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Abstract. In this paper, we prove two theorems on ∣A∣k, 1 ≤ k ≤ 2,
summability of orthogonal series. The first one gives a sufficient condition
under which an orthogonal series is absolutely summable almost everywhere,
and the second one, is a general theorem, which also gives a sufficient condi-
tion so that an orthogonal series is absolutely summable almost everywhere,
but it involves a positive numerical sequence that satisfies certain additional
conditions. Besides, several known and new results are deduced as corollaries
of the main results.
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1. Introduction

Let
∑∞

n=0 an be a given infinite series with its partial sums {sn} and let
A := (anv) be a normal matrix, i.e. a lower triangular matrix of non-zero
diagonal entries. Then A defines the sequence-to-sequence transformation,
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mapping the sequence s := {sn} to As := {An(s)}, where

An(s) :=
n∑

v=0

anvsv, n = 0, 1, 2, . . .

The series
∑∞

n=0 an is said to be summable ∣A∣k, k ≥ 1, if (see [5])
∞∑
n=1

nk−1∣Δ̄An(s)∣k

converges, where
Δ̄An(s) = An(s)− An−1(s),

and we write in brief
∞∑
n=0

an ∈ ∣A∣k.

Then, let p denotes the sequence {pn}. For two given sequences p and q, the
convolution (p ∗ q)n is defined by

(p ∗ q)n =
n∑

m=0

pmqn−m =
n∑

m=0

pn−mqm.

When (p∗ q)n ∕= 0 for all n, the generalized Nörlund transform of the sequence
{sn} is the sequence {tp,qn } obtained by putting

tp,qn =
1

(p ∗ q)n

n∑
m=0

pn−mqmsm.

The series
∑∞

n=0 an is absolutely summable (N, p, q) if the series
∞∑
n=1

∣tp,qn − t
p,q
n−1∣

converges, and is written in brief
∞∑
n=0

an ∈ ∣N, p, q∣.

We note that ∣N, p, q∣ summability is introduced by Tanaka [3].
Let {'n(x)} be an orthonormal system defined in the interval (a, b). We

assume that f(x) belongs to L2(a, b) and

(1.1) f(x) ∼
∞∑
n=0

cn'n(x),

where cn =
∫ b

a
f(x)'n(x)dx, (n = 0, 1, 2, . . . ).

Also is written (see [4])

Rn := (p ∗ q)n, Rj
n :=

n∑
m=j

pn−mqm
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where
Rn+1

n = 0, R0
n = Rn,

and the following two theorems are proved.

Theorem 1.1 ([4]). If the series

∞∑
n=1

{
n∑

j=1

(
Rj

n

Rn

−
Rj

n−1

Rn−1

)2

∣cj∣2
} 1

2

converges, then the orthogonal series
∞∑
n=0

cn'n(x)

is summable ∣N, p, q∣ almost everywhere.

Theorem 1.2 ([4]). Let {Ω(n)} be a positive sequence such that {Ω(n)/n} is
a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n)

converges. Let {pn} and

{qn} be non-negative. If the series
∑∞

n=1 ∣cn∣2Ω(n)w(1)(n) converges, then the
orthogonal series

∑∞
n=0 cn'n(x) ∈ ∣N, p, q∣ almost everywhere, where w(1)(n)

is defined by w(1)(j) := j−1
∑∞

n=j n
2

(
Rjn
Rn
− Rjn−1

Rn−1

)2

.

The main purpose of the present paper is to generalize Theorem 1.1 and
Theorem 1.2 for ∣A∣k summability of the orthogonal series (1.1), where 1 ≤
k ≤ 2. Before starting the main results first introduce some further notations.

Given a normal matrix A := (anv), we associate two lower semi matrices

Ā := (ānv) and Â := (ânv) as follows:

ānv :=
n∑

i=v

ani, n, i = 0, 1, 2, . . .

and
â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . .

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively.

The following lemma due to Beppo Levi (see [6]) is often used in the theory
of functions.We will need it to prove the main results.

Lemma 1.3. If fn(t) ∈ L(E) are non-negative functions and

(1.2)
∞∑
n=1

∫
E

fn(t)dt <∞,

then the series
∞∑
n=1

fn(t)



496 Xhevat Z. Krasniqi et al

converges almost everywhere on E to a function f(t) ∈ L(E). Moreover, the
series (1.2) is also convergent to f in the norm of L(E).

Throughout this paper K denotes a positive constant that it may depends
only on k, and be different in different relations.

2. Main Results

We prove the following theorems.

Theorem 2.1. If the series

∞∑
n=1

{
n2− 2

k

n∑
j=0

∣ân,j∣2∣cj∣2
} k

2

converges for 1 ≤ k ≤ 2, then the orthogonal series
∞∑
n=0

cn'n(x)

is summable ∣A∣k almost everywhere.

Proof. For the matrix transform An(s)(x) of the partial sums of the orthogonal
series

∑∞
n=0 cn'n(x) we have

An(s)(x) =
n∑

v=0

anvsv(x) =
n∑

v=0

anv

v∑
j=0

cj'j(x)

=
n∑

j=0

cj'j(x)
n∑

v=j

anv =
n∑

j=0

ānjcj'j(x)

where
∑v

j=0 cj'j(x) is the partial sum of order v of the series (1.1).
Hence

Δ̄An(s)(x) =
n∑

j=0

ānjcj'j(x)−
n−1∑
j=0

ān−1,jcj'j(x)

= ānncn'n(x) +
n−1∑
j=0

(ān,j − ān−1,j) cj'j(x)

= ânncn'n(x) +
n−1∑
j=0

ân,jcj'j(x) =
n∑

j=0

ân,jcj'j(x).

Now let us clarify the reason of restriction 1 ≤ k ≤ 2. From the definition
of the ∣A∣k summability is k ≥ 1. Since we shall use the Hölder’s inequality
with p = 2

k
which must be greater than 1, then k < 2 (for k = 2 we apply only

the orthogonality, until for k = 1 we apply Schwarz’s inequality). This is why
we are focused only for 1 ≤ k ≤ 2. The case when k > 2 remains open.
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Using the Hölder’s inequality and orthogonality to the latter equality, we
have that

∫ b

a

∣Δ̄An(s)(x)∣kdx ≤ (b− a)1− k
2

(∫ b

a

∣An(s)(x)− An−1(s)(x)∣2dx
) k

2

= (b− a)1− k
2

(∫ b

a

∣∣∣ n∑
j=0

ân,jcj'j(x)
∣∣∣2dx) k

2

= (b− a)1− k
2

[
n∑

j=0

∣ân,j∣2∣cj∣2
] k

2

.

Thus, the series

(2.1)
∞∑
n=1

nk−1

∫ b

a

∣Δ̄An(s)(x)∣kdx ≤ (b− a)1− k
2

∞∑
n=1

nk−1

[
n∑

j=0

∣ân,j∣2∣cj∣2
] k

2

converges since the last does by the assumption. From this fact and since the
functions ∣Δ̄An(s)(x)∣k are non-negative, then by the Lemma 1.3 the series

∞∑
n=1

nk−1∣Δ̄An(s)(x)∣k

converges almost everywhere. With this the proof of Theorem 2.1 is completed.
□

If we put

(2.2) w(k)(A; j) :=
1

j
2
k
−1

∞∑
n=j

n
2
k ∣ân,j∣2

then the following theorem holds true.

Theorem 2.2. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n)

converges. If

the following series
∑∞

n=1 ∣cn∣2Ω
2
k
−1(n)w(k)(A;n) converges, then the orthogo-

nal series
∑∞

n=0 cn'n(x) ∈ ∣A∣k almost everywhere, where w(k)(A;n) is defined
by (2.2).
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Proof. Applying Hölder’s inequality to the inequality (2.1) we get that

∞∑
n=1

nk−1

∫ b

a

∣Δ̄An(s)(x)∣kdx ≤

≤ K
∞∑
n=1

nk−1

[ n∑
j=0

∣ân,j∣2∣cj∣2
] k

2

= K

∞∑
n=1

1

(nΩ(n))
2−k
2

[
nΩ

2
k
−1(n)

n∑
j=0

∣ân,j∣2∣cj∣2
] k

2

≤ K

(
∞∑
n=1

1

(nΩ(n))

) 2−k
2 [ ∞∑

n=1

nΩ
2
k
−1(n)

n∑
j=0

∣ân,j∣2∣cj∣2
] k

2

≤ K

{
∞∑
j=1

∣cj∣2
∞∑
n=j

nΩ
2
k
−1(n)∣ân,j∣2

} k
2

≤ K

{
∞∑
j=1

∣cj∣2
(

Ω(j)

j

) 2
k
−1 ∞∑

n=j

n
2
k ∣ân,j∣2

} k
2

= K

{
∞∑
j=1

∣cj∣2Ω
2
k
−1(j)w(k)(A; j)

} k
2

,

which is finite by virtue of the hypothesis of the theorem. Now the the proof
is an immediate result of the Lemma 1.3. □

The following corollaries follow from the main results (k = 1).

Corollary 2.3. If the series

∞∑
n=0

{ n∑
j=1

∣ân,j∣2∣cj∣2
} 1

2

converges, then the orthogonal series

∞∑
n=0

cn'n(x)

is summable ∣A∣ almost everywhere.

Corollary 2.4. Let {Ω(n)} be a positive sequence such that {Ω(n)/n} is a
non-increasing sequence and the series

∑∞
n=1

1
nΩ(n)

converges. If the series∑∞
n=1 ∣cn∣2Ω(n)w(1)(A;n) converges, then the orthogonal series

∑∞
n=0 cn'n(x) ∈

∣A∣ almost everywhere, where w(1)(A; j) = j−1
∑∞

n=j n
2∣ân,j∣2.
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3. Applications of the main results

We can specialize the matrix A = (anv) obtaining these means as follows

1. (C, 1) mean, when an,v = 1
n+1

;

2. Harmonic means, when an,v = 1
(n−v+1) logn

;

3. (C, �) means, when an,v =
(n−v+�+1

�−1 )
(n+�� )

;

4. (H, p) means, when an,v = 1
logp−1(n+1)

∏p−1
m=0 logm(v + 1);

5. Nörlund means (N, pn), when an,v = pn−v
Pn

where Pn =
∑n

v=0 pv;

6. Riesz means (R, pn), when an,v = pv
Pn

;

7. Generalized Nörlund means (N, p, q), when an,v = pn−vqv
Rn

where Rn =∑n
v=0 pvqn−v.

Let us prove now that some of known results are included in Theorem 2.1.
Namely, for an,v = pn−v

Pn
we get

ân,j = ān,j − ān−1,j

=
1

Pn

n∑
i=j

pn−i −
1

Pn−1

n−1∑
i=j

pn−1−i

=
1

PnPn−1

(Pn−1Pn−j − PnPn−1−j)

=
1

PnPn−1

((Pn − pn)Pn−j − Pn(Pn−j − pn−j))

=
pn

PnPn−1

(
Pn

pn
− Pn−j

pn−j

)
pn−j.

Hence, using Theorem 2.1 for k = 1 the following result holds.

Corollary 3.1 ([1]). If the series

∞∑
n=0

pn
PnPn−1

{
n∑

j=1

p2
n−j

(
Pn

pn
− Pn−j

pn−j

)2

∣cj∣2
} 1

2

converges, then the orthogonal series

∞∑
n=0

cn'n(x)

is summable ∣N, p∣ almost everywhere.
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Also, for an,v = qv
Qn

one can find that

ân,j = ān,j − ān−1,j = − qnQj−1

QnQn−1

.

Therefore, using again Theorem 2.1 for k = 1 we obtain

Corollary 3.2 ([2]). If the series

∞∑
n=0

qn
QnQn−1

{
n∑

j=1

Q2
j−1∣cj∣2

} 1
2

converges, then the orthogonal series
∞∑
n=0

cn'n(x)

is summable ∣R, q∣ almost everywhere.

Remark 3.3. Theorem 1.1 and Theorem 1.2 are included in Theorem 2.1
and Theorem 2.2 , respectively. It is enough to consider in Theorem 2.1 and
Theorem 2.2, the case k = 1, and the matrix A = (anv) with its entries an,v =
pn−vqv
Rn

.

Some other consequences of the main results are corollaries formulated be-
low.

Corollary 3.4. If for 1 ≤ k ≤ 2 the series

∞∑
n=0

(
n1− 1

k pn
PnPn−1

)k{ n∑
j=1

p2
n−j

(
Pn

pn
− Pn−j

pn−j

)2

∣cj∣2
} k

2

converges, then the orthogonal series
∞∑
n=0

cn'n(x)

is summable ∣N, p∣k almost everywhere.

Remark 3.5. We note that:
1. If pn = 1 for all values of n , then ∣N, p∣k summability reduces to

∣C, 1∣k summability
2. If k = 1 and pn = 1/(n+ 1) ,then ∣N, p∣k is equivalent to ∣R, log n, 1∣

summability.

Corollary 3.6. If for 1 ≤ k ≤ 2 the series

∞∑
n=0

(
n1− 1

k qn
QnQn−1

)k{ n∑
j=1

Q2
j−1∣cj∣2

} k
2
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converges, then the orthogonal series
∞∑
n=0

cn'n(x)

is summable ∣R, q∣k almost everywhere.
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