Endpoint and a Common Fixed Point for Multi-Valued Mappings

Bunchana Varachanon

Mathematics Program, Faculty of Science and Technology
Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand
rajabhat@npru.ac.th

Naknimit Akkasriworn

Department of Mathematics, Faculty of Science and Technology,
Rambhai Barni Rajabhat University, Chantaburi 22000, Thailand
boyjuntaburi@hotmail.com

Kritsana Sokhuma

Department of Mathematics, Faculty of Science and Technology
Muban Chom Bueng Rajabhat University, Ratchaburi 70150, Thailand
k_sokhuma@yahoo.co.th

Abstract

In this paper, we study endpoint and a common fixed points for some generalized multi-valued nonexpansive mappings which is a multi-valued version of condition (C_λ) defined by Garcia-Falset et al.[3].

Mathematics Subject Classification: 47H10, 54C60

Keywords: Endpoint, Multi-valued mapping, Common fixed point

1 Introduction

A mapping T on a subset E of a Banach space X is called a nonexpansive mapping if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in E$. We denote by $F(T)$ the set

1Corresponding Author
of fixed points of T, i.e., $F(T) = \{ x \in E : Tx = x \}$. A mapping $T : E \to E$ is called a quasi nonexpansive if $F(T) \neq \emptyset$ and $\| Tx - z \| \leq \| x - z \|$ for all $x \in E$ and $z \in F(T)$. Suzuki [7] introduced a condition (C) and proved fixed point theorems and convergence results for mappings satisfying the condition (C). Moreover, he presented that the condition (C) is weaker than nonexpansiveness and stronger than quasinonexpansiveness.

Definition 1.1. Let T be a mapping on a subset E of a Banach space X. Then T is said to satisfy condition (C) if for each $x, y \in E$,

\[
\frac{1}{2} \| x - Tx \| \leq \| x - y \| \quad \text{implies} \quad \| Tx - Ty \| \leq \| x - y \|.
\]

Garcia-Falset et al. [3] presented a generalization of condition (C) as follows.

Definition 1.2. For $\lambda \in (0, 1)$, we say that a mapping $T : E \to X$ satisfy condition (C_λ) on E if for all $x, y \in E$ with

\[
\lambda \| x - Tx \| \leq \| x - y \| \quad \text{implies} \quad \| Tx - Ty \| \leq \| x - y \|.
\]

Of course, if $\lambda = \frac{1}{2}$ we recapture the class of mappings satisfying condition (C). Notice that if $0 < \lambda_1 < \lambda_2$ then the condition (C_{λ_1}) implies condition (C_{λ_2}).

In this paper, we study endpoint theorems and a common fixed point for some generalized multi-valued nonexpansive mappings which is a multi-valued version of condition (C_λ).

2 Preliminary

Let X be a Banach space and E a nonempty subset of X. We shall denote by $FB(E)$ the family of nonempty bounded closed subsets of E, by $F(E)$ the family of nonempty closed subsets of E, by $K(E)$ the family of nonempty compact subsets of E, by $FC(E)$ the family of nonempty closed convex subsets of E, and by $KC(E)$ the family of nonempty compact convex subsets of E. Let $H(\cdot, \cdot)$ be the Hausdorff distance on $FB(X)$, i.e.,

\[
H(A, B) = \max \{ \sup_{a \in A} D(a, B), \sup_{b \in B} D(b, A) \}, \quad A, B \in FB(X),
\]

where $D(a, B) = \inf \{ \| a - b \| : b \in B \}$ is the distance from the point a to the subset B. A multi-valued mapping $T : E \to FB(X)$ is said to be nonexpansive if $H(Tx, Ty) \leq \| x - y \|$ for all $x, y \in E$. We denote by $F(T)$ the set of fixed
points of T, i.e., $F(T) = \{x \in E : x \in Tx\}$. An element $x \in E$ said to be an endpoint of T, if $Tx = \{x\}$.

Kaewcharoen and Panyanak [4] introduced a condition on multi-valued mappings which was a multi-valued version of condition (C_λ) defined by Garcia-Falset et al. [3].

Definition 2.1. Let $T : E \to FB(X)$ be a multi-valued mapping. Then T is said to satisfy condition (C_λ) for some $\lambda \in (0, 1)$ if for each $x, y \in E$,

$$\lambda D(x, Tx) \leq \|x - y\| \quad \text{implies} \quad H(Tx, Ty) \leq \|x - y\|.$$

A multi-valued mapping $T : X \to FB(X)$ is said to be a weak contraction if there exists $0 \leq \alpha < 1$ such that

$$H(Tx, Ty) \leq \alpha N(x, y)$$

for all $x, y \in X$, where

$$N(x, y) = \max\{d(x, y), D(x, Tx), D(y, Ty), \frac{D(x, Ty) + D(y, Tx)}{2}\}.$$

Nadler [6] extended the Banach contraction principle to multi-valued mapping as follows.

Theorem 2.2. Let (X, d) be a complete metric space. Suppose that $T : X \to FB(X)$ is a contraction mapping in the sense that for some $0 \leq \alpha < 1$,

$$H(Tx, Ty) \leq \alpha d(x, y)$$

for all $x, y \in X$. Then there exists a point $x \in X$ such that $x \in Tx$.

Daffer and Kaneko [2] proved the existence of a fixed point for a multi-valued weak contraction mappings of a complete metric space X into $FB(X)$ as follows.

Theorem 2.3. Let (X, d) be a complete metric space. Suppose that $T : X \to FB(X)$ is a contraction mapping in the sense that for some $0 \leq \alpha < 1$,

$$H(Tx, Ty) \leq \alpha N(x, y)$$

for all $x, y \in X$, where

$$N(x, y) = \max\{d(x, y), D(x, Tx), D(y, Ty), \frac{D(x, Ty) + D(y, Tx)}{2}\}.$$

If $x \mapsto d(x, Tx)$ is lower semicontinuous, then there exists a point $x_0 \in X$ such that $x_0 \in Tx_0$.

In the following theorem, Amini-Harandi [1] proved endpoint result for a multi-valued mappings of a complete metric space X into $FB(X)$.

Theorem 2.4. Let (X,d) be a complete metric space. Suppose that $T : X \rightarrow FB(X)$ is a multi-valued mapping that satisfies
\[
H(Tx,Ty) \leq \psi(d(x,y)),
\]
for each $x, y \in X$, where $\psi : [0, +\infty) \rightarrow [0, +\infty)$ is upper semicontinuous, with $\psi(t) < t$ for all $t > 0$, satisfying $\liminf_{t \rightarrow \infty} (t - \psi(t)) > 0$. Then T has a unique endpoint if and only if T has the approximate endpoint property.

In the following theorem, Moradi and Khojasteh [5] extended result of Nadler [6], Daffer and Kaneko [2], and Amini-Harandi [1].

Theorem 2.5. Let (X,d) be a complete metric space. Suppose that $T : X \rightarrow FB(X)$ is a multi-valued mapping that satisfies
\[
H(Tx,Ty) \leq \psi(N(x,y)),
\]
for each $x, y \in X$, where $\psi : [0, +\infty) \rightarrow [0, +\infty)$ is upper semicontinuous, with $\psi(t) < t$ for all $t > 0$, satisfying $\liminf_{t \rightarrow \infty} (t - \psi(t)) > 0$. Then T has a unique endpoint if and only if T has the approximate endpoint property.

Lemma 2.6. ([3],[7]) Let (E,d) be a complete metric space, $A, B \in FB(E)$ and $a \in A$. Then for each $\varepsilon > 0$, there exists $b \in B$ such that
\[
d(a,b) \leq H(A,B) + \varepsilon.
\]

Lemma 2.7. ([2]) Let E be a nonempty bounded convex subset of a Banach space X. Let $T : E \rightarrow FB(E)$ be a multi-valued mapping satisfying condition (C_λ) for some $\lambda \in (0,1)$. If $\{x_n\}$ is the sequence defined by
\[
x_{n+1} = (1 - \lambda)x_n + \lambda y_n
\]
where $y_n \in Tx_n$, then $\lim_{n \rightarrow \infty} D(x_n,Tx_n) = 0$.

3 Main Results

In this section, we prove our main results.

Theorem 3.1. Let E be a nonempty bounded convex subset of a Banach space X. Let $T : E \rightarrow FB(E)$ and $S : E \rightarrow FB(E)$ be a multi-valued mapping satisfying
\[
H(Tx,Sy) \leq \psi(N(x,y)),
\]
where

\[N(x, y) = \max \{ \|x - y\|, D(x, Tx), D(y, Sy), \frac{D(x, Sy) + D(y, Tx)}{2} \}, \]

for each \(x, y \in E \), \(\psi : [0, +\infty) \to [0, +\infty) \) is u.s.c. with \(\psi(t) < t \) for all \(t > 0 \) and \(\lim\inf_{t \to +\infty} (t - \psi(t)) > 0 \). If \(T \) and \(S \) satisfying condition \((C_\lambda)\) for some \(\lambda \in (0, 1) \), then \(T \) and \(S \) have a unique endpoint. Moreover, \(T \) and \(S \) have a unique common fixed point.

Proof. Defined a sequence \(\{x_n\} \in E \) by \(x_0 \in E \) and choose \(y_0 \in Tx_0 \). Let

\[x_1 = (1 - \lambda)x_0 + \lambda y_0. \]

By Lemma 2.6, there exists \(y_1 \in T x_1 \) such that \(\|y_1 - y_0\| \leq H(Tx_0, Tx_1) + \gamma_0 \).

Let

\[x_2 = (1 - \lambda)x_1 + \lambda y_1. \]

Therefore for every natural number \(n \geq 1 \), we have

\[x_{n+1} = (1 - \lambda)x_n + \lambda y_n, \]

where \(y_n \in Tx_n \) such that

\[\|y_{n+1} - y_n\| \leq H(Tx_{n+1}, Tx_n) + \gamma_n. \]

By Lemma 2.7, we have

\[\lim_{n \to \infty} D(x_n, Tx_n) = 0. \]

Thus

\[\lim_{n \to \infty} H(\{x_n\}, Tx_n) = 0. \]

Similarly,

\[\lim_{n \to \infty} H(\{x_m\}, Sx_m) = 0. \]
For all \(m, n \in \mathbb{N} \), we have
\[
N(x_n, x_m) = \max\{ \|x_n - x_m\|, D(x_n, Tx_n), D(x_m, Sx_m), \frac{D(x_n, Sx_m) + D(x_m, Tx_n)}{2} \} \\
\leq \max\{ \|x_n - x_m\|, H(\{x_n\}, Tx_n), H(\{x_m\}, Sx_m), \frac{H(\{x_n\}, Sx_m) + H(\{x_m\}, Tx_n)}{2} \} \\
\leq \|x_n - x_m\| + H(\{x_n\}, Tx_n) + H(\{x_m\}, Sx_m) \\
= \|x_n - x_m\| - H(\{x_n\}, Tx_n) - H(\{x_m\}, Sx_m) \\
+ 2H(\{x_n\}, Tx_n) + 2H(\{x_m\}, Sx_m) \\
\leq H(Tx_n, Sx_m) + 2H(\{x_n\}, Tx_n) + 2H(\{x_m\}, Sx_m) \\
\leq \psi(N(x_n, x_m)) + 2H(\{x_n\}, Tx_n) + 2H(\{x_m\}, Sx_m).
\]

Since \(\psi \) is u.s.c., \(\psi(t) < t \) for all \(t > 0 \) and \(\lim_{n \to \infty} \frac{1}{n} \psi(t - \psi(t)) > 0 \), we have \(\limsup_{n \to \infty} N(x_n, x_m) = 0 \). Thus \(\{x_n\} \) is a Cauchy sequence. So there exists \(x_0 \in E \) such that \(\lim_{n \to \infty} x_n = x_0 \). Note that if \(N(x_n, x_0) = 0 \) for some \(n_0 \in \mathbb{N} \), then \(D(x_0, Tx_0) = 0 \). This means that \(x_0 \in \overline{Tx_0} = Tx_0 \). Similarly, we have \(x_0 \in \overline{Sx_0} = Sx_0 \). Thus \(x_0 \in Tx_0 \) and \(x_0 \in Sx_0 \). Suppose that \(N(x_n, x_0) \neq 0 \) for all \(n \in \mathbb{N} \). Then we have
\[
H(\{x_n\}, Tx_0) - H(\{x_n\}, Sx_n) \leq H(Sx_n, Tx_0) \\
\leq \psi(N(x_n, x_0)) \\
< N(x_n, x_0) \\
\leq \|x_n - x_0\| + H(\{x_n\}, Sx_n) \\
+ H(\{x_0\}, Tx_0).
\]

This shows that \(\lim_{n \to \infty} N(x_n, x_0) = H(\{x_0\}, Tx_0) \). Since \(\psi \) is u.s.c., we have
\[
\limsup_{n \to \infty} \psi(N(x_n, x_0)) \leq \psi(H(\{x_0\}, Tx_0)).
\]

By (1) and (2), we conclude that
\[
H(\{x_0\}, Tx_0) \leq \psi(H(\{x_0\}, Tx_0)).
\]

Hence \(H(\{x_0\}, Tx_0) = 0 \). This means that \(Tx_0 = \{x_0\} \). Similarly, we have \(Sx_0 = \{x_0\} \). It follow that \(x_0 \in Tx_0 = Sx_0 \). Thus \(T \) and \(S \) have an endpoint.
Moreover, T and S have a common fixed point. To prove the uniqueness of the endpoint of T, let x be an arbitrary endpoint of S. Then $Sx = \{x\}$. Consider,

\[
\begin{align*}
\|x_0 - x\| &= D(x_0, Sx) \\
&\leq H(Tx_0, Sx) \\
&\leq \psi(N(x_0, x)) \\
&< N(x_0, x) \\
&= \max\{\|x_0 - x\|, D(x_0, Tx_0), D(x, Sx), \\
&\quad D(x_0, Sx) + D(x, Tx_0)\} \\
&\leq \max\{\|x_0 - x\|, H(\{x_0\}, Tx_0), H(\{x\}, Sx), \\
&\quad H(\{x_0\}, Sx) + H(\{x\}, Tx_0)\} \\
&= \max\{\|x_0 - x\|, H(\{x_0\}, \{x_0\}), H(\{x\}, \{x\}), \\
&\quad H(\{x_0\}, \{x\}) + H(\{x\}, \{x_0\})\} \\
&= \|x_0 - x\|.
\end{align*}
\]

We obtain $\|x_0 - x\| < \|x_0 - x\|$, and this is a contradiction. It follow that $\|x_0 - x\| = 0$. Therefore $x_0 = x$ and this completes the proof.

ACKNOWLEDGEMENTS.

We would like to thank the Nakhon Pathom Rajabhat University, Rambhai Barni Rajabhat University and Muban Chom Bueng Rajabhat University for financial support.

References

Received: October, 2012