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Abstract 
 
In this study we apply a general theorem on convergence of numerical 

positive series in order to construct a hierarchy of the specific tests intimately 
related with Cauchy’s test. This chain of the tests starts with simpler criteria, 
which have a smaller application area, and extends to more sophisticated tests, 
which can be used more frequently. We also provide some examples to illustrate 
how these test works and to clarify their relation with the set of the tests based on 
Kummer’s theorem.      
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1. Introduction 

 
The known fact on inexistence of a universal test of 

convergence/divergence, which would work for all kind of numerical series [6, 7],  
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leads to necessity to establish hierarchies of tests with systematic refinement, in 
such a way that each subsequent test of the constructed family is applicable to a 
larger range of series than its predecessor. Following other works on 
systematization of series tests, like the Kummer approach for positive series [3, 4, 
7] or the chain of the Ermakov tests for positive monotone series [4, 7, 8], in this 
study we consider a hierarchy of the tests closely related to famous Cauchy’s test 
[5, 10, 11]. This hierarchy was studied in [4] where a general approach to 
generation of the chain of tests starting from Cauchy’s test was proposed and two 
initial tests of this chain were formulated, one of which with a partial proof. In 
what follows we will refer to this chain of tests as the Cauchy hierarchy of tests. 
In this report, applying the original idea of [4], we provide the formulation and 
complete proof of the first three tests of the considered hierarchy. Using this 
systematization, we clarify the rationale behind the construction of the considered 
family of tests, the principal points of the proofs, and the form of infinite 
extension of this chain of tests. Also we perform a comparison of the Cauchy 
hierarchy with that of Kummer, and show some examples of series whose 
behavior can be determined by applying the tests of the considered chain.             

 
 

2. Revision of some basic results 
 
In this section we present a brief list of the results, which we will use in the 

next sections. These results can be found in classic books of analysis and calculus 
(e.g., [6, 10, 11]). 

Definition. A series ∑ na  is called convergent if there exists a finite limit 
of the partial sums of this series. Otherwise, a series is called divergent.  

Remark. To simplify notation we will use ∑ na  for a series ∑
+∞

= pn
na , 

N∈p . 
Necessary condition of convergence (Divergence test). If a series ∑ na  is 

convergent, then its general term na  approaches zero as ∞→n . 
 
In this study, only the series of positive terms are considered, that is, the 

series ∑ na  with 0>na , K,1, += ppn . We will refer to such series as 
positive series. The following two results hold for positive series.  

Comparison test. Suppose that ∑ na  and ∑ nb  are positive series with 

nn ba ≤<0 , ...,1, += ppn . If ∑ nb  is convergent then ∑ na  is also convergent. 

Equivalently, if ∑ na  is divergent, then ∑ nb  is also divergent. 

Integral test. Suppose that ∑ na  is a positive series. If there exists a 
function )(xf  defined on ),[ +∞p  such as it is continuous and decreasing on this  
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interval, and nanf =)( , n∀ , then the series ∑ na  is convergent if, and only if, 

the integral ∫
+∞

p

dxxf )(  is convergent.  

Let us recall also l'Hospital's rule and some properties of the upper and 
lower limits that will be frequently used. 

 
 l'Hospital's rule. Suppose )(xf  and )(xg  are differentiable functions and 

0)( ≠′ xg  in a deleted neighborhood of the point a . Suppose also that 
0)(lim)(lim ==

→→
xgxf

axax
, or ±∞=

→
)(lim xf

ax
 and ±∞=

→
)(lim xg

ax
. Under these 

conditions, if the limit 
)(
)(lim

xg
xf

ax ′
′

→
 exists (finite or infinite), then the limit 

)(
)(lim

xg
xf

ax→
 

also exists and is equal to the former. 
In what follows we use the symbols nn

x
∞→

lim  and n
n

x
∞→

lim  to denote the upper 

and lower limits of a sequence { } N∈nnx . 
 
Properties of upper and lower limits.  
1. Let { } N∈nnx  be a sequence. Then axnn

=
∞→

lim  if, and only if, 

axn
n

−=−
∞→

)(lim .  

2. Let { } N∈nnx  be a sequence with axnn
=

∞→
lim  and { } N∈nny  be a sequence 

with bynn
=

∞→
lim . Then  ( ) bayx nnn

±=±
∞→

lim . If additionally 0>b , then 

( ) bayx nnn
⋅=⋅

∞→
lim   and  ( ) bayx nnn

=
∞→

lim . Similar properties are also true for 

lower limits. 
 
Let us introduce the following notations, which will be used in the next 

sections:  

1+

=
n

n
n a

aD ;                                                                (1) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

+

1
1n

n
n a

a
nR ;                                                        (2)  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅=

+

11ln
1n

n
n a

a
nnB ;                                              (3)  

⎟
⎠
⎞

⎜
⎝
⎛ −= nnn a

n
nI

1
1

ln
;                                                    (4) 
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[ ]1
lnln

ln11
lnlnln

ln 1
−=⎥⎦

⎤
⎢⎣
⎡ −⎟

⎠
⎞

⎜
⎝
⎛ −⋅= nnnn I

n
na

n
n

n
nJ ;                                    (5)         

{ }1
lnlnln

lnln111
lnlnln

ln
lnlnln

lnln 1
−=

⎭
⎬
⎫

⎩
⎨
⎧

−⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞

⎜
⎝
⎛ −⋅= nnnn J

n
na

n
n

n
n

n
nL .             (6) 

The first three quantities can be used to formulate the following tests for 
positive series.  

d’Alembert’s test (Ratio test).  
1) If 1lim >

∞→
n

n
D , then ∑ na  converges; 

2) If 1lim <
∞→ nn
D , then ∑ na  diverges. 

Raabe’s test.     
1) If 1lim >

∞→
n

n
R , then  ∑ na  converges; 

2) If 1lim <
∞→

nn
R , then ∑ na  diverges. 

Bertrand’s test.     
1) If 1lim >

∞→
n

n
B , then ∑ na  converges; 

2) If 1lim <
∞→ nn
B , then ∑ na  diverges. 

 
These tests can be derived from the general result on construction of the 

tests, first introduced by Kummer [4,7]. For this reason they belong to the 
Kummer hierarchy of refining tests [3, 4, 7]. General Kummer’s theorem is 
presented below. 

Kummer’s theorem. Let ∑ na  be a positive series. Consider 
1

1
1 −

+
− −⋅= nnnn dDdK , where nD  is defined in (1) and ∑ nd  is a divergent 

positive series. In this case:   
1) If 0lim >

∞→
n

n
K , then ∑ na  converges; 

2) If 0lim <
∞→ nn
K , then ∑ na  diverges. 

 
There exists an interesting result that under certain condition all the tests of 

the Kummer hierarchy do not work. This result is presented below (see [3, 4] for 
details).  

Proposition. If n
n

nn
DD

∞→∞→
>> lim1lim , where nD  is given in (1), then the 

tests of the Kummer refining chain, that is, the tests obtained by using 1=nd , 
n/1 , )ln/(1 nn , )lnlnln/(1 nnn , etc. in Kummer’s theorem (the first three of 

these tests are, respectively, d’Alembert’s, Raabe’s and Bertrand’s tests), do not 
provide any conclusion on the series convergence/divergence. 
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Remark. In the case n

n
nn

RR
∞→∞→

>> lim1lim , or n
n

nn
BB

∞→∞→
>> lim1lim , etc., the 

result of the above Proposition holds.  
 
 

3. Cauchy’s test  
 

In this section we present different forms of famous Cauchy’s test, which 
can be found in textbooks of calculus and analysis (e.g. [6, 7, 10]). 

Cauchy’s test (Root test) in the upper/lower limit form. Let ∑ na  be a 

positive series. Denote Can
nn
=

∞→
lim . In this case: 

1) If 1<C , then ∑ na converges;  

2) If 1>C , then ∑ na diverges. 

Remark 1. Note that if 1lim =
∞→

n
nn

a , then Cauchy’s test is inconclusive both 

for 1lim
1
=

∞→
nn

n
a  and 1lim

1
<

∞→
nn

n
a . In fact, in the first case, for both the series 

∑ n/1  and ∑ 2/1 n , one has 1lim =
∞→

n
nn

a , however the former series diverges 

whereas the latter converges.  In the case 1lim
1
<

∞→
nn

n
a , we can consider the 

following two series. The first series is convergent: 

                          KK ++
−

+++++ nn 2
1

)12(
1

2
1

3
1

2
11 222  

with 2
12 )12/(1 −=− na n  and n

na 2/12 = , so that: 

1limlimlim 12
)12ln(2

12
1

12

1
=== −

−−

∞→
−−∞→∞→

n
n

n
nnn

nnn
eaa ;   

1
2

1limlim 2
1

2

1
<==

∞→∞→
nnn

nn
n

aa . 

The second series is divergent: 

                                        KK ++
−

+++++ nn 2
1

12
1

2
1

3
1

2
11 2  

with )12/(112 −=− na n  and n
na 2/12 = , so that: 

1limlimlim 12
)12ln(

12
1

12

1
=== −

−−

∞→
−−∞→∞→

n
n

n
nnn

nnn
eaa ;   

1
2

1limlim 2
1

2

1
<==

∞→∞→
nnn

nn
n

aa . 

Remark 2. The most know form of Cauchy’s test usually presented in 
calculus textbooks uses the general limits and represents a particular case of the 
above formulation. 
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Remark 3. Another version of Cauchy’s test can be formulated in the form 

without limits as follows: for 0>na , n
n

n Ca = ,  
          1) If there exist N∈0n  and R∈q , 10 << q , such that 

N∈>∀≤ nnnqCn ,, 0 , then ∑ na converges; 

          2)  If there exists N∈0n  such that N∈>∀≥ nnnCn ,,1 0 , then 

∑ na diverges. 
          The proof of this statement is similar to the presented above (e.g. [5, 6, 7]). 

 
 

4. Relation between Cauchy’s test and the Kummer hierarchy 
 
There exists an interesting relation between Cauchy’s and d’Alembert’s 

tests. A study of this relation becomes simpler if d’Alembert’s test is reformulated 
in the equivalent form  using the ratio inverted with respect to nD  in (1) (see [5, 6, 
10]):  

d’Alembert’s test. Let ∑ na  be a positive series.  

1) If 1lim 1 <+

∞→
n

n

n a
a , then ∑ na  converges;  

2) If 1lim 1 >+

∞→ n

n

n a
a , then ∑ na  diverges. 

The following proposition connects the last formulation of d’Alembert’s test 
with  Cauchy’s test (see [6, 7, 10] for details). 

Proposition. Let { } N∈nna  be a sequence of positive numbers. Then 

≤≤
∞→

+

∞→

n
n

nn

n

n
a

a
a limlim 1

n

n

n
n

nn a
aa 1limlim +

∞→∞→
≤ .                            (7) 

It follows from this Proposition that whenever d’Alembert’s test is 
applicable for a chosen series, Cauchy’s test is too. In fact, denoting 

n
nn

aC
∞→

= lim , we have: if 1lim 1 <+

∞→
n

n

n a
a , then 1lim 1 <≤ +

∞→
n

n

n a
a

C ; and if 

1lim 1 >+

∞→ n

n

n a
a , then Ca

a
a

n
n

nn

n

n
≤≤<

∞→

+

∞→
limlim1 1 .  

Remark. Obviously, the same relation between Cauchy’s and d’Alembert’s 
tests remains if the latter is formulated using the ratio nD .  

 
On the other hand, an applicability of Cauchy’s test does not imply an 

applicability of d’Alembert’s test, which can be seen using the following 
examples.  

Example 1. Analyze the behavior of the series ∑
+∞

=

−−

1

)1(2
n

nn

. 
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Notice that n

na 21
2 2 −=  and n

na 22
12 2 −−
+ = . Therefore: 

                       nnnnnnn
n

DDDD
∞→∞→−∞→∞→

==<<== limlim81
2
1limlim 212 , 

and consequently, d’Alembert’s test is inconclusive. However, it is simple to 
verify convergence by applying Cauchy’s test: 

1
2
12lim2limlim

)1(1)1(

<===
−

+−

∞→

−−

∞→∞→

n
n

n
n

n
n

nn

nn

a . 

 

Example 2. Analyze the behavior of the series ∑
+∞

=

−−

1

)1(2
n

n n

. 

Analogously to the previous example, d’Alembert’s test does not work:  

21
8
1limlim 2 <<==

∞→∞→
nnn

n
DD  nnnn

DD
∞→−∞→

== limlim 12 .  

Nevertheless, Cauchy’s test readily reveals divergence of the series: 

           122lim2limlim
)1(1)1(

>===
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

∞→

−−

∞→∞→

n

n
n

n

n
n

nn

nn

a . 

 
Thus, Cauchy’s test has a wider scope: whenever d’Alembert’s test is 

working, Cauchy’s test is too, but the inverse statement is not true. 
 
Furthermore, for the last two series the following inequality holds  

n
n

nn
DD

∞→∞→
>> lim1lim ,                                        (8) 

implying, due to the Proposition in section 2, that all the tests of the Kummer 
hierarchy do not work in this case (see details in [3]). It does not seem to be an 
evident result, because quite sophisticated tests in the Kummer chain can be 
constructed using the general terms n/1 , )ln/(1 nn , ))ln(lnln/(1 nnn , etc., of the 
divergent series, which at each next step approximate closer and closer the general 
term 1,/1 >λλn  of the convergent series. Nevertheless even quite sophisticated 
tests of the Kummer chain are inconclusive with respect to the series in the last 
two examples. 

In general, the tests of the Kummer hierarchy fail in two cases: 
1) when both the upper and lower limit of nD  is equal 1, or when it happens 

for any subsequent quantity ( nR , nB , etc.); 
2) when evaluation (8) takes place, or when it happens for any subsequent 

quantity ( nR , nB , etc.); 
Notice that if the condition 1) occurs, then Cauchy’s test is also 

inconclusive, because it follows from inequalities (7) that in this case 
1limlimlim ===

∞→∞→∞→

n
nn

n
nn

n
n

n
aaa .  
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5. A generalization of Cauchy’s test  

 
In this section we introduce the basic theorem used subsequently to 

construct a chain of refining tests starting from Cauchy’s test.  
We start with an auxiliary proposition used to proof the basic theorem. A 

similar  proposition can be found in [4], but our version contains less suppositions 
still providing the same result, and it is presented below with complete proof.    

Proposition. If ∑ ′ )(nF  is a divergent series, where 0)( >xF , 0)( >′ xF  

and )(xF ′  is decreasing, then the series 
[ ]∑ ′

pnF
nF
)(
)(  converges for 1>p  and 

diverges for 1≤p . 
Proof. 

First, notice that if ∑ ′ )(nF  diverges, then the integral ∫
∞

′
a

dxxF )(  also 

diverges by the Integral test, and besides, the condition 0)( >′ xF  implies in 

∞+→−=′
+∞→∫ x

x

a

aFxFdvvF )()()( ,  

that is, ∞+→
+∞→x

xF )( . Notice also that the conditions 0)( >′ xF  and 0)( >xF  

imply 
[ ]

0
)(
)(
>

′
pxF

xF . 

Let us split the proof in two cases: 0<p  e 0>p , noting that in the case 
0=p  the statement of the Proposition is trivial.  

1) Case 0<p . Since ∞+→
+∞→x

xF )( , there exists N∈0n  such that 

1)( >nF , 0nn >∀ , that means that [ ] 1)( >− pnF  and 
[ ]

)(
)(
)( nF

nF
nF

p
′>

′
. Since 

∑ ′ )(nF  is a divergent series, according to the comparison test the series 

[ ]∑ ′
pnF

nF
)(
)(  is also divergent. 

2) Case 0>p . Since 0)( >′ xF , the function )(xF  is increasing and, 
respectively, [ ] pxF −)(  is decreasing. Recalling that )(xF ′  is decreasing 

(according to the Proposition conditions), it follows that 
[ ]pxF

xF
)(

1)( ⋅′  is 

decreasing as a product of two positive decreasing functions. Therefore, we can 

apply the Integral test for study the behavior of the  series 
[ ]∑ ′

pnF
nF
)(
)( . Indeed,  
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[ ] [ ]

[ ]

⎪
⎩

⎪
⎨

⎧

>≠⎥
⎦

⎤
⎢
⎣

⎡
−

=

==
′

=
′

−+∞→+∞→+∞→

∞+

∫∫∫ 0,1,
1

1

1,ln
limlim

)(
)(lim

)(
)(

1 ppt
p

pt

t
dtdv

vF
vFdx

xF
xF y

b

p

y
b

y

y

b
py

x

a
px

a
p  

             ( ) ⎪
⎩

⎪
⎨

⎧

>
−

≤<∞+
=

⎪
⎩

⎪
⎨

⎧

>≠−
−

=−
= −

−−+∞→ 1,
1

10,

0,1,
1

1
1,lnln

lim 1
11 p

p
b

p

ppby
p

pby
p

ppy
  . 

Hence, the series 
[ ]∑ ′

pnF
nF
)(
)(  converges for 1>p  and diverges for 10 ≤< p . 

          It follows from the results of 1) and 2) that the Proposition is proved. 
 
Using the last Proposition, we can prove the following basic theorem (a 

similar result presented in [4] contains more suppositions comparing to our 
version). 

 
Theorem 1. Let ∑ ′ )(nF  be a divergent series, where 0)( >xF , 0)( >′ xF  

and )(xF ′  is decreasing. If ∑ na  is a positive series, then denoting 
[ ]
[ ] n

n W
nF

anF
=

′
)(ln

)(ln
,  the following statements hold: 

1) If 1lim >
∞→

n
n

W , then ∑ na converges;  

2) If 1lim <
∞→ nn

W , then ∑ na diverges. 

 
Proof.  
1) If 1lim >

∞→
n

n
W , then one can find 1>p  and N∈m  such that for mn >∀  

it holds 1>> pWn . Considering still 1)( >nF  (because 0)( >xF  and 
∞+→

+∞→x
xF )( ), we obtain for mn >∀ : 

[ ] [ ]p

n

nFnFp
a

nF )(ln)(ln)(ln =⋅>⎥
⎦

⎤
⎢
⎣

⎡ ′
,  

that is, [ ]p

n

nF
a

nF )()(
>

′
, which implies 

[ ]pn nF
nFa
)(
)(′

< . Hence, ∑ na  converges 

due to comparison with the series 
[ ]∑ ′

pnF
nF
)(
)( , which is convergent for 1>p  

according to the Proposition. 
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2) In the case 1lim <
∞→ nn

W , there exists N∈m , such that 1≤nW , mn >∀ , 

and consequently, )()( nF
a

nF

n

≤
′

, that is, 
)(
)(

nF
nFan

′
≥ . Hence, ∑ na  diverges due 

to comparison with the divergent series ∑ ′
)(
)(

nF
nF . 

 
Using Theorem 1 it is possible to construct the chain of refining tests (the 

Cauchy hierarchy of tests) by choosing different functions )(xF . In what follows 
we present the first three tests of this hierarchy. 

Using xxF =)(  in Theorem 1, we obtain the first test, formulated by Jamet 
[4, 9]. Different formulations of this test in the form without limits were also 
studied in [1]. The form of the test presented below is equivalent to those given in 
[4], but we provide a complete proof of this test, whereas in [4] the proof is given 

only in the case when 1lim
1
=

∞→
nnn

a . 

Test I. Consider a positive series ∑ na  and denote ⎟
⎠
⎞

⎜
⎝
⎛ −= nnn a

n
nI

1
1

ln
 

(see formula (4)). In this case: 
1) If 1lim >

∞→
n

n
I , then ∑ na converges;  

2) If 1lim <
∞→ nn

I , then ∑ na diverges. 

Proof.  
Primarily, let us consider two simple cases when Cauchy’s test is also 

applicable. If 1lim
1
<

∞→
nnn

a , then the series ∑ na  converges according to 

Cauchy’s test, and at the same time, 1lim >+∞=
∞→ nn

I , that is, the first statement of 

Test I is applicable. On the other hand, if 1lim
1
>

∞→
nnn

a , then the series ∑ na  
diverges due to Cauchy’s test, and 1lim <−∞=

∞→ nn
I , which shows that the second 

statement of Test I holds.  

Now let us consider the case when 1lim
1
=

∞→
nnn

a . Under this condition, we 

will apply Theorem 1. First, notice that 0,0)( >∀>= xxxF ;  01)( >=′ xF  
and the derivative can be considered as a (non-strictly) decreasing function. 
Besides, ∑∑ =′ 1)(nF  is the divergent series. Under these conditions, it follows 
from Theorem 1 that 

                                
n
a

nF
a

nF

W nn
n ln

ln
)(ln

)(ln
−=

′

= ,                                            (9) 
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and therefore, we have convergence of ∑ na  if 1lim >

∞→
n

n
W , and divergence if  

1lim <
∞→ nn

W .  

          To connect the last conditions with the statements of Test I, we should show 
relation between the quantities nW  and nI . Notice first that the following chain of 
the inequalities holds: 

x
xx

ln1
1ln1

−
≤≤+ , ),0( ex∈∀ .                               (10)  

Choosing nnax
1

= , with ),0( n
n ea ∈ , and applying (10), we obtain 

n
aa

aa
n
a

nnn

nnnn
n

ln
1

1

ln1

1ln1
ln

1 1

11

−
=

−
≤≤+=+ .  

After simple transformations the last formula can be rewritten as follows: 

                                         
n
aIa

n
n

n
an

a n
nnn

n

n

ln
ln1

lnln1

1
ln
ln 1

−≤=⎟
⎠

⎞
⎜
⎝

⎛ −≤
−

⋅−  ,      (11) 

or, using (9), 

nn
n

n WI

n
a

W ≤≤
−

⋅
ln

1

1
.                                   (12) 

Since 1lim
1
=

∞→
nnn

a , we have 0lnlim =
∞→ n

an

n
. In this case, it follows form the 

Squeeze Theorem that  n
n

n
n

WI
∞→∞→

= limlim  and nnnn
WI

∞→∞→
= limlim . This concludes the 

proof for the case  1lim
1
=

∞→
nnn

a . 

Notice that there is no loss of generality in considering ),0( n
n ea ∈ , since 

for n
n ea ≥ , the series ∑ na  diverges by comparison with the series ∑ ne , and 

in this case the upper limit of nI   is equal to ∞− , so that we have the result in 
agreement with Test I. 

Finally, let us see what happens when the limit of nna
1

 does not exist. 

Consider first that 1lim
1
≠

∞→
nnn

a . In this case, the condition 1lim <
∞→ nn

I  implies 

1lim
1
>

∞→
nnn

a  (for if 1lim
1
<

∞→
nnn

a  then +∞=
∞→ nn

Ilim , that contradicts the condition 

1lim <
∞→ nn

I ), and consequently, the series diverges. Similarly, it follows from the 

condition 1lim >
∞→

n
n

I  that 1lim
1
<

∞→
nnn

a , and the series converges. Hence, the  

 



 

1858                            L. Bourchtein, A. Bourchtein, G. Nornberg and C. Venzke 
 
 

statements of Test I are true. Consider now that 1lim
1
=

∞→
nnn

a . In this case, we 

have 1lim
1
<

∞→
nn

n
a , that implies +∞=

∞→ nn
Ilim , and in this situation there is nothing 

to prove with respect to the second statement of Test I. If, under the last condition, 
it occurs that 1lim >

∞→
n

n
I , then it readily follows from the right inequality in (12) 

that 1lim >
∞→

n
n

W , which implies the series convergence. 

 
Remark 1. It follows from the above proof that Test I can be applied when 

1lim
1
=

∞→
nnn

a , and, in particular, when 1lim
1
=

∞→
nnn

a , that is, under conditions when 

Cauchy’s test does not work.  
Remark 2. Evidently, if Cauchy’s test is applicable, there is no necessity to 

consider more sophisticated tests. Nevertheless, even in such situation, there is no 
problem in considering also Test I.  

 
Let us choose now the second function xxF ln)( =  to be used in Theorem 

1. The respective test was formulated in [4], albeit without a proof. 

Test J. Consider a positive series ∑ na , and denote [ ]1
lnln

ln
−= nn I

n
nJ  

(see formula (5)). In this case:                                     
1) If 1lim >

∞→
n

n
J , then ∑ na converges; 

2) If 1lim <
∞→ nn

J , then ∑ na diverges. 

Proof.  
We show validity of the above statements following the scheme of the proof 

for Test I.  
Primarily, if 1lim >

∞→ nn
I , then the series ∑ na  converges according to Test I 

and, at the same time, 1lim >+∞=
∞→ nn

J , that is, the first statement holds. On the 

other hand, if 1lim <
∞→ nn

I , then ∑ na  diverges by Test I, and 1lim <−∞=
∞→ nn

J , 

that shows that the second statement is applicable.  
To study the case when 1lim =

∞→ nn
I  we apply Theorem 1. First, notice that 

1,0ln)( >∀>= xxxF , ,0/1)( >=′ xxF  0>∀x , and )(xF ′  is a decreasing 

function for 0>x . Besides, ∑∑ =′ nnF /1)(  is a divergent series. Under these 
conditions, it follows from Theorem 1 that 

                                 
n

n
n

a
nF

a
nF

W nn
n lnln

ln
lnln

ln
)(ln

)(ln
−−=

′

= ,                                    (13) 
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and consequently, we obtain convergence of ∑ na  if 1lim >

∞→
n

n
W , and divergence 

if  1lim <
∞→ nn

W .  

To determine relation between the quantities nW  and nJ , let us consider the 
following evaluations. Subtracting 1 from each side of (11) and multiplying the 

result by 
n

n
lnln

ln , we obtain: 

  

n
an

a
n

n
n

n

ln1

1
lnln

ln
lnln

ln

−
⋅−−

n
n

n
aJI

n
n n

nn lnln
ln

lnln
ln)1(

lnln
ln

−−≤=−≤ .        (14) 

Using (13), we rewrite (14) in the form: 

                                      nn
n

n

n
n WJ

n
a

n
a

n
a

W ≤≤
−

⋅−
ln

1

ln

lnln
ln

.                           (15) 

Now let us investigate the behavior of the second term in the left-hand side 

of (15). Since 1lim =
∞→ nn

I , we can represent nnnn a
n

nI α+=⎟
⎠
⎞

⎜
⎝
⎛ −= 11

ln

1
, where 

0
∞→

→
nnα . Therefore, )1(ln1

1

nnn n
na α+=− , and consequently, 

0)1(lnlim1lim
1

=+=⎟
⎠
⎞

⎜
⎝
⎛ −

∞→∞→ nn
nnn n

na α . Hence, 1lim
1
=

∞→
nnn

a  (which means that 

Cauchy’s test fails), or, equivalently,  

0
ln

lim =
∞→ n

an

n
.                                                (16) 

Denoting )1(ln
nn n

nx α+= , we can rewrite nnn xa −= 1
1

, that is, 

( )n
n x

n
a

−= 1lnln , and according to the above results 0lim =
∞→ nn

x . Hence, 

10 << nx , 0nn >∀ , N∈0n . In this way, it is possible to expand )1ln( nx−  in 
the Taylor series: 

( ) ∑∑
∞

=

∞

=
⎟
⎠
⎞

⎜
⎝
⎛ +−=−=−=

11

)1(ln1)1lnln
k

k

n
k

k
n

n
n

n
n

kk
xx

n
a α . 

Consequently, we obtain 

∑
∞

=

−

+⎟
⎠
⎞

⎜
⎝
⎛−=⋅=

1

1

)1(ln1
ln

ln
ln
ln

k

k
n

k
nn

n
n

kn
n

n
a

n
a α  . 

Noting that N∈>∀=+⎟
⎠
⎞

⎜
⎝
⎛

−

∞→
kk

n
n k

n

k

n
,1,0)1(lnlim

1

α , and the last series 

converges uniformly, we conclude that 
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1
ln
ln

lim −=
∞→ n

an

n
.                                                (17) 

Additionally, by applying l'Hospital's rule, it is simple to arrive to 

0
lnln
)(lnlim

2

=
+∞→ xx

x
x

.                                              (18) 

Applying now the auxiliary limits (16), (17), (18) for evaluation of the 
second term in the left-hand side of (15), we obtain: 

0ln1

1
lnln
)(ln

ln
lnlimln1

ln

lnln
lnlim

22

=
−

⋅⋅⎟
⎠
⎞

⎜
⎝
⎛=

−
⋅

∞→∞→

n
ann

n
n
a

n
a

n
a

n
a

n

n

nn

n

n

n
.                 (19) 

Hence, it follows from (15) that n
n

n
n

WJ
∞→∞→

= limlim  and nnnn
WJ

∞→∞→
= limlim . This 

concludes the proof for the case 1lim =
∞→ nn

I . 

Finally, let us see what happens when the limit of nI  does not exist. If 
1lim >

∞→
n

n
I  , then +∞=

∞→
n

n
Jlim  and, at the same time, the series converges 

according to Test I, which confirms the first statement of Test J. Analogously, if 
1lim <

∞→
nn

I  then we arrive to validity of the second statement. Consider now that 

1lim ≤
∞→

n
n

I  and 1lim ≥
∞→ nn

I . Notice that if nnn
n

II
∞→∞→

<< lim1lim , then we have 

−∞=
∞→

n
n

Jlim  and +∞=
∞→ nn

Jlim , and consequently, there is nothing to prove in 

Test J. Hence, it remains to analyze two cases: 1) 1lim >
∞→

nn
I  and 1lim =

∞→
n

n
I  ; and 

2) 1lim =
∞→ nn

I  and 1lim <
∞→

n
n

I  . In the first case, we have +∞=
∞→ nn

Jlim  and the 

second statement of Test J is out of consideration. On the other hand, if 
1lim >

∞→
n

n
J , then it follows from the right inequality in (15) that 1lim >

∞→
n

n
W , and 

consequently, the series converges by Theorem 1.  
In the second case, we have −∞=

∞→
n

n
Jlim , showing that the first statement 

of Test J is out of consideration. Let us show that the second statement is true. 
Notice that without loss of generality we can consider 0>nI  starting from some 
index n, for if it would not be so, then for any n would exist nk  such that 0≤

nkI , 

that is, 1
1
≥n

n
kka , which means that 1≥

nka , and the last implies divergence of 

the series ∑ na . Hence, we can consider 0>nI  and together with 1lim =
∞→ nn

I  it 

ensures that for 0>∀ε , exists N∈0n , such that for all 0nn >  the following 

inequality holds: ε+<< 10 nI . Therefore, 1)1(ln1
1
<<+− nna

n
n ε , that  
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implies the existence of the limit 1lim
1
=

∞→
nnn

a  (the last being equivalent to (16)), 

and also the validity of the inequality 0
ln

)1(ln1ln <<⎟
⎠
⎞

⎜
⎝
⎛ +−

n
a

n
n nε . Therefore, 

0
ln
ln

)1(ln1ln

)1(

1
1

ln
<<

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−

+−

+
⋅−

n
a

n
n nn

n ε

ε
ε , where the first term approaches )1( ε+−  

as ∞→n ; that is, 
n
an

ln
ln  is a limited sequence. Using the last result together with 

limits (16) and (18), we conclude that formula (19) is true in this case. Hence, it 
follows from (15) that nnnn

WJ
∞→∞→

= limlim , and in the case 1lim <
∞→

nn
J , we have 

divergence of the series by Theorem 1. 
Remark. The above proof shows that Test J is a generalization of Test I, 

that is, if Test I works, then Test J also does, and the latter can be applicable even 
in situations when Test I does not work (see respective examples in section 7).   

 
Choosing the third function xxF lnln)( =  for Theorem 1, we arrive to the 

following test. 

Test L. Consider a positive series ∑ na , and denote ( )1
lnlnln

lnln
−= nn J

n
nL  

(see formula (6)). In this case: 
1) If 1lim >

∞→
n

n
L , then ∑ na converges; 

2) If 1lim <
∞→ nn

L , then ∑ na diverges. 

Proof.  
We follow below the scheme of the two preceding proofs. 
Primarily, if 1lim >

∞→ nn
J , then the series ∑ na  converges by Test J and, at 

the same time, 1lim >+∞=
∞→ nn

L , that is, the first statement in Test L is applicable. 

On the other hand, if 1lim <
∞→ nn

J , then ∑ na  diverges by Test J, and 

1lim <−∞=
∞→ nn

L , showing that the second statement holds.  

Consider now the case when 1lim =
∞→ nn

J . Notice that 

exxxF >∀>= ,0lnln)( , ,0)ln/(1)( >=′ xxxF  1>∀x , and )(xF ′  is a 

decreasing function for 1>x . Besides,  ∑∑ =′ )ln/(1)( nnnF  is a divergent 
series. Under these conditions, defining  

                
n

n
n

n
n

a
nF

a
nF

W nn
n lnlnln

lnln
lnlnln

ln
lnlnln

ln
)(ln

)(ln
−−−=

′

= ,                   (20) 



 

1862                            L. Bourchtein, A. Bourchtein, G. Nornberg and C. Venzke 
 
 

we invoke Theorem 1 to conclude that ∑ na  converges if 1lim >
∞→

n
n

W , and 

diverges if 1lim <
∞→ nn

W . 

As before, we perform some transformations to establish relations between 
nW  and nL . Subtracting 1 from each side of (14) and multiplying the result by 

)lnln/(ln)ln(ln nn , and using additionally (20), we obtain 

nn
n

n

n
n WL

n
a

n
a

n
a

W ≤≤
−

⋅−
ln

1

ln

lnlnln
ln .                           (21) 

Let us analyze the behavior of the second term in the left-hand side of (21). 

Since 1lim =
∞→ nn

J , we can represent nnn I
n

nJ α+=−= 1)1(
lnln

ln , where 

0
∞→

→
nnα . Therefore, 1)1(

ln
lnln

++= nn n
nI α , and noticing that 

0)1(
ln
lnlnlim =+

∞→ nn n
n α , we obtain 1lim =

∞→ nn
I . Recalling that in this case 

formulas (16) and (17) are satisfied, and employing also the following auxiliary 
limit (which can be readily calculated by applying l’Hospital’s rule) 

0
lnlnln
)(lnlim

2

=
+∞→ xx

x
x

 ,                                           (22) 

we arrive to  

0
ln

1

1
lnlnln
)(ln

ln
ln

lim
ln

1

ln

lnlnln
ln

lim
22

=
−

⋅⋅⎟
⎠
⎞

⎜
⎝
⎛=

−
⋅

∞→∞→

n
ann

n
n
a

n
a

n
a

n
a

n

n

nn

n

n

n
.             (23) 

Hence, it follows from (21) that n
n

n
n

WL
∞→∞→

= limlim  and nnnn
WL

∞→∞→
= limlim . This 

concludes the proof in the case when 1lim =
∞→ nn

J . 

Finally, the study of the case when the limit of nJ  does not exist can be 
performed in the same way as in the proof of Test J. If 1lim >

∞→
n

n
J  then 

+∞=
∞→

n
n

Llim  and, at the same time, the series converges, which agrees with the 

first statement of Test L. Analogously, if 1lim <
∞→ nn

J  then we arrive to the validity 

of the second statement. If nnn
n

JJ
∞→∞→

<< lim1lim , then there is nothing to prove. In 

situation when 1lim >
∞→ nn

J  and 1lim =
∞→

n
n

J  , the second statement is out of 

consideration, and the first statement follows from the right inequality in (21), 
noting that if 1lim >

∞→
n

n
L  then 1lim >

∞→
n

n
W  . In the last situation, when 1lim =

∞→ nn
J   
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and 1lim <

∞→
n

n
J  , the first statement is out of consideration, and the validity of the 

second can be established by noting that from the condition 1lim =
∞→ nn

J  it follows 

that 1lim =
∞→ nn

I , and subsequently, employing the same reasoning as that used in 

the last part of the proof of Test J, we conclude that nnnn
WL

∞→∞→
= limlim .    

Remark 1. The above proof shows that Test L has a wider scope than Test 
J.  

Remark 2. Using a similar approach as in formulation of Tests I, J, and L, 
other even finer tests can be constructed by choosing the functions 

xxF lnlnln)( = , xxF lnlnlnln)( = , etc. In this way, an infinite chain of 
refining tests related to Cauchy’s test will be generated. It is worth to note that an 
analysis of each test in the Cauchy hierarchy can be related to behavior of certain 
expression from preceding test, and the proof of subsequent test can be simplified 
by employing certain considerations in the proof of the preceding test. 

 
 

6. Restrictions of the constructed hierarchy 
 
In the proofs of Tests I, J and L, we see that the results for the subsequent 

test were derived by using information on the limit of the respective expression in 
the preceding test. (applying the behavior of the expression in the preceding test.) 
So it is natural to ask what happens with subsequent tests if the preceding one 
fails. Let us consider the situation when nnn

n
II

∞→∞→
<< lim1lim  (that is, Test I does 

not work). In this case one can readily note that the limits of the expression nJ  

will obey the same evaluation: nnn
n

JJ
∞→∞→

<< lim1lim , implying that Test J will be 

also inconclusive. Furthermore, from the last inequalities it follows that for the 
next expression nL  we have 1lim <−∞=

∞→
n

n
L  e 1lim >+∞=

∞→ nn
L , that is, Test L 

does not work either. And the same is true for all the tests of the considered 
hierarchy starting from Test I. 

It can be shown that similar situation occurs if this kind of inequality will 
arise in more refined tests. For example, if nnn

n
JJ

∞→∞→
<< lim1lim , then all the tests 

of the Cauchy hierarchy starting from Test J will fail; if nnn
n

LL
∞→∞→

<< lim1lim , then 

all the tests starting from Test L will fail, etc. Hence, if such kind of inequality 
will arise for a certain series, then refinement of tests in the Cauchy hierarchy will 
not help in this situation. However, if it occurs that the general limit of the 
respective expression in some test is equal to 1 (for example, 1lim =

∞→
nn

I ), then it 

is worth to try an application of finer tests in the Cauchy hierarchy until certain 
conclusion about series convergence/divergence will be obtained, or until the  
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above undetermined and unsolved (within the considered chain) situation will 
occur. 

We can note that the above behavior of the Cauchy hierarchy is quite similar 
to the situation described in the Proposition of section 2, where inequality (8) ( or 
a similar one with one of the quantities nR , nB , etc.) implies that all the tests of 
the Kummer hierarchy are inconclusive.   

 
 

7. Applications to some examples 
 

To illustrate the considered tests let us analyze some examples. 

Example 1. Investigate the behavior of the series ∑
+∞

=2 ln
1

n n
. 

Since 0)ln(lnlim =
+∞→ x

x
x

, we have 1limlimlim
)ln(ln

)ln(ln
1 1

===
−

∞→

−

∞→∞→

n
n

n

n

n
nnn

eea n , 

that is, Cauchy’s test fails. Let us try Test I: 

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

∞→∞→

n

nnn nn
nI

1

ln
11

ln
limlim 001lnln

ln
lim

lnln
1lim

lnln
=⋅=⋅⋅

−
−

∞→

−

∞→ n
n

n
n

nn
e

n

nn

n
. 

Here two simple limits were used: 11lim
0

=
−

→ x
ex

x
 and 0

ln
lnlnlim =

+∞→ x
x

x
. Therefore, 

Test I shows the divergence of the series. 
 
Example 2. Investigate the behavior of the series 

R∈⎟
⎠
⎞

⎜
⎝
⎛ −−∑

∞+

=

k
n

nk
n
n

n

n

,lnlnln1
2

. 

For Cauchy’s test and Test I we have, respectively: 

1lnlnln1limlim 1 =⎟
⎠
⎞

⎜
⎝
⎛ −−=

∞→∞→ n
nk

n
na

n

n
nn

 

and 

1
ln

lnln1limlnlnln11
ln

limlim =⎟
⎠
⎞

⎜
⎝
⎛ +=⎥⎦

⎤
⎢⎣
⎡ ++−=

∞→∞→∞→ n
nk

n
nk

n
n

n
nI

nnnn
. 

That is, both tests are inconclusive. However, applying Test J, we find: 

[ ] kk
n

nk
n

nI
n

nJ
nnnnnn

==⎥⎦
⎤

⎢⎣
⎡ −+=−=

∞→∞→∞→∞→
lim1

ln
lnln1

lnln
lnlim1

lnln
lnlimlim . 

Therefore, if 1>k  then the series converges, and if 1<k  then it diverges. For 
1=k  Test J does not work, so let us apply Test L. Since in this case 1=nJ , we 

obtain: 

[ ] [ ] 100lim11
lnlnln

lnlnlim1
lnlnln

lnlnlimlim <==−=−=
∞→∞→∞→∞→ nnnnnn n

nJ
n

nL ,  

that implies divergence of the series.  
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Remark. The series with the general terms  
nnnknnnn )/)lnln(ln/)ln(ln/)(ln1( −−− , 

nnnknnnnnn )/)lnlnln(ln/)lnln(ln/)ln(ln/)(ln1( −−−− , 
etc. can be analyzed in a similar way, employing more refined tests of the 
considered hierarchy.  

 

Example 3. Analyze the behavior of the series ∑
∞+

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−

3

ln
lnlnln1

n

n

n
n

a
n
n , 0>a .  

Since 0
ln
lnlnlim =

∞→ n
n

n
, both Cauchy’s test and Test I fail:  

1ln1limlim ln
lnln

1 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−=

∞→∞→

n
n

n

n
nn

a
n
na ,  

1limln
ln

limlim ln
lnln

ln
lnln

==⋅⋅=
∞→∞→∞→

n
n

n
n
n

nnn
aa

n
n

n
nI .  

On the other hand, changing the variable +

∞→
→= 0

ln
lnln

nn
nx , we obtain:  

aaa
x

aa
n

nJ x

x

x

x

n
n

nnn
lnlimln1lim1

lnln
lnlimlim

00

ln
lnln

=⋅=
−

=⎥
⎦

⎤
⎢
⎣

⎡
−=

++ →→∞→∞→
,  

that implies, according to Test J, that the series converges for ea > , and diverges 
for ea < . To analyze the case ea = , we can use Test L. In fact,  

⎥
⎦

⎤
⎢
⎣

⎡
−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

n
ne

n
ne

n
n

n
nL n

n
n
n

n ln
lnln1

lnlnln
ln11

lnln
ln

lnlnln
lnln ln

lnln
ln

lnln

.  

Then, applying limit and changing the variable ∞+→=
∞→n

nx ln , we obtain: 

                    ( )
xx

xxe

x
x

x
xe

L
xx

x

x
x

xnn lnlnln1
ln)ln1(1lim

lnln

ln1
limlim

ln

ln

⋅−
⋅−⋅−

=
−−

=
+∞→+∞→∞→

 

( ) ( ) 010
lnlnln11

ln11
lim

lnln
lnlim

lnlnln1
)ln1(lnlim

ln
1lim

22ln
=⋅=

⋅−
−

⋅=
⋅−
−⋅

⋅
−

=
+∞→+∞→+∞→+∞→ xx

x
xx

x
xxx

xx
xx

e
xxx

xx

x
. 

Hence, the series is convergent if ea > , and divergent if ea ≤ . 
Remark. The series with the general terms  

( )nnnannnn )ln/(ln)lnln(ln)/)ln((ln/)(ln1 ⋅−− , 

( )nnnannnnnn )lnln/(ln)lnlnln(ln)/)lnln((ln/)ln(ln/)(ln1 ⋅−−− ,  
etc. can be analyzed in a similar way using more sophisticated tests of the chain. 
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Example 4. Analyze the behavior of the series   

∑
∞+

=
⎟
⎠
⎞

⎜
⎝
⎛ −−

3

2 1coslnlnln1
n

n

nn
n

n
n . 

It can be seen that Test J does not work in this case: 

11coslim11cos
ln
lnln1

lnln
lnlimlim 22 ==

⎭
⎬
⎫

⎩
⎨
⎧ −+=

∞→∞→∞→ nnn
n

n
nJ

nnnn
. 

However, Test L shows the divergence of the series. Indeed, using auxiliary limit 
         

0
ln2

1lim
lnlnln

1limlnlnlim
lnlnln

1lim1
lnlnln

lnlnlim 222 =⋅=⋅=⎟
⎠
⎞

⎜
⎝
⎛ ⋅

∞→∞→∞→∞→∞→ xxxx
x

xxx
x

xxxxx
,  

we obtain  

[ ] ⎥⎦
⎤

⎢⎣
⎡ −=−=

∞→∞→∞→
11cos

lnlnln
lnlnlim1

lnlnln
lnlnlimlim 2

nn
nJ

n
nL

nnnnn
 

10
)/1(

)/1sin(lim1
lnlnln

lnlnlim1sin
lnlnln

lnlnlim
2

2
2 <=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅−=−=

∞→∞→∞→ n
n

nn
n

nn
n

nnn
. 

 
Example 5. Analyze the series 

( )∑
∞+

=
⎟
⎠
⎞

⎜
⎝
⎛ −+⋅−−

3

2 )1(1coslnlnln1
n

n
nba

nn
n

n
n , 0, ≥ba . 

Notice first that 

nJ ( ) =
⎭
⎬
⎫

⎩
⎨
⎧ −−+⋅+= 1)1(1cos

ln
lnln1

lnln
ln 2 nba

nn
n

n
n ( )nba

n
)1(1cos2 −+⋅ . 

It leads to conclusion that the general limit of nJ  does not exists. Then let us 
analyze the upper and lower limits of the above expression. Since a and b are not 
negative, it follows readily that 

baJ n
n

−=
∞→

lim ; baJ nn
+=

∞→
lim . 

Therefore, the series converges when 1>− ba , and it diverges when 1<+ ba . 
Let us consider some specific values: 
1) if 1,3 == ba , then 12lim >=

∞→
n

n
J , that implies convergence;  

2) if 3/1,2/1 == ba , then 16/5lim <=
∞→ nn

J , that is, the series 

diverges;  
3) if 0,1 == ba  we have 1lim =

∞→ nn
J , and Test J is inconclusive, so that 

we should try to apply finer tests of the considered hierarchy; in fact, in this 
case we come back to the previous example, and consequently, Test L 
shows divergence; 
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4) if 1,1 == ba , then nnn

n
JJ

∞→∞→
=<<= lim210lim , which means that 

there is no reason to apply more refined tests of this hierarchy, because all 
the subsequent tests will be inconclusive.  
 
Example 6. Investigate the series 

n

n

nb
n
na

n
n∑

∞+

= ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅−

2

2

4
sin

ln
lnlnsin1ln1 π , 0, >ba . 

For this series 1lim 1 =
∞→

n
nn

a  , that is, Cauchy’s test does not work. So let us 

try Test I. Denoting 
n
ntn ln

lnln
= , we have 

( ) ( )
4

sinsin1
4

sinsin1ln
ln

22 ππ nbtanbta
n
n

n
nI nnn ⋅++⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅++⋅⋅= ,  

and then, baII nnn
n

−== −∞→∞→
28limlim

 

and baII nnnn
+== −∞→∞→ 68limlim . 

Therefore, the series converges when 1>− ba , and diverges when 1<+ ba . 
         If 1=+ba , then 1lim =

∞→
nn

I

 

, and if 1=−ba , then 1lim =
∞→

n
n

I  , and in both 

cases Test I is inconclusive. For example, choosing, 21== ba , we have 
10lim <=

∞→
n

n
I  and 1lim =

∞→ nn
I . On the other hand, when 2=a  and 1=b , it 

follows that 1lim =
∞→

n
n

I  and 13lim >=
∞→ nn

I . Therefore Test I fails in both cases.  

Let us pass to Test J. We have 

                                  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⋅++⋅= 1

4
sinsin1

lnln
ln 2 πnbta

n
nJ nn .                       (24) 

Hence, for 21== ba , we obtain 

   

2
2

2
2 sin

lnln
ln

2
1

4
sin

2
1

2
1

lnln
ln

4
sin

2
1sin

2
1

2
1

lnln
ln

n
n

n
nn t

t
t

n
nn

n
nnt

n
nJ +⎟

⎠
⎞

⎜
⎝
⎛ +−=⎟

⎠
⎞

⎜
⎝
⎛ ++−=

ππ  .  

Notice that the upper limit of the first term in the right-hand side is zero (by 
choosing 68 −= kn ) and the limit of the second term is 21  (recalling that 

n
ntn ln

lnln2 = ). Therefore, 121lim <=
∞→

nn
J , and Test J shows that the series is 

divergent when 21== ba  . 
        In the case 2=a  and 1=b , expression (24) assumes the form 
        

( ) 2
2

2
2 sin

lnln
ln2

4
sin1

lnln
ln1

4
sinsin12

lnln
ln

n
n

n
nn t

t
t

n
nn

n
nnt

n
nJ +⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ −++=

ππ  .  
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The lower limit of the first term in the right-hand side is zero (choosing 

28 −= kn ) and the limit of the second is 2. Therefore, 12lim >=
∞→

n
n

J , and by 

Test J, the series is convergent when 2=a  and 1=b  . 
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