Some Characterizations of Timelike Curves
According to Bishop Frame in Minkowski 3-Space

Hüseyin Kocayiğit, Ali Özdemir, Muhammed Çetin, Buket Arda

Celal Bayar University, Faculty of Science and Arts
Mathematics Department, Manisa, Turkey

huseyin.kocayigit@cbu.edu.tr, ali.ozdemir@cbu.edu.tr
mat.mcetin@hotmail.com, buket-arda-18@hotmail.com

Abstract. In this study, we give some characterizations of timelike curves according to Bishop Frame in Minkowski 3-space E^{3}_{1} by using Laplacian operator and Levi-Civita connection.

Mathematics Subject Classification : 53A04, 14H45, 53B30, 53A35

Keywords : Bishop Frame, slant helix, Laplacian operator

1. Introduction

It is well-known that a curve of constant slope or general helix is defined by the property that the tangent of the curve makes a constant angle with a fixed straight line which is called the axis of the general helix. A necessary and sufficient condition for a curve to be a general helix is that the ratio of curvature to torsion be constant [9]. The study of these curves in E^{3} has been given by many mathematicians. Moreover, İlarslan studied the characterizations of helices in Minkowski 3-space E^{3}_{1} and found differential equations according to Frenet vectors characterizing the helices in E^{3}_{1} [14]. Then, Kocayiğit obtained general differential equations which characterize the Frenet curves in Euclidean 3-space E^{3} and Minkowski 3-space E^{3}_{1} [10].

Analogue to the helix curve, Izumiya and Takeuchi have defined a new special curve called the slant helix in Euclidean 3-space E^{3} by the property that the principal normal of a space curve $γ$ makes a constant angle with a fixed direction [19]. The spherical images of tangent indicatrix and binormal indicatrix
of a slant helix have been studied by Kula and Yaylı [15]. They obtained that the spherical images of a slant helix are spherical helices. Moreover, Kula et al. studied the relations between a general helix and a slant helix [16]. They have found some differential equations which characterize the slant helix.

Position vectors of slant helices have studied by Ali and Turgut [2]. Also, they have given the generalization of the concept of a slant helix in the Euclidean n-space E^n [3].

Furthermore, Chen and Ishikawa classified biharmonic curves, the curves for which $\Delta H = 0$ holds in semi-Euclidean space E^v_1 where Δ is Laplacian operator and H is mean curvature vector field of a Frenet curve [8]. Later, Kocayiğit and Hacısalihoğlu studied biharmonic curves and 1-type curves i.e., the curves for which $H H = \lambda \Delta$ holds, where λ is constant, in Euclidean 3-space E^3 [13] and Minkowski 3-space E^3_1 [12]. They showed the relations between 1-type curves and circular helix and the relations between biharmonic curves and geodesics. Moreover, slant helices have been studied by Bükçü and Karacan according to Bishop Frame in Euclidean 3-space [4] and Minkowski space [5,6]. Characterizations of space curves according to Bishop Frame in Euclidean 3-space E^3 have been given in [11].

In this paper, we give some characterizations of timelike curves according to Bishop Frame in Minkowski 3-Space E^3_1 by using Laplacian operator. We find the differential equations characterizing timelike curves with Bishop Frame.

2. Preliminaries

Let $\mathbb{R}^3 = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \in \mathbb{R}\}$ be a 3-dimensional vector space, and let $\hat{x} = (x_1, x_2, x_3)$ and $\hat{y} = (y_1, y_2, y_3)$ be two vectors in \mathbb{R}^3. The Lorentz scalar product of \hat{x} and \hat{y} is defined by $\langle \hat{x}, \hat{y} \rangle_L = -x_1 y_1 + x_2 y_2 + x_3 y_3$.

$E^3_1 = (\mathbb{R}^3, \langle \hat{x}, \hat{y} \rangle_L)$ is called 3-dimensional Lorentzian space, Minkowski 3-Space or 3-dimensional Semi-Euclidean space. The vector \hat{x} in E^3_1 is called a spacelike vector, null vector or a timelike vector if $\langle \hat{x}, \hat{x} \rangle_L > 0$ or $x = 0$,

$\langle \hat{x}, \hat{x} \rangle_L = 0$, $x \neq 0$ or $\langle \hat{x}, \hat{x} \rangle_L < 0$, respectively [7]. Similarly a curve γ is called spacelike, timelike or null if $\langle \gamma', \gamma' \rangle_L > 0$, $\langle \gamma', \gamma' \rangle_L < 0$ or $\langle \gamma', \gamma' \rangle_L = 0$, respectively. For $\vec{x} \in E^3_1$, the norm of the vector \vec{x} is defined by $\| \vec{x} \|_L = \sqrt{\langle \vec{x}, \vec{x} \rangle_L}$, and \vec{x} is called a unit vector if $\| \vec{x} \|_L = 1$. For any vectors $\vec{x}, \vec{y} \in E^3_1$, Lorentzian cross product of \vec{x} and \vec{y} is defined by

$\vec{x} \wedge_L \vec{y} = (x_2 y_3 - x_3 y_2, x_3 y_1 - x_1 y_3, x_1 y_2 - x_2 y_1)$

Denoted the moving Frenet frame along a space curve γ by $\{\vec{T}, \vec{N}, \vec{B}\}$.
where \vec{T}, \vec{N} and \vec{B} are tangent, principal normal and binormal vector of γ, respectively. If γ is a timelike curve, then this set of orthogonal unit vectors, known as the Frenet frame, has the following properties

\[
\vec{T}' = \kappa \vec{N} \\
\vec{N}' = \kappa \vec{T} + \tau \vec{B} \\
\vec{B}' = -\tau \vec{N}
\]

where $\langle \vec{T}, \vec{T} \rangle_L = -1, \langle \vec{N}, \vec{N} \rangle_L = 1, \langle \vec{B}, \vec{B} \rangle_L = 1$.

The parallel transport frame or Bishop frame is an alternative approach to defining a moving frame that is well-defined even when the timelike curve has vanishing second derivative. We can transport an orthonormal frame along a timelike curve simply by parallel transporting each component of the frame. The parallel transport frame is based on the observation that, while $\vec{T}(s)$ for a given timelike curve model is unique, we may choose convenient arbitrary basis $\left(\vec{N}_1(s), \vec{N}_2(s)\right)$ for the remainder of the frame, so long as it is in the normal plane perpendicular to $\vec{T}(s)$ at each point. If the derivatives of $\left(\vec{N}_1(s), \vec{N}_2(s)\right)$ depend only on $\vec{T}(s)$ and not each other, we can make $\vec{N}_1(s)$ and $\vec{N}_2(s)$ vary smoothly throughout the path regardless of the curvature. We therefore have the alternative frame equations (1) [17,1].

Denote by $\{\vec{T}, \vec{N}_1, \vec{N}_2\}$ the moving Bishop frame along the timelike curve $\gamma(s) : I \subset \mathbb{R} \rightarrow E^3_1$ in the Minkowski 3-space E^3_1. For an arbitrary timelike curve $\gamma(s)$ in the space E^3_1, the following Bishop formula are given by

\[
\begin{bmatrix}
\nabla_{\gamma} \vec{T} \\
\nabla_{\gamma} \vec{N}_1 \\
\nabla_{\gamma} \vec{N}_2
\end{bmatrix} = \begin{bmatrix}
0 & k_1 & k_2 \\
k_1 & 0 & 0 \\
k_2 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\vec{T} \\
\vec{N}_1 \\
\vec{N}_2
\end{bmatrix}
\]

(See [18]). The relations between κ, τ, θ and k_1, k_2 are given as follows

\[
\kappa(s) = \sqrt{k_1^2 + k_2^2} \\
\theta(s) = \arg \tan \left(\frac{k_2}{k_1} \right), \quad k_1 \neq 0.
\]

So that k_1 and k_2 effectively correspond to Cartesian coordinate system for the polar coordinates κ, θ with $\theta = \int \tau(s) ds$. The orientation of the parallel transport frame includes the arbitrary choice of integration constant θ_0, which disappears from τ due to the differentiation [18].

A regular timelike curve $\gamma : I \rightarrow E^3_1$ is called a slant helix if unit vector $\vec{N}_1(s)$ of γ makes a constant angle θ with a fixed unit vector \vec{U}; that is,
\[\left(\ddot{N}_t(s), \ddot{U} \right) = \text{const.}, \text{ for all } s \in I. \]

Let, \(\gamma: I \rightarrow E^3_1 \) be a unit speed timelike curve with nonzero nature curvatures \(k_1, k_2 \). Then \(\gamma \) is a slant helix if and only if \(k_1 / k_2 \) is constant [4].

Let, \(\nabla \) denotes the Levi-Civita connection given by \(\nabla_{\gamma} = \frac{d}{ds} \) where \(s \) is the arclength parameter of the timelike curve \(\gamma \). The Laplacian operator of \(\gamma \) is defined by
\[
\Delta = -\nabla_{\gamma}^2 = -\nabla_{\gamma} \nabla_{\gamma} \quad (2)
\]
(See [12]).

3. Characterizations of Timelike Curves with respect to Bishop Frame in Minkowski 3-Space \(E^3_1 \)

In this section we will give the characterizations of the timelike curves according to Bishop frame in Minkowski 3-space \(E^3_1 \). Furthermore, we will obtain the general differential equations which characterize the timelike curves according to the vectors \(\vec{T}, \vec{N}_1, \vec{N}_2 \) in \(E^3_1 \).

Theorem 3.1. Let \(\gamma \) be a unit speed timelike curve in Minkowski 3-space \(E^3_1 \) with Bishop frame \(\lbrace \vec{T}, \vec{N}_1, \vec{N}_2 \rbrace \), curvature \(k_1 \) and torsion \(k_2 \). The differential equation characterizing \(\gamma \) according to the tangent vector \(\vec{T} \) is given by
\[
\lambda_4 \nabla_{\gamma}^3 \vec{T} + \lambda_5 \nabla_{\gamma}^2 \vec{T} + \lambda_2 \nabla_{\gamma} \vec{T} + \lambda_1 \vec{T} = 0
\]
where
\[
\lambda_4 = f, \\
\lambda_5 = -g, \\
\lambda_2 = k_1 k_2 z + t + k_2 k_1^3 - k_1 k_2^3, \\
\lambda_1 = 3 f h + (k_1^2 + k_2^2) g,
\]
and
\[
f = \left(\frac{k_1}{k_2} \right) k_2^2, \quad g = k_2 k_1 - k_1 k_2, \quad h = -k_1 k_1' - k_2 k_2', \quad z = k_2 k_2' - k_1 k_1', \quad t = k_2 k_2' - k_1 k_1'
\]

Proof. Let \(\gamma \) be a unit speed timelike curve Bishop frame \(\lbrace \vec{T}, \vec{N}_1, \vec{N}_2 \rbrace \) and \(k_1, k_2 \) be the curvature and torsion of the curve, respectively. By differentiating \(\vec{T} \) three times with respect to \(s \) we find the followings,
\[
\nabla_{\gamma} \vec{T} = k_1 \vec{N}_1 + k_2 \vec{N}_2 \quad (3)
\]
\[
\nabla_{\gamma}^2 \vec{T} = (k_1^2 + k_2^2) \vec{T} + k_1 \vec{N}_1 + k_2 \vec{N}_2 \quad (4)
\]
Characterizations of timelike curves

\(\nabla^3_y \vec{T} = 3(k_1'k_1 + k_2'k_2) \vec{T} + (k_3^3 + k_1k_2^2 + k_1') \vec{N}_1 + (k_3^3 + k_2^3k_2 + k_2') \vec{N}_2. \) \hfill (5)

From (3) and (4) we have
\[\vec{N}_1 = \frac{k_1(k_1^2 + k_2^2)}{k_2k_1 - k_2k_1} \vec{T} + \frac{k_2}{k_2k_1 - k_2k_1} \nabla \gamma \vec{T} - \frac{k_2}{k_2k_1 - k_2k_1} \nabla^2 \vec{T}, \] \hfill (6)

and
\[\vec{N}_2 = \frac{k_1(k_1^2 + k_2^2)}{k_1k_2 - k_1k_2} \vec{T} + \frac{k_1}{k_1k_2 - k_1k_2} \nabla \gamma \vec{T} - \frac{k_1}{k_1k_2 - k_1k_2} \nabla^2 \vec{T}. \] \hfill (7)

By substituting (6) and (7) in (5) we get
\[f \nabla \gamma \vec{T} - g \nabla^2 \vec{T} + (k_1k_2z + t - k_1k_2^3 + k_3k_1^3) \nabla \gamma \vec{T} + (3fh + (k_1^2 + k_2^2)g) \vec{T} = 0 \] \hfill (8)

where
\[f = \left(\frac{k_1}{k_2} \right)^2, \quad g = k_1k_2 - k_2k_1, \quad h = -k_1k_1' - k_2k_2', \quad z = k_2k_2' - k_1k_1', \quad t = k_2'k_1 - k_1k_2'. \]

Defining
\[\lambda_3 = f, \]
\[\lambda_2 = -g, \]
\[\lambda_1 = k_1k_2z + t + k_2k_2^3 - k_1k_1^3, \]
\[\lambda_4 = 3fh + (k_1^2 + k_2^2)g, \]

from (8) we get
\[\lambda_3 \nabla \gamma \vec{T} + \lambda_2 \nabla^2 \vec{T} + \lambda_1 \nabla \gamma \vec{T} + \lambda_4 \vec{T} = 0 \]

which is desired equation.

Theorem 3.2. Let \(\gamma \) be a unit speed timelike curve Bishop frame \(\{ \vec{T}, \vec{N}_1, \vec{N}_2 \} \), curvature \(k_1 \) and torsion \(k_2 \). The differential equation characterizing \(\gamma \) according to the vector \(\vec{N}_1 \) is given by
\[\nabla^3 \vec{N}_1 + \beta_1 \nabla^2 \vec{N}_1 + \beta_2 \nabla \gamma \vec{N}_1 + \beta_3 \vec{N}_1 = 0 \]

where
\[\beta_1 = -2 \frac{k_1'k_1 - k_2'}{k_1}, \]
\[\beta_2 = 2 \frac{(k_1')^2 + k_1k_2^2}{k_1} \frac{k_1}{k_1' - k_2^2}, \]
\[\beta_3 = \frac{k_1^2k_2}{k_2} - k_1k_1'. \]

Proof. Let \(\gamma \) be a unit speed timelike curve Bishop frame \(\{ \vec{T}, \vec{N}_1, \vec{N}_2 \} \) and \(k_1 \), \(k_2 \) be curvature and torsion of the curve, respectively. Differentiating \(\vec{N}_1 \) three times with respect to \(s \) gives
\[\nabla \gamma \vec{N}_1 = k_1 \vec{T} \]
(9)

\[\nabla^2 \gamma \vec{N}_1 = k_1^2 \vec{T} + k_1 k_2 \vec{N}_1 + k_2 \vec{N}_2 \]
(10)

\[\nabla^3 \gamma \vec{N}_1 = (k_1^3 + k_1^2 k_2^2) \vec{T} + 3k_1 k_2 \vec{N}_1 + (2k_2 k_1 + k_1 k_2^2) \vec{N}_2. \]
(11)

From (9) and (10) we have

\[\vec{T} = \frac{1}{k_1} \nabla \gamma \vec{N}_1 \]
(12)

and

\[\vec{N}_2 = \frac{1}{k_1 k_2} \nabla^2 \gamma \vec{N}_1 - \frac{k_1}{k_1 k_2} \nabla \gamma \vec{N}_1 - \frac{k_2}{k_1 k_2} \vec{N}_2. \]
(13)

respectively. By substituting (12) and (13) in (11) we obtain

\[\nabla^3 \gamma \vec{N}_1 + \left(-2 \frac{k_1}{k_1 k_2} \frac{k_2}{k_2} \right) \nabla^2 \gamma \vec{N}_1 + \left(2 \frac{(k_2)^2}{k_1} + \frac{k_1 k_2^2}{k_1} - \frac{k_2^2}{k_1} - k_2 \right) \nabla \gamma \vec{N}_1 + \left(\frac{k_1 k_2^2}{k_1} - k_2 \right) \vec{N}_1 = 0 \]
(14)

Writing

\[\beta_3 = -2 \frac{k_1}{k_1 k_2} \frac{k_2}{k_2}, \]

\[\beta_2 = 2 \frac{(k_1)^2}{k_1} \frac{k_2}{k_1 k_2} - \frac{k_2}{k_1} - k_2, \]

\[\beta_1 = \frac{k_1 k_2^2}{k_2} - k_1 k_2, \]

from (14) we get

\[\nabla^3 \gamma \vec{N}_1 + \beta_3 \nabla^2 \gamma \vec{N}_1 + \beta_2 \nabla \gamma \vec{N}_1 + \beta_1 \vec{N}_1 = 0 \]

which is desired equation.

If \(\gamma \) is a slant helix in \(E^3 \), then \(\frac{k_1}{k_2} = \text{const.} \), that is \(\frac{k_1}{k_2} = \frac{k_1}{k_2} \). In this case, we have \(\beta_1 = 0 \). Therefore, we give the following corollary.

Corollary 3.1. Let \(\gamma \) be a slant helix in \(E^3 \) with Bishop frame \(\{ \vec{T}, \vec{N}_1, \vec{N}_2 \} \), curvature \(k_1 \) and torsion \(k_2 \). The differential equation characterizing \(\gamma \) according to the vector \(\vec{N}_1 \) is given by

\[\nabla^3 \gamma \vec{N}_1 + \left(-3 \frac{k_1}{k_1 k_2} \right) \nabla^2 \gamma \vec{N}_1 + \left(3 \frac{(k_2)^2}{k_1} - \frac{k_2}{k_1} - k_2 \right) \nabla \gamma \vec{N}_1 = 0 \]

Theorem 3.3. Let \(\gamma \) be a unit speed timelike curve in Minkowski 3-space \(E^3 \) with Bishop frame \(\{ \vec{T}, \vec{N}_1, \vec{N}_2 \} \), curvature \(k_1 \) and torsion \(k_2 \). The differential
equation characterizing γ according to the vector \vec{N}_2 is given by

$$\nabla^3_\gamma \vec{N}_2 + \eta_3 \nabla^2_\gamma \vec{N}_2 + \eta_2 \nabla_\gamma \vec{N}_2 + \eta_1 \vec{N}_2 = 0$$

where

$$\eta_3 = -2 \frac{k_2}{k_2} - \frac{k_1}{k_1},$$

$$\eta_2 = 2 \frac{(k_2)^2}{k_2} + \frac{k_1 k_2}{k_1 k_2} - \frac{k_2}{k_2} - k_1^2 - k_2^2,$$

$$\eta_1 = \frac{k_1 k_2^2}{k_1} - k_2 k_2.$$

Proof. Let γ be a unit speed timelike curve with Bishop frame $\{\vec{T}, \vec{N}_1, \vec{N}_3\}$ and k_1, k_2 be curvature and torsion of the curve, respectively. By differentiating \vec{N}_2 three times with respect to s we find the followings,

$$\nabla_\gamma \vec{N}_2 = k_2 \vec{T} \tag{15}$$

$$\nabla^2_\gamma \vec{N}_2 = k_2 \vec{T} + k_1 k_2 \vec{N}_1 + k_2^2 \vec{N}_2 \tag{16}$$

$$\nabla^3_\gamma \vec{N}_2 = (k_2^3 + k_1 k_2^2 + k_2^3) \vec{T} + (2k_1 k_2 + k_1 k_2) \vec{N}_1 + 3k_1 k_2^2 \vec{N}_2. \tag{17}$$

From (15) and (16) we have

$$\vec{T} = \frac{1}{k_2} \nabla_\gamma \vec{N}_2 \tag{18}$$

and

$$\vec{N}_1 = \frac{1}{k_1 k_2} \nabla^2_\gamma \vec{N}_2 - \frac{k_2}{k_1 k_2} \nabla_\gamma \vec{N}_2 - \frac{k_2}{k_1} \vec{N}_2. \tag{19}$$

By substituting (18) and (19) in (17) we get

$$\nabla^3_\gamma \vec{N}_2 + \left(-2 \frac{k_2}{k_2} - \frac{k_1}{k_1} \right) \nabla^2_\gamma \vec{N}_2 + \left(2 \frac{(k_2)^2}{k_2} + \frac{k_1 k_2}{k_1 k_2} - \frac{k_2}{k_2} - k_1^2 - k_2^2 \right) \nabla_\gamma \vec{N}_2 + \left(\frac{1}{k_1 k_2} - k_1 k_2 \right) \vec{N}_2 = 0 \tag{20}$$

writing

$$\eta_3 = -2 \frac{k_2}{k_2} - \frac{k_1}{k_1},$$

$$\eta_2 = 2 \frac{(k_2)^2}{k_2} + \frac{k_1 k_2}{k_1 k_2} - \frac{k_2}{k_2} - k_1^2 - k_2^2,$$

$$\eta_1 = \frac{k_1 k_2^2}{k_1} - k_2 k_2.$$

from (20) we get

$$\nabla^3_\gamma \vec{N}_2 + \eta_3 \nabla^2_\gamma \vec{N}_2 + \eta_2 \nabla_\gamma \vec{N}_2 + \eta_1 \vec{N}_2 = 0$$

which is desired equation.
If γ is a slant helix in E^3_1 i.e., $\frac{k_1}{k_2} = \frac{k_2}{k_1}$, then, we obtain the following corollary.

Corollary 3.2. Let γ be a slant helix in E^3_1 with Bishop frame $\{\vec{T}, \vec{N}_1, \vec{N}_2\}$, curvature k_1, torsion k_2. The differential equation characterizing γ according to the vector \vec{N}_2 is given by

$$\nabla^3_{\gamma} \vec{N}_2 - \frac{3}{k_2} \nabla^2_{\gamma} \vec{N}_2 + \left(-\frac{k_1}{k_2} - k_1^2 - k_2^2 + 3 \frac{(k_2)^2}{k_2^2} \right) \nabla_{\gamma} \vec{N}_2 = 0$$

4. Timelike Curves with Harmonic 1-type $\vec{T}, \vec{N}_1, \vec{N}_2$ Vectors According to Bishop Frame in Minkowski 3-Space E^3_1

In this section we will give the characterizations of the timelike curves with Harmonic 1-type $\vec{T}, \vec{N}_1, \vec{N}_2$ vectors in Minkowski 3-space E^3_1.

Definition 4.1. A regular timelike curve γ in E^3_1 said to have harmonic tangent vector if

$$\Delta \vec{T} = 0, \quad (21)$$

holds. Further, a regular timelike curve γ in E^3_1 said to have harmonic 1-type tangent vector if

$$\Delta \vec{T} = \lambda \vec{T}, \quad \lambda \in \mathbb{R}, \quad (22)$$

holds.

First we prove the following theorem.

Theorem 4.1. Let γ be a unit speed timelike curve Bishop frame $\{\vec{T}, \vec{N}_1, \vec{N}_2\}$. Then, γ is of harmonic 1-type tangent vector if and only if the curvature k_1 and torsion k_2 of the curve γ satisfy the followings,

$$\lambda = -k_1^2 - k_2^2, \quad k_1 = c_1, \quad k_2 = c_2. \quad (23)$$

where λ, c_1, c_2 are constants.

Proof. Let γ be a unit speed timelike curve tangent vector \vec{T} and let Δ be the Laplacian associated with ∇. One can use (3) and (4) to compute

$$\Delta \vec{T} = -(k_1^2 + k_2^2) \vec{T} - k_1 \vec{N}_1 - k_2 \vec{N}_2 \quad (24)$$

We assume that timelike curve γ is of harmonic 1-type tangent vector. Substituting (24) in (22) we have (23).

Conversely, if the equations (23) satisfy for the constant λ, then it is easy to show that γ is of harmonic 1-type tangent vector.
Corollary 4.1. Let γ be a unit speed timelike curve. Then, γ is of harmonic 1-type tangent vector if and only if γ is a slant helix, with constant curvature and constant torsion.

Corollary 4.2. Let γ be a unit speed timelike curve in E^3_1 with Bishop frame $\{\vec{T}, \vec{N}_1, \vec{N}_2\}$. Then, γ has harmonic tangent vector, if and only if $k_1(s) = k_2(s) = 0$.

Let, now consider the characterization of the timelike curve γ according to the vector \vec{N}_1. Similar to the Definition 4.1, we can give the following definition.

Definition 4.2. A regular timelike curve γ in E^3_1 said to have harmonic vector \vec{N}_1 if

$$\Delta \vec{N}_1 = 0,$$ \hspace{1cm} (25)

holds. Further, a regular timelike curve γ in E^3_1 said to have harmonic 1-type vector \vec{N}_1 if

$$\Delta \vec{N}_1 = \lambda \vec{N}_1, \hspace{0.5cm} \lambda \in \mathbb{R}$$ \hspace{1cm} (26)

holds.

Theorem 4.2. Let γ be a unit speed timelike curve. Then, γ is of harmonic 1-type vector \vec{N}_1 if and only if the curvature k_1 and the torsion k_2 of the curve γ satisfy the followings,

$$\lambda = -k_2^3, \hspace{0.5cm} k_1 = \text{const.}, \hspace{0.5cm} k_2 = 0.$$ \hspace{1cm} (27)

Proof. Let γ be a unit speed timelike curve and let Δ be the Laplacian associated with ∇. One can use (9) and (10) to compute

$$\Delta \vec{N}_1 = -k_1 \vec{T} - k_1^2 \vec{N}_1 - k_1 k_2 \vec{N}_2.$$ \hspace{1cm} (28)

We assume that the timelike curve γ is of harmonic 1-type vector \vec{N}_1. Substituting (28) in (26) we have (27).

Conversely, if the equations (27) satisfy for the constant λ, then it is easy to show that timelike curve γ is of harmonic 1-type vector \vec{N}_1.

Corollary 4.3. Let γ be a unit speed timelike curve in E^3_1 with Bishop frame $\{\vec{T}, \vec{N}_1, \vec{N}_2\}$. Then, γ has harmonic vector \vec{N}_1, if and only if $k_1(s) = 0$.

Finally, let give the characterization of γ timelike curve with according to the vector \vec{N}_2.

Definition 4.3. A regular timelike curve γ in E^3_1 said to have harmonic vector \vec{N}_2 if
\[\Delta \vec{N}_2 = 0, \] (29)
holds. Further, a regular timelike curve γ in E^3_1 said to have harmonic 1-type vector \vec{N}_2 if
\[\Delta \vec{N}_2 = \lambda \vec{N}_2, \quad \lambda \in \mathbb{R}, \] (30)
holds.

Theorem 4.3. Let γ be a unit speed timelike curve in E^3_1 with Bishop frame $\{\vec{T}, \vec{N}_1, \vec{N}_2\}$. Then, γ is of harmonic 1-type vector \vec{N}_2 if and only if the curvature k_1 and the torsion k_2 of the curve γ satisfy the followings,
\[\lambda = -k_2^2, \quad k_2 = \text{const.}, \quad k_1 = 0 \] (31)
Proof. Let γ be a unit speed timelike curve and let Δ be the Laplacian associated with ∇. One can use (15) and (16) to compute
\[\Delta \vec{N}_2 = -k_2^2 \vec{T} - k_2 k_1 \vec{N}_1 - k_2 \vec{N}_2 \] (32)
We assume that the timelike curve γ is of harmonic 1-type vector \vec{N}_2. Substituting (32) in (30) we have (31).

Conversely, if the equations (31) satisfy for the constant λ, then it is easy to show that timelike curve γ is of harmonic 1-type vector \vec{N}_2.

Corollary 4.4. Let γ be a unit speed timelike curve. Then, γ has harmonic vector \vec{N}_2, if and only if $k_2(s) = 0$.

Let now consider the general characterizations of a Bishop timelike curve γ according to the Laplacian operator Δ. Then, by considering the vectors \vec{T}, \vec{N}_1 and \vec{N}_2 we obtain the followings.

Theorem 4.4. Let γ be a unit speed timelike curve in E^3_1 with Bishop frame $\{\vec{T}, \vec{N}_1, \vec{N}_2\}$. Then,
\[\Delta \vec{T} + \lambda \vec{N}_2 + \mu \vec{T} = 0, \] (33)
holds along γ for the constants λ and μ, if and only if γ is a slant helix, with curvature and the torsion
\[k_1 = ck_2, \quad k_2 = \mp \sqrt{\frac{\mu}{c^2 + 1}}, \]
where c is constant.
Proof. Assume that (33) holds along γ. Then from the equalities (3), (4) and (33) we have

$$\mu - k_1^2 - k_2^2 = 0, \quad \lambda k_1 - k_1' = 0, \quad \lambda k_2 - k_2' = 0$$

(34)

The second and third equation of the system (34) gives that k_1 / k_2 is constant, i.e., γ is a slant helix. Furthermore, from the equations of the system (34) we get

$$k_1 = ck_2$$

(35)

and

$$k_2 = \mp \sqrt{\frac{\mu}{c^2 + 1}}$$

(36)

where c is constant.

Conversely, if γ is a slant helix with curvature k_1 and torsion k_2 given by (35) and (36), respectively, it is easily seen that (34) holds.

Theorem 4.5. Let γ be a unit speed timelike curve and μ be a nonzero constant. Then,

$$\Delta \vec{N}_1 + \mu \vec{N}_1 = 0,$$

(37)

holds along the curve γ if and only if,

$$k_1 = \mp \sqrt{\mu}, \quad k_2 = 0$$

(38)

Proof. Assume that (37) holds along timelike curve γ. Then from the equality (28) we have

$$\mu - k_1^2 = 0, \quad k_1 k_2 = 0$$

(39)

from the equations of the system (39) we get

i) If $k_1 \neq 0$, $k_1 = \mp \sqrt{\mu}$ and $k_2 = 0$.

ii) If $k_1 = 0$, $\mu = 0$

Conversely, if (39) holds then (37) is satisfied.

Theorem 4.6. Let γ be a unit speed timelike curve and ρ be a nonzero constant. Then,

$$\Delta \vec{N}_2 + \rho \vec{N}_2 = 0$$

(40)

holds along the timelike curve γ if and only if

$$k_2 = \mp \sqrt{\rho}, \quad k_1 = 0.$$

(41)

Proof. Assume that (40) holds along the timelike curve γ. Then from the equality (32) we have

$$\rho - k_2^2 = 0, \quad k_1 k_2 = 0.$$

(42)

From the equations of the system (42) we get

i) If $k_2 \neq 0$, $k_2 = \mp \sqrt{\rho}$ and $k_1 = 0$.

ii) If $k_2 = 0$, $\rho = 0$
Conversely if (43) and (44) hold, then it is easily seen that (40) is satisfied.

References

Characterizations of timelike curves

Received: October, 2012