On Quasi p-Normal Spaces

Sadeq Ali Saad Thabit1 and Hailiza Kamarulhaili2

School of Mathematical Sciences, University Sains Malaysia
11800 USM, Penang, Malaysia

Abstract

The aim of this paper is to study a weaker version of p-normality called quasi p-normality, which lies between πp-normality and mild p-normality. We show that this property is a topological property and it is a hereditary property only with respect to closed domain subspaces. Some properties, examples and various characterizations of this property are presented. Also, we establish various preservation theorems of quasi p-normality under continuous and some generalized sense of continuous mappings.

Mathematics Subject Classification: 54D15, 54D10, 54C08, 54C10

Keywords: closed domain, π-closed, p-closed, almost p-normal, mildly p-normal, πp-normal and generalized closed sets.

1 Introduction and Preliminary

Throughout this paper, a space X always means a topological space on which no separation axioms are assumed, unless explicitly stated. For a subset A of a space X, $X \setminus A$, \overline{A} and int(A) denote to the complement, the closure and the interior of A in X, respectively. A subset A of a space X is said to be regularly-open or an open domain if it is the interior of its own closure, or equivalently if it is the interior of some closed set, see [11]. A set A is said to be a regularly-closed or a closed domain if its complement is an open domain. A subset A of a space X is called a π-closed if it is a finite intersection of closed domain sets, see [29]. A subset A is called a π-open if its complement is a π-closed. Two sets A and B of a space X are said to be separated if there exist two disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$, [5, 7, 19]. A subset A of a space X is said to be pre-open (briefly p-open), [14], if $A \subseteq \text{int}(\overline{A})$. A subset A of a space X is said to be a semi-open if $A \subseteq \text{int}(\overline{A})$, see [3]. A space

1Corresponding author’s e-mail: sthabit1975@gmail.com.
2e-mail: hailiza@cs.usm.my
X is called a \textit{p-normal}, see [20], if any two disjoint closed subsets \(A \) and \(B \) of \(X \) can be separated by two disjoint \(p \)-open subsets. A space \(X \) is called an \textit{almost \(p \)-normal}, see [16], if any two disjoint closed subsets \(A \) and \(B \) of \(X \), one of which is closed domain, can be separated by two disjoint \(p \)-open subsets. A space \(X \) is called a \textit{mildly \(p \)-normal}, see [16], if any pair of disjoint closed domain subsets \(A \) and \(B \) of \(X \), can be separated by two disjoint \(p \)-open subsets. A space \(X \) is said to be a \textit{\(\pi p \)-normal}, see [27], if any pair of disjoint \(\pi \)-closed subsets \(A \) and \(B \) of \(X \), one of which is \(\pi \)-closed, can be separated by two disjoint \(p \)-open subsets. A space \(X \) is said to be a \textit{\(\pi \)-normal}, [10], if any pair of disjoint closed subsets \(A \) and \(B \) of \(X \), one of which is \(\pi \)-closed, can be separated by two disjoint open subsets. The complement of \(p \)-open (resp. semi-open) set is called \(p \)-closed (resp. semi-closed). The intersection of all \(p \)-closed sets containing \(A \) is called \textit{pre-closure} of \(A \), see [13], and denoted by \(pcl(A) \). Dually, the \textit{pre-interior} of \(A \) denoted by \(pint(A) \), is defined to be the union of all \(p \)-open sets contained in \(A \). A subset \(A \) is said to be a \textit{\(p \)-neighborhood} of \(x \), [16], if there exists a \(p \)-open set \(U \) such that \(x \in U \subseteq A \).

In this paper, we show that quasi \(p \)-normality is a topological property and it is a hereditary property only with respect to closed domain subspaces. Some properties, examples, characterizations and preservation theorems of this property are presented.

\section{Main Results}

First, we give the definition of quasi \(p \)-normality.

\begin{definition}
A space \(X \) is said to be a quasi \(p \)-normal if for every pair of disjoint \(\pi \)-closed subsets \(A \) and \(B \) of \(X \), there exist disjoint \(p \)-open subsets \(U \) and \(V \) of \(X \) such that \(A \subseteq U \) and \(B \subseteq V \).
\end{definition}

Clearly, every normal space is \(\pi \)-normal as well as \(p \)-normal and we have:

\[
\text{\(p \)-normal} \implies \text{\(\pi \text{\(p \)} \)-normal} \implies \text{almost \(p \)-normal} \implies \text{mildly \(p \)-normal} \\
\text{\(p \)-normal} \implies \text{\(\pi \text{\(p \)} \)-normal} \implies \text{quasi \(p \)-normal} \implies \text{mildly \(p \)-normal}
\]

None of the above implications is reversible as the following examples show.

\begin{example}
Consider the Example 2.2 in [27]. Observe that the topology \(T = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\} \) on the set \(X = \{a, b, c\} \) is quasi \(p \)-normal but not \(p \)-normal space. Also, the particular point topology on \(\mathbb{R} \), see Example 2.12 in [27], is quasi \(p \)-normal space but not \(p \)-normal.
\end{example}

\begin{example}
Quasi \(p \)-normality does not imply almost \(p \)-regularity. Consider the Example 2.3. in [27]. Observe that the topology \(T = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) on the set \(X = \{a, b, c\} \) is quasi \(p \)-normal but not almost \(p \)-regular space.
\end{example}
Example 2.4 The co-finite topology on \mathbb{R} and the Niemytzki plane topology are quasi p-normal spaces because they are πp-normal, see [27], but they are not normal.

Example 2.5 The rational sequence topology is an almost p-normal and not πp-normal space, see [27]. We proved that the rational sequence topology is not quasi-normal in [26] and showed that every p-open set in this space is an open in [27]. Thus, it is easy to observe that the rational sequence topology is not quasi p-normal.

Until now, we do not know a Tychonoff quasi p-normal space, which is not πp-normal (or not almost p-normal). Now, we need to recall the following definitions.

Definition 2.6 A subset A of a space X is called:

(a) generalized closed (briefly g-closed), [12], if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is open.

(b) strongly generalized closed (briefly g^*-closed), [23], if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is g-open.

(c) π-generalized closed (briefly πg-closed), [4], if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is π-open.

(d) generalized pre-closed, [15], (briefly gp-closed) if $p\operatorname{cl}(A) \subseteq U$, whenever $A \subseteq U$ and U is open.

(e) strongly generalized pre-closed, [28], (briefly g^*p-closed) if $p\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.

(f) π-generalized pre-closed, [21], (briefly πgp-closed) if $p\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open.

The complement of g-closed (resp. g^*-closed, πg-closed, gp-closed, g^*p-closed, πgp-closed) is called g-open (resp. g^*-open, πg-open, gp-open, g^*p-open, πgp-open). From the above definitions we have:

\[
\text{closed} \implies g^*\text{-closed} \implies g\text{-closed} \implies \pi g\text{-closed} \\
\text{closed} \implies p\text{-closed} \implies g^*p\text{-closed} \implies gp\text{-closed} \implies \pi gp\text{-closed}
\]

None of the above implications is reversible. The following theorem is useful for giving some characterizations of quasi p-normal spaces.

Theorem 2.7 For a space X, the following are equivalent:

(a) X is quasi p-normal.
(b) For every pair of \(\pi \)-open subsets \(U \) and \(V \) of \(X \) whose union is \(X \), there exist \(p \)-closed subsets \(G \) and \(H \) of \(X \) such that \(G \subseteq U \), \(H \subseteq V \) and \(G \cup H = X \).

(c) For any \(\pi \)-closed set \(A \) and each \(\pi \)-open set \(B \) such that \(A \subseteq B \), there exists a \(p \)-open set \(U \) such that \(A \subseteq U \subseteq p\text{cl}(U) \subseteq B \).

(d) For every pair of disjoint \(\pi \)-closed subsets \(A \) and \(B \) of \(X \), there exist \(p \)-open subsets \(U \) and \(V \) of \(X \) such that \(A \subseteq U \), \(B \subseteq V \) and \(p\text{cl}(U) \cap p\text{cl}(V) = \emptyset \).

Proof. (a) \(\Rightarrow \) (b). Let \(U \) and \(V \) be any \(\pi \)-open subsets of a quasi \(p \)-normal space \(X \) such that \(U \cup V = X \). Then, \(X \setminus U \) and \(X \setminus V \) are disjoint \(\pi \)-closed subsets of \(X \). By quasi \(p \)-normality of \(X \), there exist disjoint \(p \)-closed subsets \(U_1 \) and \(V_1 \) of \(X \) such that \(X \setminus U \subseteq U_1 \) and \(X \setminus V \subseteq V_1 \). Let \(G = X \setminus U_1 \) and \(H = X \setminus V_1 \). Then, \(G \) and \(H \) are \(p \)-closed subsets of \(X \) such that \(G \subseteq U \), \(H \subseteq V \) and \(G \cup H = X \).

(b) \(\Rightarrow \) (c). Let \(A \) be a \(\pi \)-closed and \(B \) be a \(\pi \)-open subset such that \(A \subseteq B \). Then, \(X \setminus A \) and \(B \) are \(\pi \)-open subsets of \(X \) whose union is \(X \). Then by (b), there exist \(p \)-closed sets \(G \) and \(H \) such that \(G \subseteq X \setminus A \), \(H \subseteq B \) and \(G \cup H = X \). Then, \(A \subseteq X \setminus G \), \(X \setminus B \subseteq X \setminus H \) and \((X \setminus G) \cap (X \setminus H) = \emptyset \). Let \(U = X \setminus G \) and \(V = X \setminus H \). Then, \(U \) and \(V \) are disjoint \(p \)-open sets such that \(A \subseteq U \subseteq X \setminus V \subseteq B \). Since \(X \setminus V \) is \(p \)-closed, then we have \(p\text{cl}(U) \subseteq X \setminus V \). Thus, \(A \subseteq U \subseteq p\text{cl}(U) \subseteq B \).

(c) \(\Rightarrow \) (d). Let \(A \) and \(B \) be any disjoint \(\pi \)-closed subsets of \(X \). Then, \(A \subseteq X \setminus B \), where \(X \setminus B \) is \(\pi \)-open. By (c), there exists a \(p \)-open subset \(U \) of \(X \) such that \(A \subseteq U \subseteq p\text{cl}(U) \subseteq X \setminus B \). Let \(V = X \setminus p\text{cl}(U) \). Then, \(V \) is \(p \)-open subset of \(X \). Thus, we obtain \(A \subseteq U \), \(B \subseteq V \) and \(p\text{cl}(U) \cap p\text{cl}(V) = \emptyset \).

(d) \(\Rightarrow \) (a). It is obvious. \(\square \)

Now, we prove the following result.

Theorem 2.8 The image of a quasi \(p \)-normal space under an open continuous injective function is a quasi \(p \)-normal.

Proof. Let \(X \) be a quasi \(p \)-normal space and let \(f : X \longrightarrow Y \) be an open continuous injective function. We need to show that \(f(X) \) is a quasi \(p \)-normal. Let \(A \) and \(B \) be any two disjoint \(\pi \)-closed sets in \(f(X) \). Since the inverse image of a \(\pi \)-closed set under an open continuous function is a \(\pi \)-closed, see Proposition 2.1 in [25], we have \(f^{-1}(A) \) and \(f^{-1}(B) \) are disjoint \(\pi \)-closed sets in \(X \). By quasi \(p \)-normality of \(X \), there exist \(p \)-open subsets \(U \) and \(V \) of \(X \) such that \(f^{-1}(A) \subseteq U \), \(f^{-1}(B) \subseteq V \) and \(U \cap V = \emptyset \). Since \(f \) is an open continuous injective function, we have \(A \subseteq f(U) \), \(B \subseteq f(V) \) and \(f(U) \cap f(V) = \emptyset \). By the Proposition 3.2 in [27], we obtain \(f(U) \) and \(f(V) \) are disjoint \(p \)-open sets in \(f(X) \) such that \(A \subseteq f(U) \) and \(B \subseteq f(V) \). Hence, \(f(X) \) is quasi \(p \)-normal.
From the above Theorem, we obtain the following corollary.

Corollary 2.9 Quasi p-normality is a topological property.

The following result shows that quasi p-normality is a hereditary property with respect to closed domain subspaces.

Theorem 2.10 Quasi p-normality is a hereditary with respect to closed domain subspaces.

Proof. Let M be a closed domain subspace of a quasi p-normal space X. Let A and B be any disjoint π-closed sets in M. Since M is a closed domain subspace of X, then by the Proposition 2.1 in [25] we have A and B are disjoint π-closed subsets of X. By quasi p-normality of X, there exist disjoint p-open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$. By the Lemma 3.9 in [27], we obtain $U \cap M$ and $V \cap M$ are disjoint p-open sets in M such that $A \subseteq U \cap M$ and $B \subseteq V \cap M$. Hence, M is quasi p-normal. □

Since every closed-and-open (clopen) subset is a closed domain, then we have the following corollary.

Corollary 2.11 Quasi p-normality is a hereditary with respect to clopen subspaces.

Definition 2.12 A space X is called weakly p-regular, [16], if for each $x \in X$ and for each open domain subset U of X such that $x \in U$, there exists a p-open subset V of X such that $x \in V \subseteq p\operatorname{cl}(V) \subseteq U$.

Observe that for each π-open subset U of a space X such that $x \in U$, there exists an open domain D in X such that $D \subseteq U$ and $x \in D$. Thus, we have the following theorem that gives a useful characterization of weakly p-regular spaces and it can be proved easily.

Theorem 2.13 A space X is a weakly p-regular if and only if for each π-open subset U of X and each $x \in X$ with $x \in U$, there exists a p-open subset V of X such that $x \in V \subseteq p\operatorname{cl}(V) \subseteq U$.

Recall that a space X is called sub-maximal, [17], if every dense subset of X is an open subset. In a sub-maximal space, every p-open subset is an open.

Definition 2.14 A space X is called a p_1-paracompact, [14], if every p-open cover of X has a locally finite open refinement.
Clearly, every p_1-paracompact space is a paracompact. Now, we prove the following result, which is analogous to the Theorem 5.5 in [16].

Theorem 2.15 Every weakly p-regular p_1-paracompact space is πp-normal (hence a quasi p-normal).

Proof. Let X be a weakly p-regular p_1-paracompact space. Since X is p_1-paracompact, then it is sub-maximal and paracompact, see Theorem 5.5 in [16]. Since X is sub-maximal and weakly p-regular, then it is a weakly regular. In view of that fact that every weakly regular paracompact space is π-normal, see [24], we obtain X is π-normal. Hence, X is πp-normal. Therefore, X is quasi p-normal. □

Since every almost p-regular is a weakly p-regular, we have the following corollary.

Corollary 2.16 Every almost p-regular p_1-paracompact space is a πp-normal (hence quasi p-normal).

The following result is useful for giving some other characterizations of quasi p-normal spaces.

Theorem 2.17 For a space X, the following are equivalent:

(a) X is quasi p-normal.

(b) For any disjoint π-closed subsets A and B of X, there exist disjoint gp-open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

(c) For any disjoint π-closed subsets A and B of X, there exist disjoint πgp-open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

(d) For every π-closed set A and every π-open set B such that $A \subseteq B$, there exists a gp-open subset V of X such that $A \subseteq V \subseteq \text{p cl}(V) \subseteq B$.

(e) For every π-closed set A and every π-open set B such that $A \subseteq B$, there exists a πgp-open subset V of X such that $A \subseteq V \subseteq \text{p cl}(V) \subseteq B$.

Proof. (a) \implies (b). Let X be a quasi p-normal space. Let A and B be any disjoint π-closed subsets of X. By quasi p-normality of X, there exist disjoint p-open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$. Thus, U and V are disjoint gp-open subsets of X such that $A \subseteq U$ and $B \subseteq V$.

(b) \implies (c). Suppose (b) holds. Let A and B be disjoint π-closed subsets of X. By (b), there exist disjoint gp-open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$. Since every gp-open set is a πgp-open, then U and V are disjoint πgp-open subsets of X such that $A \subseteq U$ and $B \subseteq V$.

(c) \implies (d). Suppose (c) holds. Let \(A \) be a \(\pi \)-closed and \(B \) be a \(\pi \)-open subset of \(X \) such that \(A \subseteq B \). Then, \(A \cap X \setminus B = \emptyset \). Thus, \(A \) and \(X \setminus B \) are disjoint \(\pi \)-closed subsets of \(X \). By (c), there exists disjoint \(\pi gp \)-open subsets \(U \) and \(V \) of \(X \) such that \(A \subseteq U \) and \(X \setminus B \subseteq V \). Therefore, we have \(A \subseteq \text{p int}(U), X \setminus B \subseteq \text{p int}(V) \) and \(\text{p int}(U) \cap \text{p int}(V) = \emptyset \). Let \(G = \text{p int}(U) \). Then, \(G \) is a \(p \)-open subset of \(X \) and hence \(gp \)-open such that \(A \subseteq G \subseteq \text{p cl}(G) \subseteq B \).

(d) \implies (e). Suppose (d) holds. Let \(A \) be a \(\pi \)-closed and \(B \) be a \(\pi \)-open subset of \(X \) such that \(A \subseteq B \). By (d), there exists a \(gp \)-open subset \(V \) of \(X \) such that \(A \subseteq V \subseteq \text{p cl}(V) \subseteq B \). Therefore, \(V \) is a \(\pi gp \)-open subset of \(X \) such that \(A \subseteq V \subseteq \text{p cl}(V) \subseteq B \).

(e) \implies (a). Suppose (e) holds. Let \(A \) and \(B \) be disjoint \(\pi \)-closed subsets of \(X \). Then, we have \(A \subseteq X \setminus B \) where \(X \setminus B \) is \(\pi \)-open. By (e), there exists a \(\pi gp \)-open subset \(V \) of \(X \) such that \(A \subseteq V \subseteq \text{p cl}(V) \subseteq X \setminus B \). Then, we obtain \(A \subseteq \text{p int}(V) \subseteq V \subseteq \text{p cl}(V) \subseteq X \setminus B \). Let \(G = \text{p int}(V) \) and \(H = X \setminus \text{p cl}(V) \). Then, \(G \) and \(H \) are disjoint \(p \)-open subsets of \(X \) such that \(A \subseteq G \) and \(B \subseteq H \). Hence, \(X \) is quasi \(p \)-normal. \(\square \)

The following definitions are in [1], [2], [9], [16], [17], [18] and [22].

Definition 2.18 A function \(f : X \longrightarrow Y \) is said to be:

(a) almost continuous (resp. rc-continuous) if \(f^{-1}(F) \) is a closed (resp. closed domain) set in \(X \) for each closed domain subset \(F \) of \(Y \).

(b) \(\pi \)-continuous if \(f^{-1}(F) \) is \(\pi \)-closed set in \(X \) for each closed subset \(F \) of \(Y \).

(c) almost closed (resp. rc-preserving) function if \(f(U) \) is closed (resp. closed domain) set in \(Y \) for each closed domain subset \(U \) of \(X \).

(d) weakly open if for each open subset \(U \) of \(X \), \(f(U) \subseteq \text{int}(f(U)) \).

(e) pre \(gp \)-continuous if \(f^{-1}(F) \) is \(gp \)-closed in \(X \) for every \(p \)-closed subset \(F \) of \(Y \).

(f) \(R \)-map (resp. completely continuous) if \(f^{-1}(V) \) is open domain in \(X \) for every open domain (resp. open) subset \(V \) of \(Y \).

(g) pre \(gp \)-closed if \(f(F) \) is \(gp \)-closed set in \(Y \) for every \(p \)-closed subset \(F \) of \(X \).

(h) almost pre-irresolute if for each \(x \in X \) and each \(p \)-neighborhood \(V \) of \(f(x) \) in \(Y \), \(\text{p cl}(f^{-1}(V)) \) is a \(p \)-neighborhood of \(x \) in \(X \).

(i) \(Mp \)-closed (\(Mp \)-open) if \(f(U) \) is \(p \)-closed (resp. \(p \)-open) set in \(Y \) for each \(p \)-closed (resp. \(p \)-open) set \(U \) in \(X \).
The following lemma is in [17].

Lemma 2.19 If a function \(f : X \rightarrow Y \) is weakly open continuous function, then \(f \) is \(Mp \)-open and \(R \)-map.

Clearly, every pre-irresolute function is an almost pre-irresolute and we have:

\[\pi \text{-continuous} \Rightarrow \text{continuous} \Rightarrow p \text{-continuous} \Rightarrow gp \text{-continuous} \]

Next, we prove the invariance of quasi \(p \)-normality in the following.

Theorem 2.20 If \(f : X \rightarrow Y \) is an \(Mp \)-open \(rc \)-continuous and almost pre-irresolute function from a quasi \(p \)-normal space \(X \) onto a space \(Y \), then \(Y \) is quasi \(p \)-normal.

Proof. Let \(A \) be a \(\pi \)-closed and \(B \) be a \(\pi \)-open subsets of \(Y \) such that \(A \subseteq B \). Then by \(rc \)-continuity of \(f \), \(f^{-1}(A) \) is \(\pi \)-closed and \(f^{-1}(B) \) is \(\pi \)-open subsets of \(X \) such that \(f^{-1}(A) \subseteq f^{-1}(B) \). Since \(X \) is quasi \(p \)-normal, then by the Theorem 2.7 there exists a \(p \)-open subset \(V \) of \(X \) such that \(f^{-1}(A) \subseteq V \subseteq p\text{cl}(V) \subseteq f^{-1}(B) \). Since \(f \) is \(Mp \)-open and an almost pre-irresolute surjection, it follows that \(f(V) \) is \(p \)-open subset of \(Y \) and \(A \subseteq f(V) \subseteq p\text{cl}(f(V)) \subseteq B \). Hence by the Theorem 2.7, \(Y \) is quasi \(p \)-normal. \(\square \)

Theorem 2.21 If \(f : X \rightarrow Y \) is a weakly open \(\pi \)-continuous almost pre-irresolute surjection and \(X \) is quasi \(p \)-normal, then \(Y \) is quasi \(p \)-normal.

Proof. Let \(A \) be a \(\pi \)-closed subset of \(Y \) and let \(B \) be a \(\pi \)-open subsets of \(Y \) such that \(A \subseteq B \). By \(\pi \)-continuity of \(f \), we have \(f^{-1}(A) \) is \(\pi \)-closed and \(f^{-1}(B) \) is \(\pi \)-open subset of \(X \) such that \(f^{-1}(A) \subseteq f^{-1}(B) \). By quasi \(p \)-normality of \(X \), there exists a \(p \)-open subset \(U \) of \(X \) such that \(f^{-1}(A) \subseteq U \subseteq p\text{cl}(U) \subseteq f^{-1}(B) \). Then, \(f(f^{-1}(A)) \subseteq f(U) \subseteq f(p\text{cl}(U)) \subseteq f(f^{-1}(B)) \). Since \(f \) is a weakly open continuous almost pre-irresolute surjection, then by the Lemma 2.19, we have \(f \) is \(Mp \)-open and \(R \)-map. Thus, we have \(f(U) \) is a \(p \)-open subset of \(Y \) such that \(A \subseteq f(U) \subseteq p\text{cl}(f(U)) \subseteq B \). Hence by the Theorem 2.7, \(Y \) is quasi \(p \)-normal. \(\square \)

Theorem 2.22 If \(f : X \rightarrow Y \) is a \(\pi \)-continuous, weakly open pre \(gp \)-closed surjection and \(X \) is quasi \(p \)-normal, then \(Y \) is \(\pi p \)-normal.

Proof. Let \(A \) and \(B \) be any disjoint closed subsets of \(Y \) such that \(A \) is \(\pi \)-closed. Since \(f \) is \(\pi \)-continuous surjection, then \(f^{-1}(A) \) and \(f^{-1}(B) \) are disjoint \(\pi \)-closed subsets of \(X \). Since \(X \) is quasi \(p \)-normal, then there exist disjoint \(p \)-open subsets \(U \) and \(V \) of \(X \) such that \(f^{-1}(A) \subseteq U \) and \(f^{-1}(B) \subseteq V \). Since \(f \) is a weakly open continuous surjection, then by the Lemma 2.19, we have \(f \) is \(Mp \)-open and \(R \)-map. Thus, \(f(U) \) and \(f(V) \) are disjoint \(p \)-open subsets of \(Y \).
such that \(A \subseteq f(U) \) and \(B \subseteq f(V) \). Hence, \(Y \) is \(\pi p \)-normal. \(\Box \)

The following theorems can be proved easily by using arguments similar to those in Theorem 2.20 and the Theorem 2.21.

Theorem 2.23 The following statements are true:

(a) If \(f : X \rightarrow Y \) is \(rc \)-continuous, \(Mp \)-closed map from a quasi \(p \)-normal space \(X \) onto a space \(Y \), then \(Y \) is quasi \(p \)-normal.

(b) If \(f : X \rightarrow Y \) is an \(R \)-map \(pre \ gp \)-closed surjection and \(X \) is quasi \(p \)-normal, then \(Y \) is quasi \(p \)-normal.

(c) If \(f : X \rightarrow Y \) is a completely continuous \(pre \ gp \)-closed surjection and \(X \) is quasi \(p \)-normal, then \(Y \) is \(p \)-normal.

(d) If \(f : X \rightarrow Y \) is almost continuous \(pre \ gp \)-closed surjection and \(X \) is \(p \)-normal, then \(Y \) is quasi \(p \)-normal.

(e) If \(f : X \rightarrow Y \) is \(\pi \)-continuous weakly open \(pre \ gp \)-closed surjection and \(X \) is quasi \(p \)-normal, then \(Y \) is \(p \)-normal.

(f) If \(f : X \rightarrow Y \) is \(pre \ gp \)-continuous \(rc \)-preserving injection and \(Y \) is quasi \(p \)-normal, then \(X \) is quasi \(p \)-normal.

(g) If \(f : X \rightarrow Y \) is \(pre \ gp \)-continuous almost closed injection and \(Y \) is \(p \)-normal, then \(X \) is quasi \(p \)-normal.

3 Conclusion

We used generalized closed (open) sets to obtain various characterizations and preservation theorems of quasi \(p \)-normality. Some properties, examples and results on quasi \(p \)-normal spaces were given.

ACKNOWLEDGEMENTS. The authors would like to thank University Sains Malaysia, Research University Grant and USM Fellowship for funding and supporting this research.

References

On quasi p-normal spaces

[29] V. Zaitsev, *On certain classes of topological spaces and their bicompa

Received: January, 2012