined by

$$h(z) = z^p + \sum_{k=p+1}^{\infty} e_k z^k, \quad (e_k \geq 0, p \in N),$$

also belongs to the class $R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$, where

$$e_k = \frac{1}{l} \sum_{s=1}^{l} a_{k,s}, \quad (k \geq p + 1).$$

Proof: Since $f_s \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$, then by Theorem 1, we have

$$\sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m [(k-p) - \alpha(\lambda k + (A+B))] a_{k,s} b_k \leq \alpha[p\lambda + (A+B)], \quad (15)$$

for every $s = 1, 2, \cdots, l$. Hence

$$\sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m [(k-p) - \alpha(\lambda k + (A+B))] e_k b_k$$

$$= \sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m [(k-p) - \alpha(\lambda k + (A+B))] b_k \left(\frac{1}{l} \sum_{s=1}^{l} a_{k,s} \right)$$

$$= \frac{1}{l} \sum_{s=1}^{l} \left(\sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m [(k-p) - \alpha(\lambda k + (A+B))] a_{k,s} b_k \right)$$

$$\leq \alpha[p\lambda + (A+B)].$$

By Theorem 1, it follows that $h \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$.

4 Neighborhoods and Partial Sums

We define the (n, δ)-neighborhood of a function $f \in M_p$ by

$$N_{n,\delta}(f) = \left\{ g \in M_p : g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k \text{ and } \sum_{k=p+1}^{\infty} k|a_k - b_k| \leq \delta, \quad 0 \leq \delta < 1 \right\}. \quad (16)$$
For the identity function $e(z) = z$, $(p \in N)$

$$N_{n,\delta}(e) = \left\{ g \in M_p : g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k \quad \text{and} \quad \sum_{k=p+1}^{\infty} k|b_k| \leq \delta, \quad 0 \leq \delta < 1 \right\}.$$

(17)

The concept of neighborhoods was first introduced by Goodman [3] and then generalized by Ruscheweyh [7].

Definition 3: A function $f \in M_p$ is said to be in the class $R^n(\gamma, \beta, m, \lambda, A, B, \alpha)$ if there exists a function $g \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$ such that

$$\left| \frac{f(z)}{g(z)} - 1 \right| < p - \eta \quad (z \in U, \quad 0 \leq \eta < 1).$$

Theorem 3: If $g \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$ and

$$\eta = p - \frac{\delta \left(1 + \frac{\gamma}{p+\beta}\right)^m \left[1 - \alpha(p+1) + (A + B)\right]a_{p+1}}{(p+1) \left(1 + \frac{\gamma}{p+\beta}\right)^m \left[1 - \alpha(p+1) + (A + B)\right]a_{p+1} - \alpha[p\lambda + (A + B)]}.$$

(18)

Then $N_{n,\delta}(g) \subset R^n(\gamma, \beta, m, \lambda, A, B, \alpha)$.

Proof: Let $f \in N_{n,\delta}(g)$. We want to find from (16) that

$$\sum_{k=p+1}^{\infty} |a_k - b_k| \leq \delta,$$

which readily implies the following coefficient inequality

$$\sum_{k=p+1}^{\infty} |a_k - b_k| \leq \frac{\delta}{p+1}.$$

Next, since $g \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha)$, we have from Theorem 1

$$\sum_{k=p+1}^{\infty} b_k \leq \frac{\alpha[p\lambda + (A + B)]}{\left(1 + \frac{\gamma}{p+\beta}\right)^m \left[1 - \alpha(p+1) + (A + B)\right]a_{p+1}}.$$

So that

$$\left| \frac{f(z)}{g(z)} - 1 \right| \leq \frac{\sum_{k=p+1}^{\infty} |a_k - b_k|}{1 - \sum_{k=p+1}^{\infty} b_k} \leq \frac{\delta \left(1 + \frac{\gamma}{p+\beta}\right)^m \left[1 - \alpha(p+1) + (A + B)\right]a_{p+1}}{p+1}.$$

(19)
Thus by Definition 3, \(f \in R_p^n(\gamma, \beta, m, A, B, \alpha) \) for \(\eta \) given by (18). This completes the proof.

Now, we introduce the partial sums and the same property has been for other class in [8].

Theorem 4: Let \(f \in M_p \) be given by (2) and define the partial sums \(s_1(z) \) and \(s_q(z) \) by

\[
s_1(z) = z^p
\]

and

\[
s_q(z) = z^p + \sum_{k=p+1}^{p+q-1} a_k z^k, \quad q > p + 1.
\]

Suppose also that

\[
\sum_{k=p+1}^{\infty} d_k a_k \leq 1,
\]

\[
\left(d_k = \frac{\left(1 + \frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k-p) - \alpha(pk + (A + B))]b_k}{\alpha(p\lambda + (A + B))}\right).
\]

Thus, we have

\[
Re \left\{ \frac{f(z)}{s_q(z)} \right\} > 1 - \frac{1}{d_k}
\]

and

\[
Re \left\{ \frac{s_q(z)}{f(z)} \right\} > 1 - \frac{d_k}{1 + d_k}
\]

Each of the bounds in (22) and (23) is the best possible for \(p \in N \).

Proof: For the coefficients \(d_k \) given by (21), it is not difficult to verify that

\[
d_{k+1} > d_k > 1, \quad k = p + 1, p + 2, \cdots.
\]

Therefore, by using the hypothesis (20), we have

\[
\sum_{k=p+1}^{p+q-1} a_k + \sum_{k=p+1}^{\infty} d_k a_k \leq \sum_{k=p+1}^{\infty} d_k a_k \leq 1.
\]

By setting

\[
g_1 = d_k \left(\frac{f(z)}{s_q(z)} - \left(1 - \frac{1}{d_k}\right) \right) = 1 + \frac{d_k \sum_{k=p+q}^{\infty} a_k z^{k-p}}{1 + \sum_{k=p+q}^{p+q-1} a_k z^{k-p}}
\]
and applying (24) we find that

\[
\frac{|g_1(z) - 1|}{|g_1(z) + 1|} \leq \frac{d_k \sum_{k=p+q}^{\infty} a_k}{2 - 2 \sum_{k=p+1}^{p+q-1} a_k - d_k \sum_{k=p+1}^{\infty} a_k} \leq 1.
\]

This prove (22). Therefore, \(Re(g_1(z)) > 0 \) and we obtain

\[
Re \left\{ \frac{f(z)}{s_q(z)} \right\} > 1 - \frac{1}{d_k}.
\]

Now, in the same manner, we can prove the assertion (23), by setting

\[
g_2(z) = (1 + d_k) \left(\frac{s_q(z)}{f(z)} - \frac{d_k}{1 + d_k} \right).
\]

This completes the proof.

5 Radii of Starlikeness, Convexity and Close-to-Convexity

Using the inequalities (5), (6) and (7) and Theorem1, we can compute the radii of starlikeness, convexity and close-to-convexity.

Theorem 5 : If \(f \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \), then \(f(z) \) is \(p \)-valently starlike of order \(\rho \) \((0 \leq \rho < p)\) in the disc \(|z| < r_1\), where

\[
r_1(\gamma, \beta, m, \lambda, A, B, \alpha, \rho) = \inf_k \left[\left(\frac{p - \rho}{\alpha(k - \rho)} \right) \left(\frac{(k - p)^m}{\alpha(k - \rho)(p + \beta)} \right) \right]^{\frac{1}{p - \rho}}.
\]

Proof : It is sufficient to show that

\[
\left| \frac{zf'(z)}{f(z)} - p \right| \leq p - \rho \quad (0 \leq \rho < p),
\]

for

\[
|z| < r_1(\gamma, \beta, m, \lambda, A, B, \alpha, \rho),
\]

we have

\[
\left| \frac{zf'(z)}{f(z)} - p \right| \leq \sum_{k=p+1}^{\infty} \frac{(k - p)a_k|z|^{k-p}}{1 - \sum_{k=p+1}^{\infty} a_k|z|^{k-p}}.
\]
Thus

\[\left| \frac{zf'(z)}{f(z)} - p \right| \leq p - \rho, \]

if

\[\sum_{k=p+1}^{\infty} \frac{(k - \rho)a_k|z|^{k-p}}{(p - \rho)} \leq 1. \] \hspace{1cm} (26)

Hence, by Theorem 1, (26) will be true if

\[\frac{(k - \rho)a_k|z|^{k-p}}{(p - \rho)} \leq \frac{1 + \frac{(k-p)\gamma}{(p+\beta)}}{\alpha[p\lambda + (A + B)]} m [(k - p) - \alpha(\lambda k + (A + B))] \]

and hence

\[|z| \leq \left[\frac{(p - \rho) \left(1 + \frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]}{\alpha(k-p)[p\lambda + (A + B)]} \right]^{\frac{1}{k-p}}. \]

Setting \(|z| = r_1 \), we get the desired result.

Theorem 6: If \(f(z) \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \). Then \(f(z) \) is \(p \)-valently convex of order \(\rho \) \((0 \leq \rho < p)\) in the disc \(|z| < r_2 \), where

\[r_2(\gamma, \beta, m, \lambda, A, B, \alpha, \rho) = \inf_k \left[\frac{(p - \rho) \left(1 + \frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]}{\alpha k[p\lambda + (A + B)]} \right]^{\frac{1}{k-p}}. \]

Proof: It is sufficient to show that

\[\left| 1 + \frac{f''(z)}{f'(z)} - p \right| \leq p - \rho, \quad (0 \leq \rho < p), \]

for

\[|z| < r_2(\gamma, \beta, m, \lambda, A, B, \alpha, \rho), \]

we have

\[\left| 1 + \frac{zf''(z)}{f'(z)} - p \right| = \frac{\sum_{k=p+1}^{\infty} k(k - p)a_k|z|^{k-p}}{1 - \sum_{k=p+1}^{\infty} ka_k|z|^{k-p}}. \]

Thus

\[\left| 1 + \frac{zf''(z)}{f'(z)} - p \right| \leq p - \rho, \]

if

\[\sum_{k=p+1}^{\infty} \frac{k(k - \rho)a_k|z|^{k-p}}{(p - \rho)} \leq 1. \] \hspace{1cm} (27)
Hence, by Theorem 1, (27) will be true if
\[\frac{k(k - \rho)a_k |z|^{k-p}}{(p - \rho)} \leq \frac{1 + \left(\frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]}{\alpha[p\lambda + (A + B)]}, \]
and hence,
\[|z| \leq \left(\frac{p - \rho}{(p - \rho)} \left(1 + \left(\frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))] \right)^{\frac{1}{k-p}} \right) \frac{1}{\alpha k[k(p - \rho)][p\lambda + (A + B)]}. \]

Setting \(|z| = r_2 \), we get the desired result.

Theorem 7: Let a function \(f(z) \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \). Then \(f(z) \) is \(p \)-valently close-to-convex of order \(\rho \) \((0 \leq \rho < p)\) in the disc \(|z| < r_3 \), where
\[r_3(\gamma, \beta, m, \lambda, A, B, \alpha, \rho) = \inf_k \left[\frac{1}{\alpha k[k(p - \rho)][p\lambda + (A + B)]} \left(\frac{p - \rho}{(p - \rho)} \left(1 + \left(\frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))] \right)^{\frac{1}{k-p}} - 1 \right) \right]. \]

Proof: It is sufficient to show that
\[\left| \frac{f'(z)}{z^{p-1}} - p \right| \leq p - \rho, \quad (0 \leq \rho < p), \]
for
\[|z| < r_3(\gamma, \beta, m, \lambda, A, B, \alpha, \rho), \]
we have
\[\left| \frac{f'(z)}{z^{p-1}} - p \right| \leq \sum_{k=p+1}^{\infty} ka_k |z|^{k-p}. \]

Thus
\[\left| \frac{f'(z)}{z^{p-1}} - p \right| \leq p - \rho, \]
if
\[\sum_{k=p+1}^{\infty} ka_k |z|^{k-p} \leq \frac{(p - \rho) \left(1 + \left(\frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))] \right)^{\frac{1}{k-p}}}{\alpha k[k(p - \rho)][p\lambda + (A + B)]}. \] (28)

Hence, by Theorem 1, (28) will be true if
\[\frac{k|z|^{k-p}}{(p - \rho)} \leq \frac{1 + \left(\frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]}{\alpha[p\lambda + (A + B)]}, \]
and hence
\[|z| \leq \left[\frac{(p - \rho) \left(1 + \left(\frac{(k-p)\gamma}{(p+\beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))] \right)^{\frac{1}{k-p}}}{\alpha k[k(p - \rho)][p\lambda + (A + B)]} \right]. \]

Setting \(|z| = r_3 \), we get the desired result.
6 Weighted Mean and Arithmetic Mean

Definition 4: Let \(f_1 \) and \(f_2 \) be in the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \). Then the weighted mean \(w_q \) of \(f_1 \) and \(f_2 \) is given by
\[
w_q(z) = \frac{1}{2}[(1 - q)f_1(z) + (1 + q)f_2(z)], \quad 0 < q < 1.
\]

Theorem 8: Let \(f_1 \) and \(f_2 \) be in the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \). Then the weighted mean \(w_q \) of \(f_1 \) and \(f_2 \) is also in the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \).

Proof: By Definition 4, we have
\[
w_q(z) = \frac{1}{2}[(1 - q)f_1(z) + (1 + q)f_2(z)]
\]
\[
= \frac{1}{2}\left[(1 - q) \left(z^p + \sum_{k=p+1}^{\infty} a_{k,1}z^k\right) + (1 + q) \left(z^p + \sum_{k=p+1}^{\infty} a_{k,2}z^k\right)\right]
\]
\[
= z^p + \sum_{k=p+1}^{\infty} \frac{1}{2}[(1 - q)a_{k,1} + (1 + q)a_{k,2}]z^k.
\]

Since \(f_1 \) and \(f_2 \) are in the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \) so by Theorem 1, we get
\[
\sum_{k=p+1}^{\infty} \left(1 + \frac{(k - p)\gamma}{(p + \beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]a_{k,1}b_k \leq \alpha[p\lambda + (A + B)].
\]

And
\[
\sum_{k=p+1}^{\infty} \left(1 + \frac{(k - p)\gamma}{(p + \beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]a_{k,2}b_k \leq \alpha[p\lambda + (A + B)].
\]

Hence
\[
\sum_{k=p+1}^{\infty} \left(1 + \frac{(k - p)\gamma}{(p + \beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))] \times
\]
\[
\left(\frac{1}{2}[(1 - q)a_{k,1} + (1 + q)a_{k,2}]\right) b_k z^k
\]
\[
= \frac{1}{2}(1 - q) \sum_{k=p+1}^{\infty} \left(1 + \frac{(k - p)\gamma}{(p + \beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]a_{k,1}b_k
\]
\[
+ \frac{1}{2}(1 + q) \sum_{k=p+1}^{\infty} \left(1 + \frac{(k - p)\gamma}{(p + \beta)}\right)^m [(k - p) - \alpha(\lambda k + (A + B))]a_{k,2}b_k
\]
\[
\leq \frac{1}{2}(1 - q)\alpha[p\lambda + (A + B)] + \frac{1}{2}(1 + q)\alpha[p\lambda + (A + B)] = \alpha[p\lambda + (A + B)].
\]
Therefore \(w_q \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \).
The proof is complete.

Theorem 9: Let \(f_1(z), f_2(z), \ldots, f_l(z) \) defined by

\[
 f_i(z) = z^p + \sum_{k=p+1}^{\infty} a_{k,i}z^k, \quad (a_{k,i} \geq 0, i = 1, 2, \ldots, l, \ k \geq p + 1) \tag{30}
\]

be in the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \). Then the arithmetic mean of \(f_i(z) \) \((i = 1, 2, \ldots, l)\) defined by

\[
 h(z) = \frac{1}{l} \sum_{i=1}^{l} f_i(z) \tag{31}
\]

is also in the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \).

Proof: By (30), (31), we can write

\[
 h(z) = \frac{1}{l} \sum_{i=1}^{l} \left(z^p + \sum_{k=p+1}^{\infty} a_{k,i}z^k \right)
\]

\[
 = z^p + \sum_{k=p+1}^{\infty} \left(\frac{1}{l} \sum_{i=1}^{l} a_{k,i} \right) z^k.
\]

Since \(f_i \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \) for every \((i = 1, 2, \ldots, l)\) so by using Theorem 1, we prove that

\[
 \sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m ((k-p) - \alpha(\lambda k + (A + B)) (\frac{1}{l} \sum_{i=1}^{l} a_{k,i}) b_k
\]

\[
 = \frac{1}{l} \sum_{i=1}^{l} \left(\sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m ((k-p) - \alpha(\lambda k + (A + B)))a_{k,i}b_k
\]

\[
 \leq \frac{1}{l} \sum_{i=1}^{l} \alpha[p\lambda + (A + B)]
\]

\[
 = \alpha[p\lambda + (A + B)].
\]

7 Linear Combination

In the theorem below, we prove a linear combination for the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \).

Theorem 10: Let

\[
 f_i(z) = z^p + \sum_{k=p+1}^{\infty} a_{k,i}z^k, \quad (a_{k,i} \geq 0, i = 1, 2, \ldots, l, k \geq p + 1)
\]
belong to the class \(R_p(\gamma, \beta, m, \lambda, A, B, \alpha) \). Then

\[
F(z) = \sum_{i=1}^{l} c_i f_i(z) \in R_p(\gamma, \beta, m, \lambda, A, B, \alpha),
\]

where

\[
\sum_{i=1}^{l} c_i = 1.
\]

Proof: By Theorem 1, we can write for every \(i \in \{1, 2, \ldots, l\} \)

\[
\sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m \frac{[(k-p) - \alpha(\lambda k + (A + B))]}{\alpha[p\lambda + (A + B)]} a_{k,i} b_k \leq 1.
\]

Therefore

\[
F(z) = \sum_{i=1}^{l} c_i \left(z^p + \sum_{k=p+1}^{\infty} a_{k,i} z^k \right) = z^p + \sum_{k=p+1}^{\infty} \left(\sum_{i=1}^{l} c_i a_{k,i} \right) z^k.
\]

Hence

\[
\sum_{k=p+1}^{\infty} \left(1 + \frac{(k-p)\gamma}{(p+\beta)} \right)^m \frac{[(k-p) - \alpha(\lambda k + (A + B))]}{\alpha[p\lambda + (A + B)]} \left(\sum_{i=1}^{l} c_i a_{k,i} \right) b_k \leq 1.
\]

Then \(F(z) \in R_p(\gamma, \beta, m, A, B, \alpha) \). So the proof is complete.

References

Received: January 5, 2013