A Study of a Two Variables Gegenbauer Matrix Polynomials and Second Order Matrix Partial Differential Equations. A comment

V. Soler

Departamento de Matemática Aplicada
Universitat Politècnica de València, Spain
vsoler@dma.upv.es

Copyright © 2013 V. Soler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this comment we will demonstrate that one of the main formulas given in Ref. [9] is incorrect.

Mathematics Subject Classification: 33C45, 42C05

Keywords: Generating function, matrix polynomials, two variable Gegenbauer polynomials, Gegenbauer matrix polynomials

1 Introduction and motivation

A family of orthogonal polynomials \(\{P_n(x)\}_{n \geq 0} \) can be associated with so-called “generating functions”, which are a useful and invaluable tool for studying this class of functions. Usually, a generating function is a function of two variables \(F(x,t) \) and analytic on some set \(D \in \mathbb{C}^2 \), so that

\[
F(x,t) = \sum_{n=0}^{\infty} \alpha_n P_n(x)t^n, (x,t) \in D.
\]

For example, see [10], if \(r_1 \) and \(r_2 \) are the roots of the quadratic equation \(1 - 2xt + t^2 = 0 \), and if \(r \) is the minimum of the set \(\{ |r_1|, |r_2| \} \), then, for a parameter \(\lambda \) the function \(F(x,t) = (1 - 2xt + t^2)^{-\lambda} \), regarded as a function of \(t \), is analytic in the disk \(|t| < r \).
From complex variable theory, we have the following generating function for the Gegenbauer polynomials \(C_n^\lambda(x) \):

\[
F(x, t) = \left(1 - 2xt + t^2 \right)^{-\lambda} = \sum_{n=0}^{\infty} C_n^\lambda(x)t^n, \quad |t| < r, |x| < 1.
\]

The analogous extension to the matrix framework for the classical case of Hermite [8], Jacobi [3], Gegenbauer [7], Laguerre [6] and Chebyshev [2] polynomials has been carried out in recent years, and properties and applications of different classes for these matrix polynomials are the focus of a number of previous papers, see [1, 4, 12, 11, 5] and references therein, for example.

In the matrix case, the importance of the generating function is similar to the scalar case, taking into account the possible spectral restrictions (for a matrix \(A \in \mathbb{C}^{N \times N} \) we will denote by \(\sigma(A) \) the matrix spectrum \(\sigma(A) = \{ z; z \text{ is an eigenvalue of } A \} \)).

For example:

- **LAGUERRE MATRIX POLYNOMIALS.** If \(A \) is a matrix in \(\mathbb{C}^{N \times N} \) such that \(-k \not\in \sigma(A)\) for every integer \(k > 0 \), and \(\lambda \) is a complex number with \(\text{Re}(\lambda) > 0 \), the generating function [6] is given by:

\[
(1 - t)^{-(A+I)} \exp\left(\frac{-\lambda xt}{1-t} \right) = \sum_{n=0}^{\infty} L_n^{(A,\lambda)}(x) t^n, \quad \forall \ x, t \in \mathbb{C}, |t| < 1.
\]

- **HERMITE MATRIX POLYNOMIALS.** If \(A \) is a matrix in \(\mathbb{C}^{N \times N} \) such that \(\text{Re}(z) > 0, \forall z \in \sigma(A) \) (i.e. \(A \) is positive stable), the generating function [8] is given by

\[
e^{xt\sqrt{A-t^2}I} = \sum_{n=0}^{\infty} \frac{1}{n!} H_n(x, A) t^n, \quad (x, t) \in \mathbb{R}^2.
\]

2 **The detected mistake. An example**

Recently, in Ref. [9], a new extension of Gegenbauer matrix polynomials with two variables was presented. The starting point for their definition was the following double generating formula (8):

\[
(1 - 2xs + s^2 - 2yt + t^2)^{-A} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n,k}^A(x, y) s^n t^k \quad (8)
\]

This formula turns out to be the key for the definition and development of the properties mentioned in the paper [9], with the intention to guarantee that (8) is term-wise differentiable with respect to its variables \(x, s, y, t \). However, we will see
that formula (8) is incorrect. For this, first we note that for a matrix A exponent one has to define

$$t^A = e^{A \log t}.$$

Obviously, t^A only makes sense if $t \neq 0$. Thus, expression (8) is void of meaning if the term $(1 - 2xs + s^2 - 2yt + t^2)$ vanishes. Assuming, for example, the values

$$x = y = 1, s = t = \frac{1}{2} \left(2 \pm \sqrt{2}\right),$$

the term $(1 - 2xs + s^2 - 2yt + t^2)$ is zero and (8) is meaningless.

Therefore, I ask the author of Ref. [9] to clarify the domain of choice for the variables x, y, t, s in formula (8) in order to guarantee the validity of the remaining formulas which are derived from (8) and used in the remainder of the aforementioned paper.

3 Remark

I can not end this commentary without adding a brief remark. The introduction of Gegenbauer matrix polynomials was made in Ref. [7]. In Ref. [9] the basic reference given is [13]. However, reference [13] appeared nine years later, and several of the formulas in [13] are incorrect. As a single example, we will consider formula (5) of [9] (which is the same formula (13) in [13]):

$$F = (1 - 2xt + t^2)^{-A} = \sum_{n=0}^{\infty} C_n^A(x)t^n \quad (5)$$

where A is a positive definite matrix in $\mathbb{C}^{N \times N}$ ($\text{Re}(z) > 0, \forall z \in \sigma(A)$).

As already mentioned, expression (5) is meaningless if the term $1 - 2xt + t^2$ vanishes. Assuming, for example, the different values

- $x = t = 1, (i.e. |x| = 1, |t| = 1),$
- $x = \frac{i}{\sqrt{10}}, t = -i\left(\sqrt{11} - 1\right), (i.e. |x| = 0.316 < 1, |t| = 0.733 < 1, t^2 = -1),$
- $x = 2, t = 2 + \sqrt{3}, (i.e. |x| > 1, |t| = 3.73205 > 1),$

the term $1 - 2xt + t^2$ is zero in the three cases and (5) is meaningless.

References

Received: February, 2012