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Abstract
The purpose of this paper is to characterize conditions for the con-

vergence of the Ishikawa iterative scheme with errors in the sense of
Agarwal et al. to the common fixed point of two φ-hemicontractive
mappings in a nonempty convex subset of an arbitrary Banach space.
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1 Introduction and preliminaries

Let K be a nonempty subset of an arbitrary Banach space X and X∗ be its
dual space. The symbols D(T ) and F (T ) stand for the domain and the set of
fixed points of T (for a single-valued map T : X → X, x ∈ X is called a fixed
point of T iff T (x) = x). We denote by J the normalized duality mapping from
X to 2X∗

defined by

J(x) = {f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖x‖2 = ‖f ∗‖2}, x ∈ X.

We shall denote the single-valued duality mapping by j.
Let T : D(T ) ⊂ X → X be a mapping.

Definition 1.1. ([4], [10]) (1) T is said to be strongly pseudocontractive if
there exists a constant t > 1 such that for all x, y ∈ D(T ), there exists
j(x − y) ∈ J(x − y) satisfying

Re 〈Tx − Ty, j(x− y)〉 ≤ t−1 ‖x − y‖2 .

(2) T is said to be strictly hemicontractive if F (T ) 
= ∅ and there exists
a constant t > 1 such that for all x ∈ D(T ) and q ∈ F (T ), there exists
j(x − y) ∈ J(x − y) satisfying

Re 〈Tx − q, j(x − q)〉 ≤ t−1 ‖x − q‖2 .

(3) T is said to be φ-strongly pseudocontractive if there exists a strictly
increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for all x,
y ∈ D(T ), there exists j(x − y) ∈ J(x − y) satisfying

Re 〈Tx − Ty, j(x− y)〉 ≤ ‖x − y‖2 − φ(‖x − y‖) ‖x − y‖ .

(4) T is said to be φ-hemicontractive if F (T ) 
= ∅ and if there exists a
strictly increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for all
x ∈ D(T ) and q ∈ F (T ), there exists j(x − y) ∈ J(x − y) satisfying

Re 〈Tx − q, j(x − q)〉 ≤ ‖x − q‖2 − φ(‖x − q‖) ‖x − q‖ .

Clearly, each strictly hemicontractive mapping is φ-hemicontractive. It was
shown in [4], [10] that the classes of strongly pseudocontractive (respectively, φ-
strongly pseudocontractive) mappings with fixed points are proper subclasses
of the classes of strictly hemicontractive (respectively, φ-hemicontractive) map-
pings.
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Chidume [3] established that the Mann iteration sequence converges strongly
to the unique fixed point of T in case T is a Lipschitz strongly pseudo-
contractive mapping from a bounded closed convex subset of Lp (or lp) into
itself. Afterwards, several authors generalized this result of Chidume in various
directions [5]-[9], [11] and [12]-[14].

The purpose of this paper is to characterize conditions for the convergence
of the Ishikawa iterative scheme with errors in the sense of Agarwal et al. [1]
to the common fixed point of two φ-hemicontractive mappings in a nonempty
convex subset of an arbitrary Banach space. Our results improve and generalize
most results in recent literature [5], [6], [8] and [13].

The following resuls are now well known.

Lemma 1.2. ([2]) For all x, y ∈ X and j(x + y) ∈ J(x + y), we have

‖x + y‖2 ≤ ‖x‖2 + 2Re 〈y, j(x + y)〉 .

Lemma 1.3. Let {θn} be a sequence of nonnegative real numbers and {λn}
be a real sequence satisfying 0 ≤ λn ≤ 1 and

∑∞
n=0 λn = ∞. Suppose that there

exists a strictly increasing function φ : [0,∞) → [0,∞) with φ(0) = 0. If there
exists a positive integer n0 such that

θ2
n+1 ≤ θ2

n − λnφ(θn+1)θn+1 + σn + γn, ∀n ≥ n0,

where σn ≥ 0 for all n ≥ 1, σn = o(λn) and
∑∞

n=0 γn < ∞, then limn→∞ θn = 0.

2 Main results

Now we prove our main results.

Theorem 2.1. Let K be a nonempty convex subset of an arbitrary Banach
space X and T, S : K → K be two uniformly continuous and φ-hemicontractive
mappings. Suppose that {un}∞n=0 and {vn}∞n=0 are bounded sequences in K and
{an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′

n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are sequences in [0, 1]
satisfying conditions

(i) an + bn + cn = a′
n + b′n + c′n = 1 for all n ≥ 0,

(ii) limn→∞ bn = limn→∞ cn = limn→∞ b′n = 0,
(iii)

∑∞
n=0 b′n = ∞,

(iv) c′n = o(b′n).
For arbitrary x0 ∈ K, let {xn}∞n=0 be a sequence defined iteratively by{

yn = anxn + bnSxn + cnun,

xn+1 = a′
nxn + b′nTyn + c′nvn, n ≥ 0.

(2.1)
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Then the following conditions are equivalent:
(a) {xn}∞n=0 converges strongly to the common fixed point q of T and S.
(b) {Tyn}∞n=0 is bounded.

Proof. From (iv), we have c′n = tnb′n, where tn → 0 as n → ∞. Since T
and S are φ-hemicontractive, it follows that F (T ) ∩ F (S) is a singleton. Let
F (T ) ∩ F (S) = {q} for some q ∈ K.

Suppose that limn→∞ xn = q. Then from (ii) and the uniform continuity of
T and S, we yield that

lim
n→∞

yn = lim
n→∞

[anxn + bnSxn + cnun] = q,

which implies that limn→∞ Tyn = q. Therefore {Tyn}∞n=0 is bounded.
Put

M1 = ‖x0 − q‖ + sup
n≥0

‖Tyn − q‖ + sup
n≥0

‖un − q‖ + sup
n≥0

‖vn − q‖ .

Obviously M1 < ∞. It is clear that ‖x0 − p‖ ≤ M1. Let ‖xn − p‖ ≤ M1. Next
we will prove that ‖xn+1 − p‖ ≤ M1.

Consider

‖xn+1 − p‖
= ‖a′

n(xn − q) + b′n(Tyn − q) + c′n(vn − q)‖
≤ (1 − b′n) ‖xn − q‖ + b′n ‖Tyn − q‖ + c′n ‖vn − q‖
≤ (1 − b′n)M1 + b′n ‖Tyn − q‖ + c′n ‖vn − q‖
= (1 − b′n)

(
‖x0 − q‖ + sup

n≥0
‖Tyn − q‖ + sup

n≥0
‖un − q‖ + sup

n≥0
‖vn − p‖

)
+ b′n ‖Tyn − q‖ + c′n ‖vn − q‖

≤ ‖x0 − q‖ +
(
(1 − b′n) sup

n≥0
‖Tyn − q‖ + b′n ‖Tyn − q‖

)
+ sup

n≥0
‖un − q‖ +

(
(1 − b′n) sup

n≥0
‖vn − q‖ + b′n ‖vn − q‖

)
≤ ‖x0 − q‖ + sup

n≥0
‖Tyn − q‖ + sup

n≥0
‖un − q‖ + sup

n≥0
‖vn − q‖

= M1.

So, from the above discussion, we can conclude that the sequence {xn−q}∞n=0 is
bounded. Since S is uniformly continuous, so {‖Sxn − q‖}∞n=0 is also bounded.
Thus there is a constant M2 > 0 satisfying

M2 = sup
n≥0

‖xn − q‖ + sup
n≥0

‖Sxn − q‖ + sup
n≥0

‖yn − q‖

+ sup
n≥0

‖Tyn − q‖ + sup
n≥0

‖un − q‖ + sup
n≥0

‖vn − q‖ .
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Denote M = M1 + M2. Obviously M < ∞.
Let wn = ‖Tyn − Txn+1‖ for each n ≥ 0. The uniform continuity of T

ensures that
lim

n→∞
wn = 0

because

‖yn − xn+1‖
= ‖bn(Sxn − xn) + b′n(xn − Tyn) + cn(un − xn) − c′n(vn − xn)‖
≤ bn ‖Sxn − xn‖ + b′n ‖xn − Tyn‖ + cn ‖un − xn‖ + c′n ‖vn − xn‖
≤ 2M2(bn + cn + (1 + tn)b′n)

→ 0

as n → ∞.
By virtue of Lemma 1.2 and (2.1), we infer that

‖xn+1 − q‖2

= ‖a′
n(xn − q) + b′n(Tyn − q) + c′n(vn − q)‖2

≤ (1 − b′n)2 ‖xn − q‖2 + 2b′nRe 〈Tyn − q, j(xn+1 − q)〉
+ 2c′nRe 〈vn − q, j(xn+1 − q)〉

≤ (1 − b′n)2 ‖xn − q‖2 + 2b′nRe 〈Tyn − Txn+1, j(xn+1 − q)〉
+ 2b′nRe 〈Txn+1 − q, j(xn+1 − q)〉 + 2c′n ‖vn − q‖ ‖xn+1 − q‖

≤ (1 − b′n)2 ‖xn − q‖2 + 2b′n ‖Tyn − Txn+1‖ ‖xn+1 − q‖
+ 2b′n ‖xn+1 − q‖2 − 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖ + 2M2c′n

= (1 − b′n)2 ‖xn − q‖2 + 2Mb′nwn + 2b′n ‖xn+1 − q‖2

− 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖ + 2M2c′n.

(2.2)

Consider

‖xn+1 − p‖2 = ‖a′
n(xn − q) + b′n(Tyn − q) + c′n(vn − q)‖2

≤ a′
n ‖xn − q‖2 + b′n ‖Tyn − q‖2 + c′n ‖vn − q‖2

≤ ‖xn − q‖2 + M2(b′n + c′n),

(2.3)

where the first inequality holds by the convexity of ‖·‖2 .
Substituting (2.3) in (2.2), we get

‖xn+1 − q‖2 ≤ [(1 − b′n)2 + 2b′n] ‖xn − q‖2 + 2Mb′n(wn + M (b′n + 2tn))

− 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖
≤ ‖xn − q‖2 + Mb′n(3Mb′n + 2 (wn + 2Mtn))

− 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖
= ‖xn − q‖2 + b′nln − 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖ ,

(2.4)
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where

ln = M(3Mb′n + 2 (wn + 2Mtn)) → 0 (2.5)

as n → ∞.
Let δ = inf{‖xn+1 − q‖ : n ≥ 0}. We claim that δ = 0. Otherwise δ > 0.

Thus (2.5) implies that there exists a positive integer N1 > N0 such that
ln < φ(δ)δ for each n ≥ N1. In view of (2.4), we conclude that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − φ(δ)δb′n, n ≥ N1,

which implies that

φ(δ)δ

∞∑
n=N1

b′n ≤ ‖xN1 − q‖2 ,

which contradicts (iii). Therefore δ = 0. Thus there exists a subsequence
{xni+1}∞i=0 of {xn+1}∞n=0 such that

lim
i→∞

xni+1 = q. (2.6)

Let ε > 0 be a fixed number. By virtue of (2.5)and (2.6), we can select a
positive integer i0 > N1 such that∥∥xni0

+1 − q
∥∥ < ε, ln < φ(ε)ε, n ≥ ni0 . (2.7)

Let p = ni0 . By induction, we show that

‖xp+m − q‖ < ε, m ≥ 1. (2.8)

Observe that (2.7) means that (2.8) is true for m = 1. Suppose that (2.8) is
true for some m ≥ 1. If ‖xp+m+1 − q‖ ≥ ε, by (2.4) and (2.7), we know that

ε2 ≤ ‖xp+m+1 − q‖2

≤ ‖xp+m − q‖2 +
b′p+mlp+m

1 − 2b′p+m

− 2b′p+m

1 − 2b′p+m

φ(‖xp+m+1 − q‖) ‖xp+m+1 − q‖

< ε2 +
b′p+mφ(ε)ε

1 − 2b′p+m

− 2b′p+mφ(ε)ε

1 − 2b′p+m

< ε2,

which is impossible. Hence ‖xp+m+1 − q‖ < ε. That is, (2.8) holds for all
m ≥ 1. Thus (2.8) ensures that limn→∞ xn = q. This completes the proof.

Using the method of proof in Theorem 2.1, we have the following result.
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Theorem 2.2. Let X, K, T, S, {un}∞n=0, {vn}∞n=0 be as in Theorem 2.1.
Suppose that {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′

n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are
sequences in [0, 1] satisfying the conditions (i)-(iii) and

∑∞
n=0 c′n < ∞.

For arbitrary x0 ∈ K, let {xn}∞n=0 be the sequence defined iteratively by
(2.1). Then the conclusions of Theorem 2.1 hold.

Proof. Substituting (2.3) in (2.2), we get

‖xn+1 − q‖2

≤ [(1 − b′n)2 + 2b′n] ‖xn − q‖2 + 2Mb′n(wn + M (b′n + c′n))

− 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖ + 2M2c′n
≤ ‖xn − q‖2 + Mb′n(2wn + M (3b′n + 2c′n))

− 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖ + 2M2c′n
= ‖xn − q‖2 − 2b′nφ(‖xn+1 − q‖) ‖xn+1 − q‖ + b′nl′n + 2M2c′n,

where
l′n = M (2wn + M (3b′n + 2c′n)) → 0,

as n → ∞.
It follows from Lemma 1.3 that limn→∞ ‖xn − q‖ = 0.

Corollary 2.3. Let K be a nonempty convex subset of an arbitrary Banach
space X and T : K → K be a uniformly continuous and φ-hemicontractive
mappings. Suppose that {un}∞n=0 and {vn}∞n=0 are bounded sequences in K
and {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′

n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are sequences in
[0, 1] satisfying the conditions (i)-(iv).

For arbitrary x0 ∈ K, let {xn}∞n=0 be a sequence defined iteratively by{
yn = anxn + bnTxn + cnun,

xn+1 = a′
nxn + b′nTyn + c′nvn, n ≥ 0.

(2.9)

Then the following conditions are equivalent:
(a) {xn}∞n=0 converges strongly to the fixed point q of T.
(b) {Tyn}∞n=0 is bounded.

Corollary 2.4. Let X, K, T, {un}∞n=0 and {vn}∞n=0, be as in Corollary 2.3.
Suppose that {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′

n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are
sequences in [0, 1] satisfying the conditions (i)-(iii) and

∑∞
n=0 c′n < ∞.

For arbitrary x0 ∈ K, let {xn}∞n=0 be the sequence defined iteratively by
(2.9). Then the conclusions of Corollary 2.3 hold.

Corollary 2.5. Let K be a nonempty convex subset of an arbitrary Banach
space X and T, S : K → K be two uniformly continuous and φ-hemicontractive
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mappings. Suppose that {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] satisfying
conditions

(v) limn→∞ αn = 0 = limn→∞ βn,
(vi)

∑∞
n=0 αn = ∞.

For arbitrary x0 ∈ K, let {xn}∞n=0 be a sequence defined iteratively by{
yn = (1 − βn)xn + βnSxn,

xn+1 = (1 − αn)xn + αnTyn, n ≥ 0.

Then the following conditions are equivalent:
(a) {xn}∞n=0 converges strongly to the common fixed point q of T and S.
(b) {Tyn}∞n=0 is bounded.

Corollary 2.6. Let X, K, T be as in Corollary 2.5. Suppose that {αn}∞n=0

and {βn}∞n=0 are sequences in [0, 1] satisfying the conditions (v) and (vi).
For arbitrary x0 ∈ K, let {xn}∞n=0 be a sequence defined iteratively by{

yn = (1 − βn)xn + βnTxn,

xn+1 = (1 − αn)xn + αnTyn, n ≥ 0.

Then the following conditions are equivalent:
(a) {xn}∞n=0 converges strongly to the fixed point q of T.
(b) {Tyn}∞n=0 is bounded.

Acknowledgement. The first author gratefully acknowledges the support
from the Deanship of Scientific Research (DSR) at King Abdulaziz University
(KAU) during this research.

References

[1] R. P. Agarwal, Y. J. Cho, J. Li and N. J. Huang, Stability of iterative
procedures with errors approximating common fixed points for a couple
of quasi-contractive mappings in q-uniformly smooth Banach spaces, J.
Math. Anal. Appl., 272 (2002), 435–447.

[2] S. S. Chang, Some problems and results in the study of nonlinear analysis,
Nonlinear Anal., 30 (1997) 4197–4208.

[3] C.E. Chidume, Iterative approximation of fixed point of Lipschitz strictly
pseudocontractive mappings, Proc. Amer. Math. Soc., 99 (1987), 283–288.

[4] C.E. Chidume and M.O. Osilike, Fixed point iterations for strictly hemi-
contractive maps in uniformly smooth Banach spaces, Numer. Funct.
Anal. Optim., 15 (1994), 779–790.



Iteration scheme for two hemicontractive mappings 871
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