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Abstract

In this study we apply a general theorem on convergence of numerical
positive series in order to construct a hierarchy of the specific tests intimately
related with Cauchy’s test. This chain of the tests starts with simpler criteria,
which have a smaller application area, and extends to more sophisticated tests,
which can be used more frequently. We also provide some examples to illustrate
how these test works and to clarify their relation with the set of the tests based on
Kummer’s theorem.
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1. Introduction

The known fact on inexistence of a universal test of
convergence/divergence, which would work for all kind of numerical series [6, 7],
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leads to necessity to establish hierarchies of tests with systematic refinement, in
such a way that each subsequent test of the constructed family is applicable to a
larger range of series than its predecessor. Following other works on
systematization of series tests, like the Kummer approach for positive series [3, 4,
7] or the chain of the Ermakov tests for positive monotone series [4, 7, 8], in this
study we consider a hierarchy of the tests closely related to famous Cauchy’s test
[5, 10, 11]. This hierarchy was studied in [4] where a general approach to
generation of the chain of tests starting from Cauchy’s test was proposed and two
initial tests of this chain were formulated, one of which with a partial proof. In
what follows we will refer to this chain of tests as the Cauchy hierarchy of tests.
In this report, applying the original idea of [4], we provide the formulation and
complete proof of the first three tests of the considered hierarchy. Using this
systematization, we clarify the rationale behind the construction of the considered
family of tests, the principal points of the proofs, and the form of infinite
extension of this chain of tests. Also we perform a comparison of the Cauchy
hierarchy with that of Kummer, and show some examples of series whose
behavior can be determined by applying the tests of the considered chain.

2. Revision of some basic results

In this section we present a brief list of the results, which we will use in the
next sections. These results can be found in classic books of analysis and calculus
(e.g., [6, 10, 11]).

Definition. A series Zan is called convergent if there exists a finite limit
of the partial sums of this series. Otherwise, a series is called divergent.

+00
Remark. To simplify notation we will use Zan for a series Zan ,
n=p
peN.

Necessary condition of convergence (Divergence test). If a series Zan IS
convergent, then its general term a, approaches zeroas n — .

In this study, only the series of positive terms are considered, that is, the
series Zan with a, >0, n=p,p+1.... We will refer to such series as

positive series. The following two results hold for positive series.
Comparison test. Suppose that Zan and an are positive series with

O<a, <b,,n=p,p+1...1If an Is convergent then Zan is also convergent.
Equivalently, if Zan is divergent, then an is also divergent.

Integral test. Suppose that Zan IS a positive series. If there exists a
function f(x) defined on [p,+0) such as it is continuous and decreasing on this
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interval, and f(n)=a,, Vvn, then the series Zan is convergent if, and only if,
+00
the integral I f (x)dx is convergent.

p
Let us recall also I'Hospital's rule and some properties of the upper and
lower limits that will be frequently used.

I'Hospital's rule. Suppose f(x) and g(x) are differentiable functions and
g'(x)=0 in a deleted neighborhood of the point a. Suppose also that
limf(x) =limg(x)=0, or limf(x)=400 and limg(x)=40. Under these

conditions, if the limit Iimw exists (finite or infinite), then the limit Iimw
x>a g (X) x—a g(x)
also exists and is equal to the former.

In what follows we use the symbols ann and limx, to denote the upper

N—c0 n—w

and lower limits of a sequence {x,} _,-

Properties of upper and lower limits.
1. Let {x,} _, be a sequence. Then limx, =a if, and only if,

n—owo

”ﬂ(_xn) = —-a.

2. Let {x,} _, be asequence with limx, = a and {y,} , be a sequence
with limy, =b. Then  lim(x,+y,)=a+b. If additionally b>0, then

lim(x,-y,)=a-b and lim(x,/y,)=a/b. Similar properties are also true for

lower limits.

Let us introduce the following notations, which will be used in the next
sections:

D, =—; 1)

ann-[a” - J; (2)
an+1

anlnn-[n-( a. —J—l]; ©)
a‘n+l

| L(l-anij; 4)




1850 L. Bourchtein, A. Bourchtein, G. Nornberg and C. Venzke

g —Inn {l (1—anﬁj—1}: Inn 1, _q). (5)

Inlnn| Inn

1
L= Inlnn Inn | n -(1—ann)—l 4l Inlnn {‘]n_l}' ©)
InIninn |InInn| Inn InIninn

The first three quantities can be used to formulate the following tests for
positive series.
d’Alembert’s test (Ratio test).

1)If limD, >1,then ) a  converges;

n—oo

2) If limD, <1, then > a, diverges.

n—oo

Raabe’s test.
1) If lim R, >1, then Zan converges;

n—oo

2) If limR, <1, then > a, diverges.

N—o0

Bertrand’s test.
1) If lim B, > 1, then Zan converges;

n— o

2) If limB, < 1,then > a, diverges.

nN—o0

These tests can be derived from the general result on construction of the
tests, first introduced by Kummer [4,7]. For this reason they belong to the
Kummer hierarchy of refining tests [3, 4, 7]. General Kummer’s theorem is
presented below.

Kummer’s theorem. Let Zan be a positive series. Consider
K,=d,"-D, —d,,, ", where D, is defined in (1) and > d, is a divergent

positive series. In this case:
1) If limK, >0,then > a, converges;

n—o0

2) If limK,, <0, then > a, diverges.

n—o0

There exists an interesting result that under certain condition all the tests of
the Kummer hierarchy do not work. This result is presented below (see [3, 4] for
details).

Proposition. If lim D, >1>limD,, where D, is given in (1), then the

n—o0 nN—o0
tests of the Kummer refining chain, that is, the tests obtained by using d, =1,
1/n, 1/(nInn), 1/(ninnininn), etc. in Kummer’s theorem (the first three of

these tests are, respectively, d’Alembert’s, Raabe’s and Bertrand’s tests), do not
provide any conclusion on the series convergence/divergence.
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Remark. In the case limR, >1> limR,, or limB, >1> lim B, , etc., the

n—o0 n—o N—0 n—o0

result of the above Proposition holds.

3. Cauchy’s test

In this section we present different forms of famous Cauchy’s test, which
can be found in textbooks of calculus and analysis (e.g. [6, 7, 10]).

Cauchy’s test (Root test) in the upper/lower limit form. Let Zan be a
positive series. Denote limy/a, = C . In this case:

n—oo

1) If C <1, then > a, converges;
2)1f C >1,then Y a, diverges.
Remark 1. Note that if limg/a, =1, then Cauchy’s test is inconclusive both

n—oo

1 1
for lima,» =1 and lima  <1. In fact, in the first case, for both the series

n—o n—oo
>1/n and »'1/n?, one has limy/a, =1, however the former series diverges
Nn—o0
1
whereas the latter converges. In the case lima,n <1, we can consider the

n—oo
following two series. The first series is convergent:

1 1 1 1 1
I+ -+ s+ 5+t — 5+ +
2 3 2 (2n -1) 2
with a,,, = 1/(2n -1)% and a,, = 1/2", so that:
1 1 -2In(2n-1)
n=lima,, j2n1 = lime 2t =1;

—> n—ow

lim
n%wan
. L . S 1
lima,n = lima,,2» = — <1.

n—o n—co A2

The second series is divergent:

1 1 1 1
I+ -+ + 5+ 4 +—
2 3 2 2n-1 2"
with a,, ; =1/(2n-1) and a,, = 1/2", so that:
- 1 1 —In(2n-1)
limann =lima,, ;o1 = lime 2! =1;

[

i L 1 1
nl_)_nlann = nmaZnZH = ﬁ <1.
Remark 2. The most know form of Cauchy’s test usually presented in
calculus textbooks uses the general limits and represents a particular case of the
above formulation.
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Remark 3. Another version of Cauchy’s test can be formulated in the form
without limits as follows: for a, > 0, ®/a, =C,,

1) If there exist n,eN and geR, 0<q<1, such that
C, <g, Vn>n, neN,then > a converges;

2) If there exists n, e N such that C, >1, ¥vn>n,, ne N, then
> a, diverges.

The proof of this statement is similar to the presented above (e.g. [5, 6, 7]).

4. Relation between Cauchy’s test and the Kummer hierarchy

There exists an interesting relation between Cauchy’s and d’Alembert’s
tests. A study of this relation becomes simpler if d’Alembert’s test is reformulated
in the equivalent form using the ratio inverted with respectto D, in (1) (see [5, 6,

10]):
d’Alembert’s test. Let Zan be a positive series.

1) If Tim 204 < 1, then D a, converges;

nN—o a
n

2) If lim 2% 5 1, then > a, diverges.

now A,

The following proposition connects the last formulation of d’Alembert’s test
with Cauchy’s test (see [6, 7, 10] for details).
Proposition. Let {a, } be a sequence of positive numbers. Then

a a,
lim —+ < limy/a, < I|mn a, < lim ot (7)

n—w a n—o n—o an
It follows from this Proposition that whenever d’Alembert’s test is
applicable for a chosen series, Cauchy’s test is too. In fact, denoting
C=limya,, we have: if Tim2™ <1, then C <lim2»t <1; and if

n—oo n—o0 a n—oo a

a,,
lim —L > 1,then 1 < lim n+l<I|m”a <C.

oo d, nowo A n—oo

Remark. Obviously, the same relation between Cauchy’s and d’Alembert’s
tests remains if the latter is formulated using the ratio D, .

On the other hand, an applicability of Cauchy’s test does not imply an
applicability of d’Alembert’s test, which can be seen using the following
examples.

Example 1. Analyze the behavior of the series > 29" .

n=1
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Notice that a,, =2"*" and a,,,, = 2°*". Therefore:

: : 1 : —
limD, =limD,, :E<1<8= limD,, =limD_,
n—oo nN—oo n—o0 n—oo
and consequently, d’Alembert’s test is inconclusive. However, it is simple to
verify convergence by applying Cauchy’s test:

. N G R Vi

limya, =lim2 " =lim2 " =E<1'

nN—oo nN—oo n—oo

Example 2. Analyze the behavior of the series > 2" " .
n=1
Analogously to the previous example, d’Alembert’s test does not work:

. . 1 . =
imD, =limD,, ==<1<2 =1limD,, , =1limD,.
now n—ow 8 n—o n—o
Nevertheless, Cauchy’s test readily reveals divergence of the series:
n—(-1)" GO

e
limy/a, =lim2 » =lim2 ‘"

n—o0 n—o0 n—o0

]:2>1.

Thus, Cauchy’s test has a wider scope: whenever d’Alembert’s test is
working, Cauchy’s test is too, but the inverse statement is not true.

Furthermore, for the last two series the following inequality holds
limD, >1>IlimD,, (8)

N—>0 n—»o

implying, due to the Proposition in section 2, that all the tests of the Kummer
hierarchy do not work in this case (see details in [3]). It does not seem to be an
evident result, because quite sophisticated tests in the Kummer chain can be
constructed using the general terms 1/n, 1/(ninn), 1/(nInnin(Inn)), etc., of the

divergent series, which at each next step approximate closer and closer the general
term 1/n*, 4 >1 of the convergent series. Nevertheless even quite sophisticated

tests of the Kummer chain are inconclusive with respect to the series in the last
two examples.
In general, the tests of the Kummer hierarchy fail in two cases:

1) when both the upper and lower limit of D, is equal 1, or when it happens
for any subsequent quantity (R, B,, etc.);

2) when evaluation (8) takes place, or when it happens for any subsequent
quantity (R, B,, etc.);

Notice that if the condition 1) occurs, then Cauchy’s test is also
inconclusive, because it follows from inequalities (7) that in this case

lima/a, =limy/a, =limg/a, =1.

n—o n—o0 n—oo
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5. A generalization of Cauchy’s test

In this section we introduce the basic theorem used subsequently to
construct a chain of refining tests starting from Cauchy’s test.

We start with an auxiliary proposition used to proof the basic theorem. A
similar proposition can be found in [4], but our version contains less suppositions
still providing the same result, and it is presented below with complete proof.

Proposition. If ZF'(n) is a divergent series, where F(x) >0, F'(x)>0

F'(n)
[Fm)°

and F'(x) is decreasing, then the series Z converges for p>1 and

diverges for p <1.
Proof.

First, notice that if ZF'(n) diverges, then the integral jF’(x)dx also
diverges by the Integral test, and besides, the condition F'(x) >0 implies in
[F'(vydv=F(x)-F(a) >+,

that is, F(x) — +oo0. Notice also that the conditions F'(x)>0 and F(x)>0
imply F (X)p >0.
[F(0]

Let us split the proof in two cases: p<0 e p >0, noting that in the case
p =0 the statement of the Proposition is trivial.
1) Case p<0. Since F(x) > +o, there exists n, e N such that
F'(n)

[F()J°

ZF’(n) is a divergent series, according to the comparison test the series

F(n) >1, ¥Vn > n,, that means that [F(n)] " >1 and > F’(n). Since

> F(n) is also divergent.
[F(m)
2) Case p>0. Since F'(x)>0, the function F(x) is increasing and,
respectively, [F(x)]® is decreasing. Recalling that F'(x) is decreasing
1
[FOOP
decreasing as a product of two positive decreasing functions. Therefore, we can

F'(n) . Indeed,
[F(m]°

(according to the Proposition conditions), it follows that F'(x)-

apply the Integral test for study the behavior of the series Z
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[Int]y, p=1
I F(X) I FWv dv=Ilim [—=lim{[ 1 y
[F(X) X%+oo [F(V) ya+oobtp Y+ tl—p ,p?fl, p>0
1-p b
Iny—Inb, p=1 +0o, 0<p<l
= lim 1 1-p _ = blﬁp
a0 -b*?) pzlLp>0 , 1
e ) p#Lp 1 P

F'(n)
[FmP

It follows from the results of 1) and 2) that the Proposition is proved.

Hence, the series )

converges for p >1 and diverges for 0 < p <1.

Using the last Proposition, we can prove the following basic theorem (a
similar result presented in [4] contains more suppositions comparing to our
version).

Theorem 1. Let ZF'(n) be a divergent series, where F(x) >0, F'(x) >0
and F'(x) is decreasing. If Zan is a positive series, then denoting
In[F'(n)/a, ]

In[F (m)]

1) If limW, >1,then > a, converges;

n—oo

=W, , the following statements hold:

2) If limW, <1, then > a, diverges.

n—oo

Proof.
1) If imW, >1, thenone canfind p>1and m € N such that for ¥n>m

n—oo

it holds W, > p >1. Considering still F(n)>1 (because F(x)>0 and
F(X) — +), we obtain for vn>m:

In{Fa't(n)} > p-In[F(m)]=In[F()]*,

F'(n) S F'(n)
. > [F(n)]°, which implies a, < Fp
F'(n)

[Fm)J

that is, Hence, Zan converges

due to comparison with the series Z , which is convergent for p>1

according to the Proposition.
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2) Inthe case limW, <1, thereexists m € N, suchthat W, <1, Vn>m,

F'(n) <F(n), thatis, a, > F'(n)

a, F(n)
. . . : F'(n)
to comparison with the divergent series Z F)
n

and consequently,

. Hence, > a, diverges due

Using Theorem 1 it is possible to construct the chain of refining tests (the
Cauchy hierarchy of tests) by choosing different functions F(x). In what follows

we present the first three tests of this hierarchy.
Using F(x) = x in Theorem 1, we obtain the first test, formulated by Jamet

[4, 9]. Different formulations of this test in the form without limits were also
studied in [1]. The form of the test presented below is equivalent to those given in

[4], but we provide a complete proof of this test, whereas in [4] the proof is given
1
only in the case when lima,» =1.

nN—o0

: . : n 1
Test I. Consider a positive series Zan and denote |, = —(1— ann)

Inn
(see formula (4)). In this case:
1) If lim 1, >1,then ) a, converges;

n—oo

2) If lim 1, <1,then > a, diverges.

n—o
Proof.
Primarily, let us consider two simple cases when Cauchy’s test is also

1
applicable. If lima n <1, then the series E a, converges according to
n—o

Cauchy’s test, and at the same time, liml, =+c0>1, that is, the first statement of

nN—o0

1
Test | is applicable. On the other hand, if lima,n >1, then the series Zan

n—ow

diverges due to Cauchy’s test, and liml =—oc0 <1, which shows that the second

n—w

statement of Test | holds.

1
Now let us consider the case when lima,» =1. Under this condition, we

n—oo

will apply Theorem 1. First, notice that F(x) = x >0, vx>0; F'(xX)=1>0

and the derivative can be considered as a (non-strictly) decreasing function.

Besides, ZF'(n) = 21 is the divergent series. Under these conditions, it follows

from Theorem 1 that

F'(n)

W - a, _ Ina,
InF(n) Inn

In

: ©9)



Hierarchy of the convergence tests 1857

and therefore, we have convergence of Zan if limW,_ >1, and divergence if

n—oo

limw, <1.

n—oo

To connect the last conditions with the statements of Test I, we should show
relation between the quantities W, and 1. Notice first that the following chain of

the inequalities holds:

l+Inx<x<

L . Vvx e (0,e). (10)

1
Choosing x =a,n, with a, € (0,e"), and applying (10), we obtain
Ina, 1 1 1

< r=
T na
n 1-Inan 1—-—' %
n

After simple transformations the last formula can be rewritten as follows:
Ina 1 n L Ina
——". < (1—annj=|ns— -, (11)
Inn

1+ =1+Ina

Inn ,_Ina, ~Inn
n
or, using (9),
1
Wn'—— nSWn- (12)
Ina,
1-
n
: . 1 . Ina : :
Since lima,n =1, we have lim—— = 0. In this case, it follows form the
n—o n—oo n

Squeeze Theorem that lim1_ =limW_ and liml_ =limW, . This concludes the

n—oo n—o nN—oo nN—o

1
proof for the case lima,n =1.

n—w

Notice that there is no loss of generality in considering a, € (0,e"), since
for a, > e", the series Zan diverges by comparison with the series Ze” , and
in this case the upper limit of I, is equal to — o, so that we have the result in
agreement with Test I.

1
Finally, let us see what happens when the limit of a,n does not exist.

JE— 1 JE—
Consider first that lima,n # 1. In this case, the condition liml <1 implies

n—oo n—oo

R 1 — 1 —
lima,n >1 (for if lima,n <1 then lim| 6 =+oo, that contradicts the condition

n—o n—o nN—oo

lim I, <1), and consequently, the series diverges. Similarly, it follows from the

n—o

JE— 1
condition lim1, >1 that lima,n <1, and the series converges. Hence, the

n—o n—o0
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R 1
statements of Test | are true. Consider now that lima,n =1. In this case, we

n—o
1 JE—
have lima,n <1, thatimplies lim I, = +oo, and in this situation there is nothing

n— oo n—oo

to prove with respect to the second statement of Test I. If, under the last condition,
it occurs that lim I, > 1, then it readily follows from the right inequality in (12)

n— oo

that limW,_ > 1, which implies the series convergence.

n—oo

Remark 1. It follows from the above proof that Test | can be applied when
- 1 1
lima,n =1, and, in particular, when lima,n =1, that is, under conditions when

n—oow n—o
Cauchy’s test does not work.

Remark 2. Evidently, if Cauchy’s test is applicable, there is no necessity to
consider more sophisticated tests. Nevertheless, even in such situation, there is no
problem in considering also Test I.

Let us choose now the second function F(x) =Inx to be used in Theorem
1. The respective test was formulated in [4], albeit without a proof.

Test J. Consider a positive series > a,, and denote J, = I":n [, —1]
ninn

(see formula (5)). In this case:
1) If lim J, > 1, then ) a, converges;

n—o

2) If lim J, <1, then > a, diverges.

Proof.
We show validity of the above statements following the scheme of the proof
for Test I.

Primarily, if lim 1 > 1, then the series Zan converges according to Test |

n—o

and, at the same time, lim J, = 400 > 1, that is, the first statement holds. On the

n—o

other hand, if lim 1 <1, then Zan diverges by Test I, and limJ, = —o <1,

n—o n—oo

that shows that the second statement is applicable.
To study the case when lim I, =1 we apply Theorem 1. First, notice that

F(xX)=Inx>0, vx>1, F'(xX)=1/x>0, Vx>0, and F'(x) is a decreasing
function for x > 0. Besides, Z F'(n)= Zl/n is a divergent series. Under these
conditions, it follows from Theorem 1 that

F'(n)

3 a, _ Ina, Inn
" InF(n)  Inlnn Ininn’

In

(13)

n
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and consequently, we obtain convergence of Zan if imW, > 1, and divergence

n—oo
if imW, <1.
n—oo

To determine relation between the quantities W, and J, let us consider the
following evaluations. Subtracting 1 from each side of (11) and multiplying the

result by , We obtain:
Inlnn
_nn_na, 1 _ Inn (I —1)=J <- Ina, Inn | (14)
Ininn  Inlnn 1_Inan Inlnn Ininn Ininn
n
Using (13), we rewrite (14) in the form:
Ina,
n Inan ' n S‘]nSWn' (15)
Ininn Ina,
1-—
n

Now let us investigate the behavior of the second term in the left-hand side

n—o

1
of (15). Since lim 1, =1, we can represent |, = Il(l - annj =1+ «a,, Where
nn

1 Inn
n

a, — 0. Therefore, l-an=—— (1 +a,), and consequently,

n—ow

n
. 1 . Inn . 1 .
liml-an|=Ilim—@1+¢,) =0. Hence, lim ann =1 (which means that
n—o0 n—oo n n—ow
Cauchy’s test fails), or, equivalently,

. _Ina

lim

n—o0 n

n - 0. (16)

:\H

=1-x, that is,

n

. Inn
Denoting x, =— @+ «,), we can rewrite a,
n

Ina, =In(l-x,), and according to the above results limx, = 0. Hence,

0<x, <1, Vn>ny, n, € N. Inthis way, it is possible to expand In(1 — x,) in
the Taylor series:

Ina, = XX . 1(Inn “
- " = In(l-x,))= kzll—=— k[—(1 )j.

k
Consequently, we obtain

Ina, Ina, n -1 Inn - K
= ) :_Z an) :

Inn n Inn — k

k-1
Noting that Iim(ln—nj L+a) =0 Vk>1 keN, and the last series
n—oo n

converges uniformly, we conclude that
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Ina,

lim I =-1. a7
n—oo n n
Additionally, by applying I'Hospital's rule, it is simple to arrive to
2
lim ANX° _ o (18)
x>+o X In In x

Applying now the auxiliary limits (16), (17), (18) for evaluation of the
second term in the left-hand side of (15), we obtain:

Ina, )
- 2
lim Ina,  p _lim Ina,}" (Inn)® 1 0. (19)
e Ininn 4 _Ina, = Inn ) nininn , _Ina,
n n
Hence, it follows from (15) that limJ, = limW, and limJ,6 = limW,. This

concludes the proof for the case lim 1, =1.

n—o

Finally, let us see what happens when the limit of |  does not exist. If
liml, >1 , then limJ, =+c and, at the same time, the series converges

n—oo n—o

according to Test I, which confirms the first statement of Test J. Analogously, if
lim 1, <1 then we arrive to validity of the second statement. Consider now that

nN—oo

liml <1 and limI, >1. Notice that if liml <1< limI_, then we have

n—o N—oo n— oo n—oo

limJ, = - and lim J, = +oo, and consequently, there is nothing to prove in

n—o n—o

Test J. Hence, it remains to analyze two cases: 1) lim I,>1and liml, =1;and

n—w n—o

2) liml, =1and liml_ <1 . In the first case, we have limJ_ =+ and the

n—oo n—ow n—oo

second statement of Test J is out of consideration. On the other hand, if
lim J, > 1, then it follows from the right inequality in (15) that limW, >1, and

n—ow N—oo

consequently, the series converges by Theorem 1.
In the second case, we have lim J, = —oo, showing that the first statement

n—oo

of Test J is out of consideration. Let us show that the second statement is true.
Notice that without loss of generality we can consider I, > 0 starting from some

index n, for if it would not be so, then for any n would exist k, such that I, <0,
1

that is, a, k =1, which means that a, > 1, and the last implies divergence of

the series > a, . Hence, we can consider 1, > 0 and together with lim I, =1 it

n—o

ensures that for Ve > 0, exists n, € N, such that for all n > n, the following

1
inequality holds: 0 < I, <1+ &. Therefore, 1 - In—n(l +¢&) <a,n <1, that
n
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1
implies the existence of the limit lima,» =1 (the last being equivalent to (16)),

n—ow

and also the validity of the inequality Ir(l—ln—n(1+ g)] < In_an < 0. Therefore,
n n

no1 —(1+¢)

In (1—m—n(1+ g)} inn e <I|n_an <0, where the first term approaches — (1 + ¢)
n nn

. Ina, . . . . .
as n — oo; that is, i " is a limited sequence. Using the last result together with
nn

limits (16) and (18), we conclude that formula (19) is true in this case. Hence, it
follows from (15) that limJ, = limW_, and in the case limJ, <1, we have

n—o n—o n—o
divergence of the series by Theorem 1.
Remark. The above proof shows that Test J is a generalization of Test I,
that is, if Test | works, then Test J also does, and the latter can be applicable even
in situations when Test | does not work (see respective examples in section 7).

Choosing the third function F(x) = InIn x for Theorem 1, we arrive to the
following test.

Test L. Consider a positive series »_a, , and denote L, = Ilr: Irlm (J, -1
nininn

(see formula (6)). In this case:
1)If lim L, >1,then ) a, converges;

n—o

2) If lim L, <1, then > a, diverges.

Proof.
We follow below the scheme of the two preceding proofs.

Primarily, if limJ_ >1, then the series Zan converges by Test J and, at

nN—oo

the same time, limL, =+ >1, that is, the first statement in Test L is applicable.

n—oo

On the other hand, if limJ, <1, then Zan diverges by Test J, and

n—oo

limL, =—w <1, showing that the second statement holds.

n—oo

Consider now the case when limJ =1. Notice that

F(X)=InInx >0, ¥Yx>e, F'(xX)=1/(xInx)>0, vx>1, and F'(x) is a
decreasing function for x > 1. Besides, ZF'(n) = Zl/(nln n) is a divergent
series. Under these conditions, defining

F'(n)

B a, _ Ina Inn Inlnn
" In F(n) " Ininlnn Inlnlnn  Ininlnn’

In

(20)
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we invoke Theorem 1 to conclude that Zan converges if limw, >1, and

n—oo

diverges if limW,_ <1.

nN—o0

As before, we perform some transformations to establish relations between
W_ and L, . Subtracting 1 from each side of (14) and multiplying the result by

(InInn)/(InInInn), and using additionally (20), we obtain

Ina,
- na, ~_ n <L, <W_ . (21)
Inlninn Ina,
1-—
n
Let us analyze the behavior of the second term in the left-hand side of (21).
Inn

Since limJ =1, we can represent J, =

(I,-) =1+ ¢c,, where
n—o Inlnn

Inlnn
a, > 0.  Therefore, I, =

I l+ea,)+1, and noticing that
nN—o0 n n

lim Inlnn(1+an) =0, we obtain liml, =1. Recalling that in this case

n— |nn n—o

formulas (16) and (17) are satisfied, and employing also the following auxiliary
limit (which can be readily calculated by applying I’Hospital’s rule)

2
" o 22)
x>+ X InInIn x
we arrive to
Ina, )
Ina . (Ina 2
im LS o (L I C1L1) S S (23)
> Inininn 1_Inan >\ Inn ) ninininn 1_Inan
n n
Hence, it follows from (21) that lim L, = limW, and limL, = limW,. This

concludes the proof in the case when limJ, =1.

nN—oo

Finally, the study of the case when the limit of J_, does not exist can be
performed in the same way as in the proof of Test J. If limJ 6 >1 then

n—oo

limL, =+ and, at the same time, the series converges, which agrees with the

nN—o0

first statement of Test L. Analogously, if limJ, <1 then we arrive to the validity
n—o0

of the second statement. If lim J, <1 < lim J_, then there is nothing to prove. In

n—ow n—o

situation when limJ, >1 and limJ, =1 , the second statement is out of

n—oo N—

consideration, and the first statement follows from the right inequality in (21),
noting that if lim L, > 1 then limW,_ > 1 . In the last situation, when limJ_ =1

n—ow n—o n—o
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and limJ, <1, the first statement is out of consideration, and the validity of the

n—oo

second can be established by noting that from the condition WJH =1 it follows

n—oo

that Wln =1, and subsequently, employing the same reasoning as that used in

nN—oo

the last part of the proof of Test J, we conclude that limL, = limW. .

Remark 1. The above proof shows that Test L has a wider scope than Test
J.

Remark 2. Using a similar approach as in formulation of Tests I, J, and L,
other even finer tests can be constructed by choosing the functions
F(xX) =Inininx, F(x)=InInIniInx, etc. In this way, an infinite chain of

refining tests related to Cauchy’s test will be generated. It is worth to note that an
analysis of each test in the Cauchy hierarchy can be related to behavior of certain
expression from preceding test, and the proof of subsequent test can be simplified
by employing certain considerations in the proof of the preceding test.

6. Restrictions of the constructed hierarchy

In the proofs of Tests I, J and L, we see that the results for the subsequent
test were derived by using information on the limit of the respective expression in
the preceding test. (applying the behavior of the expression in the preceding test.)
So it is natural to ask what happens with subsequent tests if the preceding one

fails. Let us consider the situation when lim I, <1 < lim I (that is, Test | does

n—ow n—oo

not work). In this case one can readily note that the limits of the expression J,
will obey the same evaluation: lim J_ <1 < lim J_, implying that Test J will be
n—oo

n—oo

also inconclusive. Furthermore, from the last inequalities it follows that for the
next expression L, we have limL, = -0 <1le limL, =+ >1,thatis, Test L

n—ow n—o

does not work either. And the same is true for all the tests of the considered
hierarchy starting from Test I.
It can be shown that similar situation occurs if this kind of inequality will

arise in more refined tests. For example, if lim J, <1 < lim J_, then all the tests

n— oo n—o

of the Cauchy hierarchy starting from Test J will fail; if limL, <1< lim L, , then

n—oo n—o0
all the tests starting from Test L will fail, etc. Hence, if such kind of inequality
will arise for a certain series, then refinement of tests in the Cauchy hierarchy will
not help in this situation. However, if it occurs that the general limit of the
respective expression in some test is equal to 1 (for example, lim 1, =1), then it
nN—oo

is worth to try an application of finer tests in the Cauchy hierarchy until certain
conclusion about series convergence/divergence will be obtained, or until the
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above undetermined and unsolved (within the considered chain) situation will
occur.

We can note that the above behavior of the Cauchy hierarchy is quite similar
to the situation described in the Proposition of section 2, where inequality (8) ( or
a similar one with one of the quantities R, B, etc.) implies that all the tests of

the Kummer hierarchy are inconclusive.

7. Applications to some examples

To illustrate the considered tests let us analyze some examples.

Example 1. Investigate the behavior of the series zi

“~Inn
: _In(Inx I T L.
since fim 1NINX) _ 0,we have lima,n = lime™"™™" =lime " =1,
X —> +00 X n—oo nN—oo n—oo
that is, Cauchy’s test fails. Let us try Test I:
1
= —Inlnn/n
. .n 1 \n . e -1 . n Inlnn
liml, =lim—|1-|—| |[=lim -lim : =1.-0=0.
n—oo > |nn Inn noo —Inlnn/n no<lnn n

. . .ef-1 . InInx

Here two simple limits were used: lim =1 and lim = 0. Therefore,
x>0 X x—=+0 N X
Test | shows the divergence of the series.
Example 2. Investigate  the  behavior  of  the  series

+00 n
Z(l_ Inn klnlnnj KeR.
n=2 n n

For Cauchy’s test and Test | we have, respectively:
nma?’znn{i—ﬂlﬂ—k"”””jzl

nN—oo nN—oo n n

and

. . n Inn Kkinlnn . kinlnn
liml, =lim—|1-1+ + = lim| 1+ =1.
n—ow n—- |nn n n n—oow |nn

That is, both tests are inconclusive. However, applying Test J, we find:
Sy AYRLLLLIN S} T LN PO S LI T
n—>oo n> Inlnn n>o [ninn Inn n—>oo
Therefore, if k > 1 then the series converges, and if k <1 then it diverges. For
k =1 Test J does not work, so let us apply Test L. Since in this case J, =1, we

obtain:

“q = tim MM g g s im0 - o<1,

. ) Inlnn
limL, = Ilm—[Jn _
n—o Ininlnn n—>o

n—>o n>< [nninn
that implies divergence of the series.
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Remark. The series with the general terms
@-(nn)/n—=(Inlnn)/n—-k(InInInn)/n)",
@—(@nn)/n—=(nInn)/n—=(nIninn)/n—-k(nInInlnn)/n)",
etc. can be analyzed in a similar way, employing more refined tests of the
considered hierarchy.

oo Intnn \"
Example 3. Analyze the behavior of the series Z( _InTn - nn ] ,a>0.
n=3

. . Inlnn , .
Since lim = 0, both Cauchy’s test and Test I fail:
n—o |nn
] ] |nn Inlnn
lima!" = Ilm(l——~a =1,
n—oo N— o0 n
Ininn Inlnn
. . n Inn .
liml, =Ilim—.-—-a ™ =lma"" =1.
n—oo n—o |n n n n—ow
Ininn

I — 0", we obtain:
n n n—oo

On the other hand, changing the variable x =

. _Inn | _nMhe a1 .
limJ, = lim amhn —1|= lim =lIna-lima* =Ina,
n— oo n—=» |nlnn x—0* X x—0"

that implies, according to Test J, that the series converges for a > e, and diverges
for a < e. To analyze the case a = e, we can use Test L. In fact,

, __Ininn | Inn e'”ln'”n" AT L e'”,n'—”rf ,_Ininn
" Inlnlnn|Inlnn InInInn Inn |

Then, applying limit and changing the variable x =Inn — + o, we obtain:

n—oo

Inx

GT 1 Inx
i Inx/x
. . . (e —1)~ 1-Inx)-Inx
limL, = lim — X — im ( )
N—>o0 X—>+00 Inln x X—>+00 1-Inx-Inlnx
X
Inx/x 2 2
et -1 . In"x-(I-Inx) . In"x . 1-YInx

=0-1=0.

= lim - lim = lim m
x>0 Inx/x  x>ox(I-Inx-Inlnx) x>toxInlnx x>+=1-1/(Inx-Inlnx)

Hence, the series is convergent if a > e, and divergentif a < e.
Remark. The series with the general terms

(L= (Inn)/n = ((Inlnn)/n) - atnminm

(L—(@nn)/n—=(ninny/n—((ninlnn)/n).a®nmnonnnnf
etc. can be analyzed in a similar way using more sophisticated tests of the chain.
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Example 4. Analyze the behavior of the series

+00 n

2(1_ Inn _Ininn cos? EJ

s n n n

It can be seen that Test J does not work in this case:

. . Inn Inlnn 1 . 1
limJ, = lim 1+ cos’ = —1; = limcos® = = 1.
n—oo n>»[nlnn Inn n n—o n

However, Test L shows the divergence of the series. Indeed, using auxiliary limit

. Inln x 1 . 1 . Ininx 1 . 1
Ilm—-—2 = lim - lim > = lim - lim 5 =0
x>o\ Inlnlnx X o nlnlnx x>= X x>o [nInln x x>* 2x°In x
we obtain
Inlnn Inlnn , 1
limL, = lim [3, 1] = lim cos? = —
n>o Inlnlnn n>o Inlnlnn n
2
. InIlnn 1 Inlnn 1 . [ sin(l/n
—lim———sin’ = = —lim| —— -lim (L/n) =0<1.
< [ninlnn n =\ Inlnlnn n? ) n= @/n)

Example 5. Analyze the series

+Z.c(l—ln—n—InlnnncosZl (a+b( 1)" )j ,a,b>0.

n=3 n
Notice first that
)= Inn [ Inlnn .1 (a+b( ") -1 :coszl~(a+b(—1)”)-
Inlnn Inn n

It leads to conclusion that the general limit of J, does not exists. Then let us

analyze the upper and lower limits of the above expression. Since a and b are not
negative, it follows readily that

limJ, =a-b; limJ, =a+b.
n—w nN— o

Therefore, the series converges when a —b > 1, and it diverges when a +b < 1.

Let us consider some specific values:
1)ifa=3, b=1,then limJ, =2 > 1, that implies convergence;

n—oo

2) if a=1/2, b=1/3, then limJ, =5/6 <1, that is, the series

diverges;
3)ifa=1 b=0 wehave limJ, =1, and Test J is inconclusive, so that

n—oo
we should try to apply finer tests of the considered hierarchy; in fact, in this
case we come back to the previous example, and consequently, Test L
shows divergence;
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4)if a=1 b=1,then limJ, =0<1< 2= limJ_, which means that

n—owo n—wx
there is no reason to apply more refined tests of this hierarchy, because all
the subsequent tests will be inconclusive.

Example 6. Investigate the series

n
Z[lm—n-(a-[lﬂinz Ir;lnn]+b-sinnTﬂJJ ,a,b>0.
n

n=2 nn

For this series lima¥" =1 , that is, Cauchy’s test does not work. So let us

N—o0
try Test I. Denoting t,, = Ir:lnn , We have
nn
n (Inn . . n . . n
l,=—o —-(a-(l+sm2tn)+b-sm—”j :a-(1+sm2tn)+b-sm—”,

Inn{ n 4 4

and then, liml =liml, ,=a-b and liml =Iliml, ,=a+bh.
n—w n—o n—o n—o

Therefore, the series converges when a —b > 1, and diverges when a +b <1.
If a+b=1, then lim 1, =1, and if a—b=1, then limI_ =1, and in both

nN—a0 n—o

cases Test | is inconclusive. For example, choosing, a=b=1/2, we have
liml,=0<1and liml, =1. On the other hand, when a =2 and b =1, it

n—o nN—o

follows that lim I, =1 and lim I = 3 > 1. Therefore Test I fails in both cases.

n—ow n—oo

Let us pass to Test J. We have
Inn . . Nnr
J, = a-\l+sin“t J+b-sin—-1/. 24
" Inlnn( ( ”) 4 ) (24)
Hence, for a =b =1/2, we obtain
~ Inn( 11, n;zj Inn( 11, E] 1 Inn sinztnt2

= ——+—S|n2tn+lsin— = 11 z,
Inlnn{ 2 2 2 4) Inlnn\ 2 2 4) 2InInn ¢?

Notice that the upper limit of the first term in the right-hand side is zero (by
choosing n=8k —6) and the limit of the second term is 1/2 (recalling that
Inlnn

Inn
divergent when a=b=1/2 .
In the case a = 2 and b =1, expression (24) assumes the form

n

t2

n

). Therefore, limJ, =1/2<1, and Test J shows that the series is
n—0

Inn : . n Inn . n Inn sin®t
J, = 2(1+S|n2tn)+sm—”—1 = 1+sin—2 |+2 Ity
Ininn 4 Inlnn 4 Inlnn ¢
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The lower limit of the first term in the right-hand side is zero (choosing
n=8k —2) and the limit of the second is 2. Therefore, limJ,=2>1, and by

n—o0
Test J, the series is convergentwhen a =2 and b =1 .
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