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Abstract. In this paper, we prove two theorems on |[Alx,1 < k < 2,
summability of orthogonal series. The first one gives a sufficient condition
under which an orthogonal series is absolutely summable almost everywhere,
and the second one, is a general theorem, which also gives a sufficient condi-
tion so that an orthogonal series is absolutely summable almost everywhere,
but it involves a positive numerical sequence that satisfies certain additional
conditions. Besides, several known and new results are deduced as corollaries
of the main results.
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1. INTRODUCTION

Let Y ,a, be a given infinite series with its partial sums {s,} and let
A := (an,) be a normal matrix, i.e. a lower triangular matrix of non-zero
diagonal entries. Then A defines the sequence-to-sequence transformation,
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mapping the sequence s := {s,} to As := {A,(s)}, where

n
= E Sy, M =10,1,2,...
v=0

The series Y~ a, is said to be summable |Aly, k > 1, if (see [5])

> T AAL(s)*
n=1

converges, where

and we write in brief .
Z ay, € ‘A’k
n=0

Then, let p denotes the sequence {p,}. For two given sequences p and ¢, the
convolution (p * q), is defined by

(p* q)n Z Prtn-m = Y Pn-mlm-
m=0

When (p*q),, # 0 for all n, the generahzed Norlund transform of the sequence
{sn} is the sequence {29} obtained by putting

n

t%q = ! Z Prn—m4mSm-
m=0

(P * @)n
The series Y~ a, is absolutely summable (N, p,q) if the series

thpq tpq

converges, and is written in br1ef

> an € |N,pql.
n=0
We note that |V, p, ¢| summability is introduced by Tanaka [3].
Let {¢n(z)} be an orthonormal system defined in the interval (a,b). We
assume that f(z) belongs to L?(a,b) and

o0

(1.1) flz) ~ chgon(x),

n=0

where ¢,, = fff(:c)cpn(x)d:v, (n=0,1,2,...).
Also is written (see [4])

Rn = (p * Q)m sz = anmem

m=j
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where
Rﬁ“ =0, R?l =R,,

and the following two theorems are proved.

Theorem 1.1 ([4]). If the series
o] n Rj Rj . 2 %
{5 (R ) o
n=1 \ j=1 n n—1

converges, then the orthogonal series

> capn(@)

is summable |N,p, q| almost everywhere.

Theorem 1.2 ([4]). Let {Q(n)} be a positive sequence such that {Q(n)/n} is
a non-increasing sequence and the series - ﬁ(n) converges. Let {p,} and
{qn} be non-negative. If the series Y o | |ca|?*Q(n)wM (n) converges, then the

orthogonal series Y oo cupn(z) € |N,p,q| almost everywhere, where w (n)

‘ o2
is defined by wM () := 57! Do (% - gii) .

The main purpose of the present paper is to generalize Theorem 1.1 and
Theorem 1.2 for |Al; summability of the orthogonal series (1.1), where 1 <
k < 2. Before starting the main results first introduce some further notations.

Given a normal matrix A := (a,,), we associate two lower semi matrices

A := (@n,) and A := (d,,) as follows:

n
Ay ::Zam, n,2=0,1,2,...
i=v
and
oo = Qoo = g0, Upy = Opy — Gp-1,0, 7 =1,2,...

It may be noted that A and A are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively.

The following lemma due to Beppo Levi (see [6]) is often used in the theory
of functions.We will need it to prove the main results.

Lemma 1.3. If f,(t) € L(E) are non-negative functions and

(1.2) §:/ £.()dt < oo,
n=1 E
then the series

> falt)
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converges almost everywhere on E to a function f(t) € L(E). Moreover, the
series (1.2) is also convergent to f in the norm of L(E).

Throughout this paper K denotes a positive constant that it may depends
only on k, and be different in different relations.

2. MAIN RESULTS
We prove the following theorems.

Theorem 2.1. If the series

o0 n
2
Z{n2 kzmmcﬂ?}

n=1

converges for 1 < k < 2, then the orthogonal series

Z Cn@n@')

is summable |Alx almost everywhere.

Proof. For the matrix transform A, (s)(z) of the partial sums of the orthogonal
series Y~ Cpon(x) we have

An(s)(z) = Zanvsv(x) = Zanv ch@j(x)
= ch%’(fb’) Zanv = Zanjcj%(l’)

where Y 7 cj;(z) is the partial sum of order v of the series (1.1).
Hence

—_

AAn(s)(@) = Y anicipi(®) =D @n1,605(x)
j=0 j
n—1
= GunCnn(T) + Z (@n,j — Gn-1,5) cjpj ()
=0

I
o

n—1 n
= GnnCon(T) + Z (n,j¢jp;(T) = Z in,jCj5().
J=0 J=0
Now let us clarify the reason of restriction 1 < k < 2. From the definition
of the |Al; summability is £ > 1. Since we shall use the Holder’s inequality
with p = % which must be greater than 1, then k < 2 (for £k = 2 we apply only
the orthogonality, until for & = 1 we apply Schwarz’s inequality). This is why
we are focused only for 1 < k < 2. The case when k£ > 2 remains open.
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Using the Holder’s inequality and orthogonality to the latter equality, we
have that

/|AA Dz < (b— a) (/ A (s (s)(x)|2dx)

— (h—a) / Zandc]goj()zdac)

k
2

Thus, the series

(2.1) an 1/ |AA,(s)(z)|Pdz < (b—a)* Z”k 1[2‘%| |cj|2]

converges since the last does by the assumption. From this fact and since the
functions |AA, (s)(x)|* are non-negative, then by the Lemma 1.3 the series

St A A () (@)

converges almost everywhere. With this the proof of Theorem 2.1 is completed.
OJ

If we put

(2.2) w®(A: §) = Zn | ;|2

then the following theorem holds true.

Theorem 2.2. Let 1 < k < 2 and {Q(n)} be a positive sequence such that

{Q(n)/n} is a non-increasing sequence and the series Y - an( j converges. If

the following series y - e |2Q5 L (n)w®) (A;n) converges, then the orthogo-
nal series Y oc o Cotpn(w) € |Alg almost everywhere, where w™ (A;n) is defined
by (2.2).
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Proof. Applying Holder’s inequality to the inequality (2.1) we get that

an 1/ IAA,(s)(x)[Fdx <
< Kznk 1[Z\an,j\2rcﬁ]

Jj=0

:Kim{an Zlaml |C;|2}

[N

2=k k

( m) [an ;I%Plcﬂzr
K{i ¢|? ZnQ n)l MF}
{i"<%ﬁ)in!r}

which is finite by virtue of the hypothesis of the theorem. Now the the proof
is an immediate result of the Lemma 1.3. 0

[STES

ol

The following corollaries follow from the main results (k = 1).

Corollary 2.3. If the series
00 n 1
~ 22l
S { S lansPle}
n=0 % j=1
converges, then the orthogonal series

o0

CnPn ()
n=0

is summable |A| almost everywhere.

Corollary 2.4. Let {Q2(n)} be a positive sequence such that {Q(n)/n} is a

non-increasing sequence and the series Y -, nﬂl( j converges. If the series

> len?Q(n)wM (A;n) converges, then the orthogonal series > o cnpn(z) €
|A| almost everywhere, where w™M(A;j) = 57 Do 2 | 5.
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3. APPLICATIONS OF THE MAIN RESULTS

We can specialize the matrix A = (a,,) obtaining these means as follows

1. (C,1) mean, when a,, = n+r13

2. Harmonic means, when a,,, = L

(n—v+1)logn ;
n—v+ta+l
3. (C, &) means, when a,, , = %;
4. (H,p) means, when a, , = m Pl log™ (v + 1);

5. Nérlund means (N, p,), when a,,, = 25+ where P, = > 1 py;

6. Riesz means (R, p,), when a,, = £*;
n

7. Generalized Norlund means (N, p, q), when a,, = p”ﬁ—zq“ where R, =
ZZ:() Povln—v-
Let us prove now that some of known results are included in Theorem 2.1.
Namely, for a,, = 25 we get

P,
Ungj = GQngj— Gp-1;

n n—1

1 Z 1

= 5 Pn—i — E Pn—1—i

Pn T P’n,—]_ T
1= 1=]
1

= PP, (Pn—lpn—j - PnPn—l—j>
1

= Pnpnfl ((Pn _pn)Pn—j _Pn(Pn—j _pn—j))

= = pn—j~
PnPnfl Pn pnfj

Hence, using Theorem 2.1 for k = 1 the following result holds.

Corollary 3.1 ([1]). If the series

1
o] n 2 2
Pn 2 (Pn Pn—j) 2
Pj | — — 1
0 PnPn—l{]Zl Pn pn—j !

n=

converges, then the orthogonal series

Z Cn@n@')

is summable |N,p| almost everywhere.
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Also, for a,, = % one can find that

~ — _ o Qan—l
an,j = Qnj = Gn-1,j = 0.0, 1
n n—

Therefore, using again Theorem 2.1 for k = 1 we obtain

Corollary 3.2 ([2]). If the series

nZ:O QnQn—l { jlej_1|cj| }

converges, then the orthogonal series

Z ann(x)

is summable |R, q| almost everywhere.

Remark 3.3. Theorem 1.1 and Theorem 1.2 are included in Theorem 2.1
and Theorem 2.2 , respectively. It is enough to consider in Theorem 2.1 and
Theorem 2.2, the case k =1, and the matriz A = (an,) with its entries a, , =

Pn—vqv

R'!L

Some other consequences of the main results are corollaries formulated be-
low.

Corollary 3.4. If for 1 < k < 2 the series

oo 1_1 kit n P p 2 3
n k Dn 2 n n—j) 2
> > mhi |- ¢
(PnPn_1> {jzl ! (pn Pn-j <] }

n=0

converges, then the orthogonal series

Y capal2)

is summable | N, p|y almost everywhere.

Remark 3.5. We note that:

1. If p, = 1 for all values of n , then |N,ply summability reduces to
|C, 1], summability

2. If k=1 and p, = 1/(n+1) ,then |N,pl|x is equivalent to |R,logn, 1|
summability.

Corollary 3.6. If for 1 < k < 2 the series

i nl_%Qn ’ iQZ ‘C"Z :
Qn@nfl . o

n=0 j=1
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converges, then the orthogonal series
> cupn(z)
n=0

is summable |R, q|i almost everywhere.
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