On the Rate Space of Analytic Sequences

B. Sivaraman1, K. Chandrasekharara Rao2 and K.Vairamanickam1

1Department of Mathematics
Krishnasamy College of Engineering & Technology
Cuddalore – 607 109, India
sivab24@gmail.com
vairam.au@rediffmail.com

2Srinivasa Ramanujan Centre SASTRA University
Kumbakonam, India
chandrasekhararaok@rediffmail.com

Abstract

Let Λ_π denote the space of all analytic rate sequences.
Let Γ_π denote the space of all entire rate sequences.
A subset of Γ_π is χ_π. This paper is devoted to a study of general properties of Λ_π, Γ_π, χ_π.

We note that $\chi_\pi \subset \Gamma_\pi \subset \Lambda_\pi$

Mathematics Subject classification: 46A45

Keywords: Entire Rate sequences, Analytic Rate sequences, Norlund space, Quasi-complete, Barreled space, semi reflexive spaces
INTRODUCTION

Based on Norlund transformation, we have formulated the Norlund space of Γ and the Norlund space of Λ and the Norlund space of χ.

In this section the Norlund space of entire rate sequences η (Γ_π) is introduced and it is shown that η $(\Gamma_\pi) = \Gamma_\pi$ the space of entire rate sequences.

We have also examined as to whether the space Γ_π is quasi complete space, barrelled space and semi-reflexive space.

Definition.1 A complex sequence whose k^{th} term is x_k will be denoted by (x_k) or x. Let $\pi = \{\pi_k\}$ be a sequence of positive numbers.

A sequence $x = (x_k)$ is said to be analytic rate sequence, if

$$\left(\sum_{k=1}^{\infty} x_k^k \frac{1}{\pi_k^k}\right)^{1/k} < \infty.$$

The vector space of all analytic rate sequences will be denoted by Λ_π.

Definition.2 A sequence x is called entire rate sequence if

$$\lim_{k \to \infty} \frac{x_k^{k}}{\pi_k^k} = 0$$

The vector space of all entire rate sequences will be denoted by Γ_π.

i.e., $\Gamma_\pi = \left\{ x = (x_k) : \lim_{k \to \infty} \left(\sum_{k=1}^{\infty} x_k^k \pi_k^k\right)^{1/k} = 0 \right\}$

Definition.3 A sequence x is called kamthan rate sequence if

$$\left(\frac{k! x_k}{\pi_k^k}\right)^{1/k} \to 0 \text{ as } k \to \infty.$$

The vector space of all kamthan rate sequences will be denoted by χ_π.

i.e., $\chi_\pi = \left\{ x = (x_k) : \left(\frac{k! x_k}{\pi_k^k}\right)^{1/k} \to 0 \text{ as } k \to \infty \right\}$

Then χ_π is a metric space with metric
\[d(x,y) = \sup_{(k)} \left\{ k! \left| \frac{x_k}{\pi_k} - \frac{y_k}{\pi_k} \right|^{1/k} : k = 1,2,3,\ldots \right\}. \]

Definition. 4 The space \(\chi_\pi(\Delta) \) is defined as set of all those rate sequences \((x_k)\) such that \((\Delta x_k) \in \chi_\pi \) where \(\Delta x_k = \frac{x_k}{\pi_k} - \frac{x_{k+1}}{\pi_{k+1}} \) for \(k = 1,2,3,\ldots \). Note that \(x = (x_k) \in \chi_\pi(\Delta) \iff \Delta x_k \in \chi_\pi \). Then \(\chi_\pi(\Delta) \) is a metric space with the metric
\[d(x,y) = \sup_{(k)} \left\{ k! \left| \frac{\Delta x_k}{\pi_k} - \frac{\Delta y_k}{\pi_k} \right|^{1/k} : k = 1,2,3,\ldots \right\}. \]

Definition. 5 If \(X \) is a sequence space, we define the \(\beta \)–dual \(X^\beta \) of \(X \) by
\[X^\beta = \{ a = (a_k) : \sum_{k=1}^{\infty} a_k x_k \text{ is convergent, for every } x \in X \}. \]

Definition. 6 Let \((p_n)_{n=0}^{\infty} \) be a sequence of nonnegative real numbers with \(p_0 > 0 \) consider
\[y_k = \frac{p_0 x_k + p_1 x_{k-1} + \cdots + p_k x_0}{p_0 + p_1 + \cdots + p_k} \quad \text{for } k = 0,1,2,\ldots. \]
Then \(y = \{y_k\} \) is called Norlund transform of the sequence \(x = \{x_k\} \). \(\eta(\Gamma) = \{ x = (x_k) : (y_k) \in \Gamma \} \) and \(\eta(\Lambda) = \{ x = (x_k) : (y_k) \in \Lambda \} \)

The Norlund rate space of \(\Gamma_\pi \) is denoted by \(\eta(\Gamma_\pi) \) and the Norlund rate space of \(\Lambda_\pi \) is denoted by \(\eta(\Lambda_\pi) \) and defined as
\[\eta(\Gamma_\pi) = \left\{ x = (x_k) : \left\{ \frac{x_k}{\pi_k} \right\} \in \eta(\Gamma) \right\} \]
& \[\eta(\Lambda_\pi) = \left\{ x = (x_k) : \left\{ \frac{x_k}{\pi_k} \right\} \in \eta(\Lambda) \right\} \]

We write \(P_n = p_0 + p_1 + \ldots + p_n \) for \(n = 0,1,2,\ldots \). \n
Definition. 7 A locally convex topological vector space \(X \) is said to be quasicomplete if each bounded set is complete in \(X \). \n
Definition. 8 An absolutely convex absorbent closed subset of locally convex topological vector space \(X \) is called a barrelled space if each barrel is a neighborhood of zero. \n
Definition. 9 A locally convex topological vector space \(X \) is said to be semi-reflexive if each bounded closed set in \(X \) is \(\sigma(X,X') \)– compact.
Theorem 1 \[\eta(\Gamma_{\pi}) = \Gamma_{\pi} \]

Proof:
Let \(x \in \eta(\Gamma_{\pi}) \). Then \(y \in \Gamma_{\pi} \) so that for every \(\varepsilon > 0 \), we have a positive integer \(n_0 \) such that
\[
\left| \frac{p_0 \frac{x_n}{\pi_n} + p_1 \frac{x_{n-1}}{\pi_{n-1}} + \ldots + p_n \frac{x_0}{\pi_0}}{p_n} \right| < \varepsilon^n \quad \text{for all } n \geq n_0.
\]
Take \(p_0 = 1, p_1 = p_2 = \ldots = p_n = 0 \)
We have then \(\left| \frac{x_n}{\pi_n} \right| < \varepsilon^n \) for all \(n \geq n_0 \)
Hence \(x \in \Gamma_{\pi} \). Arbitrariness of \(x \) in \(\eta(\Gamma_{\pi}) \) gives
\[\eta(\Gamma_{\pi}) \subset \Gamma_{\pi}. \quad \ldots \ldots (1) \]
On the other hand, let \(x \in \Gamma_{\pi} \). But then given any \(\varepsilon > 0 \) there exists a positive integer \(n_0 \) such that
\[
\left| \frac{x_n}{\pi_n} \right| < \varepsilon^n \quad \text{for all } n \geq n_0 \quad \text{we have} \quad \left| \frac{y_n}{\pi_n} \right| < \frac{p_0 \varepsilon^n + p_1 \varepsilon^{n-1} + \ldots + p_n \varepsilon^0}{p_n}
\]
Hence \(y \in \Gamma_{\pi} \).
Consequently \(x \in \eta(\Gamma_{\pi}) \). Arbitrariness of \(x \) in \(\Gamma_{\pi} \) gives
\[\Gamma_{\pi} \subset \eta(\Gamma_{\pi}) \quad \ldots \ldots (2) \]
From (1) and (2)
\[\text{Thus } \eta(\Gamma_{\pi}) = \Gamma_{\pi} \]

Theorem 2 \[\eta(\Lambda_{\pi}) = \Lambda_{\pi} \]

Proof:
Let \(x \in \Lambda_{\pi} \). Then there exists a positive constant \(M \) such that
\[
\left| \frac{x_n}{\pi_n} \right| \leq M^n \quad \text{for } n = 0,1,2, \ldots
\]
\[
\left| \frac{y_n}{\pi_n} \right| \leq \frac{p_0 M^n + p_1 M^{n-1} + \ldots + p_n}{p_n} \leq \frac{M^n}{p_n} \left(p_0 + \frac{p_1}{M} + \ldots + \frac{p_n}{M^n} \right) \leq \frac{M^n}{p_n} \left(p_0 + p_1 + \ldots + p_n \right) \leq M^n \quad \text{for } n = 0,1,2, \ldots
\]
Hence \(y \in \Lambda_\pi \). But then \(x \in \eta(\Lambda_\pi) \).
Consequently \(\Lambda_\pi \subseteq \eta(\Lambda_\pi) \). . . . (3)
On the other hand let \(x \in \eta(\Lambda_\pi) \). Then \(y \in \Lambda_\pi \).
Hence there exists a positive constant \(M \) such that
\[
\left| \frac{y_n}{\pi_n} \right| \leq M^n \text{ for } n = 0, 1, 2, \ldots
\]
\[
\left| \frac{p_0 x_n}{\pi_n} + \frac{p_1 x_{n-1}}{\pi_{n-1}} + \ldots + \frac{p_n x_0}{\pi_0} \right| \leq M^n p_n
\]
Take \(p_0 = 1, p_1 = p_2 = \ldots = p_n = 0 \)
Then it follows that \(P_n = 1 \) and so \(\left| \frac{x_n}{\pi_n} \right| \leq M^n \) for all \(n \)
Consequently \(x \in \Lambda_\pi \). Arbitrariness of \(x \) in \(\eta(\Lambda_\pi) \) gives
\(\eta(\Lambda_\pi) \subseteq \Lambda_\pi \). . . . (4)
From (3) and (4)
Thus \(\eta(\Lambda_\pi) = \Lambda_\pi \)

Theorem.3 \(\Gamma_\pi \) is quasi complete.

Proof:
Consider the sequence \(\gamma^{(n)} = (1, \frac{1}{2^n}, \frac{1}{3^n}, \ldots, \frac{1}{n^n}, 0, 0, \ldots) \)
and \(\gamma^{(m)} = (1, \frac{1}{2^m}, \frac{1}{3^m}, \ldots, \frac{1}{m^m}, \frac{1}{m+1^m}, \ldots, \frac{1}{n^n}, 0, 0, \ldots) \)
For each fixed positive integer \(n \) with \(n > m \)
\[
d(\gamma^{(n)}, \gamma^{(m)}) = \sup \left| \gamma^{(n)} - \gamma^{(m)} \right| = \left\{ 0, 0, \ldots, \frac{1}{m+1}, \ldots, \frac{1}{n}, 0, 0, \ldots \right\}
\]
\[
= \frac{1}{m+1} \to 0 \text{ as } n, m \to \infty
\]
Hence \(\gamma^{(n)} \) is a Cauchy sequence in \(\Gamma_\pi \)
Also \(d(\gamma^{(n)}, 0) = 1 \) so that \(\gamma^{(n)} \in U \), the closed unit ball in \(\Gamma_\pi \).
Note that \(\lim_{n \to \infty} \gamma^{(n)} = \gamma = \left(1, \frac{1}{2^2}, \frac{1}{3^3}, \ldots\right) \) and that \(\gamma \in U \)
Hence each bounded closed set is complete in \(\Gamma_\pi \).
Hence \(\Gamma_\pi \) is quasi complete.
Theorem 4 \(\Gamma_{\pi} \) is not a barrelled space.

Proof:

Let \(A = \left\{ x \in \Gamma_{\pi} : \left| \frac{x}{\pi_n} \right|^n \leq \frac{1}{n} \text{ for all } n \right\} \).

Then \(A \) is an absolutely convex, closed, absorbent set in \(\Gamma_{\pi} \). But \(A \) is not a neighborhood of zero.

Hence \(\Gamma_{\pi} \) is not barrelled.

Theorem 5 \(\Gamma_{\pi} \) is not semi-reflexive.

Proof:

Let \(\{ \delta^{(n)} \} \in U \) the unit closed ball in \(\Gamma_{\pi} \).

But no sequence of \(\{ \delta^{(n)} \} \) can converge weakly to any \(y \in \Gamma_{\pi} \).

Hence \(\Gamma_{\pi} \) is not semi-reflexive.

Theorem 6 The \(\beta \) - dual of \(\chi_{\pi} \) is \(\Lambda_{\pi} \).

Proof:

We shall show that \(\chi_{\pi} \subseteq \Gamma_{\pi} \).

Let \(x \in (x_k) \in \chi_{\pi} \Rightarrow \left\{ \frac{x_k}{\pi_k} \right\} \in \chi \) But \(\chi \subseteq \Gamma \)

Hence \(\left\{ \frac{x_k}{\pi_k} \right\} \in \Gamma \Rightarrow x = \{ x_k \} \in \Gamma_{\pi} \)

Since \(x \) is arbitrary in \(\chi_{\pi} \), we have \(\chi_{\pi} \subseteq \Gamma_{\pi} \)

\(\Gamma_{\pi}^\beta \subseteq \chi_{\pi}^\beta \) But \(\Gamma_{\pi}^\beta = \Lambda_{\pi} \)

Hence \(\Lambda_{\pi} \subseteq \chi_{\pi}^\beta \) (5)

Next we show that \(\chi_{\pi}^\beta \subseteq \Lambda_{\pi} \)

Let \(\frac{y_k}{\pi_k} \in \chi_{\pi}^\beta \)

\(f(x) = \sum_{k=1}^{\infty} \frac{x_k y_k}{\pi_k \pi_k} \) with \(x \in \chi_{\pi} \)

Take \(x = s^{(n)} \in \chi_{\pi} \)

where \(s^{(n)} = (0, 0, \ldots, \frac{\pi_n}{n!}, 0, \ldots) \)

\(\left\{ (n! \frac{x_n}{\pi_n})^{1/n} \right\} = \{ 0, 0, \ldots, 1, 0, \ldots \} \). Hence converges to zero.

Therefore \(s^{(n)} \in \chi_{\pi} \). Hence \(d(s^{(n)}, 0) = 1 \).
On the rate space of analytic sequences

But \(\left| \frac{y_n}{\pi_n} \right| \leq \| f \| \quad d(s^{(n)}, 0) \leq \| f \| \quad \ldots \quad (6) \)

Thus \((y_n)\) is a bounded sequence and hence an analytic rate sequence. In other words \(y \in \Lambda_\pi \). But \(y \) is arbitrary in \(\Lambda_\pi^\beta \).

Therefore \(\Lambda_\pi^\beta \subset \Lambda_\pi \) \ldots \ldots (7)

From (5) and (7) we get

\[\Lambda_\pi^\beta = \Lambda_\pi \]

Theorem. \(\chi_\pi(\Delta) \) is a complete metric space under the metric

\[d(x,y) = \sup_{(k)} \left\{ \left(k! \left| \frac{\Delta x_k^{(n)}}{\pi_k} - \frac{\Delta y_k}{\pi_k} \right| \right)^{1/k} : k = 1, 2, 3, \ldots \right\} \]

where \(x = (x_k) \in \chi_\pi(\Delta) \) and \(y = (y_k) \in \chi_\pi(\Delta) \).

Proof:

Let \(\{x^{(n)}\} \) be a Cauchy sequence in \(\chi_\pi(\Delta) \).

Then given any \(\varepsilon > 0 \) there exists a positive integer \(N \) depending on \(\varepsilon \) such that

\[d(x^{(n)}, x^{(m)}) < \varepsilon, \text{ for all } n \geq N \text{ and for all } m \geq N. \]

Hence

\[\sup_{(k)} \left(k! \left| \frac{\Delta x_k^{(n)}}{\pi_k} - \frac{\Delta x_k^{(m)}}{\pi_k} \right| \right)^{1/k} < \varepsilon \text{ for all } n \geq N \text{ and for all } m \geq N \]

Consequently \(\{k! \frac{\Delta x_k^{(n)}}{\pi_k}\} \) is a Cauchy sequence in the metric space \(C \) of complex numbers. But \(C \) is complete, so \(k! \frac{\Delta x_k^{(n)}}{\pi_k} \rightarrow k! \frac{\Delta x_k}{\pi_k} \) as \(n \rightarrow \infty \).

Hence there exists a positive integer \(n_0 \) such that

\[\left(k! \left| \frac{\Delta x_k^{(n)}}{\pi_k} - \frac{\Delta x_k}{\pi_k} \right| \right)^{1/k} < \varepsilon \text{ for all } n \geq n_0 \]

In particular, we have

\[\left(k! \left| \frac{\Delta x_k^{(n_0)}}{\pi_k} - \frac{\Delta x_k}{\pi_k} \right| \right)^{1/k} < \varepsilon \]
Now

\[
\left(k! \left| \frac{\Delta x_k}{\pi_k} \right| \right)^{1/k} \leq \left(k! \left| \frac{\Delta x_k}{\pi_k} - \frac{\Delta x_k(n_0)}{\pi_k} \right| \right)^{1/k} + \left(k! \left| \frac{\Delta x_k(n_0)}{\pi_k} \right| \right)^{1/k} < \varepsilon + 0 \text{ as } k \to \infty
\]

Thus

\[
\left(k! \left| \frac{\Delta x_k}{\pi_k} \right| \right)^{1/k} < \varepsilon \text{ as } k \to \infty
\]

That is \((x_k) \in \chi_a(\Delta) \)

Therefore \(\chi_a(\Delta) \) is a complete metric space.

REFERENCES

