πp-Normal Topological Spaces

Sadeq Ali Saad Thabit1 and Hailiza Kamarulhaili2

School of Mathematical Sciences, University Sains Malaysia
11800 USM, Penang, Malaysia

Abstract

The main aim of this work is to introduce a weaker version of p-normality called πp-normality, which lies between p-normality and almost p-normality. We prove that p-normality is a topological property and it is a hereditary property with respect to closed domain subspaces. Some basic properties, examples, characterizations and preservation theorems of this property are presented.

Mathematics Subject Classification: 54D15, 54B10, 54B05, 54A05

Keywords: closed domain, π-closed, p-closed, π-normal, almost p-normal and mildly p-normal

1 Introduction and Preliminary

Throughout this paper, a space X always means a topological space on which no separation axioms are assumed, unless explicitly stated. We will denote an ordered pair by (x, y) and the set of real numbers by \mathbb{R}. For a subset A of a space X, $X \setminus A$, \overline{A} and $\text{int}(A)$ denote to the complement, the closure and the interior of A in X, respectively. If M is a subspace of X and $A \subseteq M$, then \overline{A}^X, \overline{A}^M and $\text{int}_X(A)$, $\text{int}_M(A)$ denote to the closure (resp. the interior) of A in X and in M, respectively. A subset A of a space X is said to be regularly-open or an open domain if it is the interior of its own closure, or equivalently if it is the interior of some closed set, [7]. A set A is said to be a closed domain if its complement is an open domain. A subset A of a space X is called a π-closed if it is a finite intersection of closed domain subsets and A is called a π-open if its complement is a π-closed, [17]. Two sets A and B of a space X are said to be separated if there exist two disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$, [2, 4, 11]. A space X is called an almost normal if any

1Corresponding author’s email: sthabit1975@gmail.com.
2e.mail: hailiza@cs.usm.my.
two disjoint closed subsets A and B of X, one of which is closed domain, can be separated, [15]. A space X is called a π-normal if any two disjoint closed subsets A and B of X, one of which is π-closed, can be separated, [6]. Also, we need to recall the following definitions.

Definition 1.1 [8], A subset A of a space X is said to be:

1. pre-open (briefly p-open) if $A \subseteq \text{int}(\overline{A})$.
2. semi-open if $A \subseteq \text{int}(A)$.
3. α-open if $A \subseteq \text{int(\text{int}(A))}$.

The complement of p-open (resp. semi-open, α-open) set is called p-closed (resp. semi-closed, α-closed). The intersection of all p-closed sets containing A is called p-closure of A and denoted by $p\text{cl}(A)$. Dually, the p-interior of A, denoted by $p\text{int}(A)$, is defined to be the union of all p-open sets contained in A. A subset A is said to be a p-neighborhood of x if there exists a p-open set U such that $x \in U \subseteq A$.

Definition 1.2 A space X is said to be a p-normal, [12] (resp. mildly p-normal, [8]) if any disjoint closed (resp. closed domain) sets A and B of X can be separated by two disjoint p-open sets U and V of X.

Definition 1.3 A space X is said to be an almost p-normal if any disjoint closed sets A and B of X, one of which is closed domain, can be separated by two disjoint p-open sets U and V, see [8].

Clearly that:

closed domain \implies π-closed \implies closed \implies α-closed \implies p-closed

None of the above implications is reversible.

In this paper, we introduce a weaker version of p-normality called πp-normality. The importance of this property is that it behaves slightly different from p-normality and almost p-normality. In fact, there are many πp-normal spaces which are not p-normal. We present some characterizations and preservation theorems of πp-normality. Also, we show that it is a topological property and a hereditary property with respect to closed domain subspaces. Some basic properties are given.

2 Main Results

First, we begin with the definition of πp-normality.
Definition 2.1 A space X is said to be πp-normal if for every pair of disjoint closed sets A and B of X, one of which is π-closed, there exist disjoint p-open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

Clearly, every π-normal space is πp-normal and every πp-normal space is almost p-normal. Thus, we have:

$$
\text{normal} \implies \text{p-normal} \implies \text{\pi p-normal} \implies \text{almost p-normal}
$$

$$
\text{normal} \implies \text{\pi-normal} \implies \text{\pi p-normal}
$$

None of the above implications is reversible.

Example 2.2 Consider the topology $\mathcal{T} = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ on the set $X = \{a, b, c\}$. Then, X is πp-normal space because the only π-closed sets in X are X and \emptyset. But it is not p-normal, since the pair of disjoint closed sets $\{b\}$ and $\{c\}$ have no disjoint p-open subsets containing them.

Example 2.3 πp-Normality does not imply almost p-regularity as the following example shows. Let $X = \{a, b, c\}$ and $\mathcal{T} = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then, X is p-normal (hence πp-normal). But it is not almost p-regular (hence not p-regular), since for the closed domain set $\{a, c\}$ and the point $b \notin \{a, c\}$. There do not exist disjoint p-open subsets containing them.

Before giving counterexamples about the other implications, we present the following Lemmas:

Lemma 2.4 Let D be a dense subset of a space X, then D is p-open.

Proof. Let D be a dense subset of a space X. Then $\overline{D} = X$. Thus, $\text{int}(\overline{D}) = \text{int}(X) = X$. Therefore, $D \subseteq \text{int}(\overline{D})$. Hence, D is p-open. □

Lemma 2.5 If D and E are disjoint dense subsets of a space X, then D and E are disjoint p-open subsets.

Lemma 2.6 Let D be a dense subset of a space X. For any closed subset A of X, the set $G = D \cup A$ is p-open.

Proof. Let D be a dense subset of a space X. Then $\overline{D} = X$. Let A be a closed subset of X and $G = D \cup A$. Then, $\overline{G} = (\overline{D} \cup \overline{A}) = \overline{D} \cup \overline{A} = X \cup A = X$. Thus, $\text{int}(\overline{G}) = \text{int}(X) = X$. Hence, $G \subseteq \text{int}(\overline{G})$. Therefore, G is p-open subset of X. □

Lemma 2.7 Let D be a dense subset of a space X. For any closed subset A of X, the subset $H = D \setminus A$ is p-open.
Proof. Let A be a closed and D be a dense subset of X. Let $H = D \setminus A$. Then, we have $H = D \setminus A = D \cap X \setminus A = X \setminus A = X \setminus \text{int}(A)$ as D is dense and $X \setminus A$ is open. Therefore, $\text{int}(H) = \text{int}(X \setminus \text{int}(A)) = X \setminus \text{int}(A)$. Since $\text{int}(A) \subseteq A$, then $X \setminus A \subseteq X \setminus \text{int}(A) = \text{int}(H)$. Thus, $H = D \setminus A \subseteq X \setminus A \subseteq X \setminus \text{int}(A) = \text{int}(H)$. Therefore, $H \subseteq \text{int}(H)$. Hence, H is p-open. □

The following lemma can be proved easily.

Lemma 2.8 Let D be a dense subset of a space X. For any two disjoint closed subsets A and B of X, the sets $U = (D \setminus A) \cup B$ and $V = (D \setminus B) \cup A$ are p-open subsets.

The following lemma is obvious by using the Lemma 2.8.

Lemma 2.9 If D and E are disjoint dense subsets of a space X, then X is p-normal.

Corollary 2.10 The co-finite topology on \mathbb{R} is p-normal space.

Recall that, the co-finite topology on \mathbb{R} is denoted by \mathcal{CF} and defined as: $U \in \mathcal{CF}$ if and only if $U = X$ or $\mathbb{R} \setminus U$ is finite. In this topology, observe that $\mathbb{Q} = \mathbb{R} = \mathbb{P}$. Thus, \mathbb{Q} and \mathbb{P} are disjoint dense subsets of $(\mathbb{R}, \mathcal{CF})$. Hence, by Lemma 2.9, $(\mathbb{R}, \mathcal{CF})$ is p-normal (hence πp-normal). It is well known that $(\mathbb{R}, \mathcal{CF})$ is not normal, see [16]. Therefore, the co-finite topology on \mathbb{R} is an example of πp-normal space but not normal.

Corollary 2.11 The Niemytzki plane topology is p-normal space.

In the Niemytzki Plane Topology $X = L \cup P$, see [16], let $D = \{\langle x, y \rangle : \langle x, y \rangle \in \mathbb{Q}^2, y \geq 0\}$ and $E = \{\langle x, y \rangle : \langle x, y \rangle \in \mathbb{P}^2, y > 0\}$. Then, $\overline{D} = \overline{E} = X$ and $D \cap E = \emptyset$. Therefore, D and E are disjoint dense subsets of X. By Lemma 2.9, X is p-normal and hence πp-normal. But the Niemytzki plane is not π-normal, see [13]. Therefore, the Niemytzki plane topology is an example of a πp-normal Tychonoff space but not a π-normal.

Example 2.12. The particular point topology on $X = \mathbb{R}$ is denoted by $\mathcal{T}_{\sqrt{2}}$ and defined as: $U \in \mathcal{T}_{\sqrt{2}}$ if and only if $U = \emptyset$ or $\sqrt{2} \in U$. Since the particular point topology $(\mathbb{R}, \mathcal{T}_{\sqrt{2}})$ is π-normal, then it is πp-normal. In fact, the only π-closed subsets of X are X and \emptyset. Now, let $A \subseteq \mathbb{R}$. Observe that:

$$
\overline{A} = \begin{cases}
\mathbb{R} & \text{if } \sqrt{2} \in A \\
A & \text{if } \sqrt{2} \notin A
\end{cases}
$$

and so,

$$
\text{int}(\overline{A}) = \begin{cases}
\mathbb{R} & \text{if } \sqrt{2} \in A \\
\emptyset & \text{if } \sqrt{2} \notin A
\end{cases}
$$
Therefore, the only p-open subsets of \(X \) are those which are open. Thus, any two disjoint closed subsets of \(X \) can not be separated by two disjoint p-open subsets. Hence, \(X \) is not p-normal. Observe that the particular point topology is an example of \(\pi p \)-normal space but not p-normal.

Now, we show that the Rational Sequence topology is an example of an almost p-normal space but not a \(\pi p \)-normal. First, we recall its definition.

Example 2.13 Let \(X = \mathbb{R} \). For each \(x \in \mathbb{P} \), where \(\mathbb{P} \) is the irrational numbers, fix a sequence \(\{x_n\}_{n \in \mathbb{N}} \subset \mathbb{Q} \), such that \(x_n \to x \), where the convergence is taken in \((\mathbb{R}, \mathcal{U})\). Let \(A_n(x) \) denote the \(n^{\text{th}} \)-tail of the sequence, where \(A_n(x) = \{x_j : j \geq n\} \). For each \(x \in \mathbb{P} \), let \(\mathcal{B}(x) = \{U_n(x) : n \in \mathbb{N}\} \), where \(U_n(x) = A_n(x) \cup \{x\} \). For each \(x \in \mathbb{Q} \), let \(\mathcal{B}(x) = \{\{x\}\} \). Then \(\{\mathcal{B}(x)\}_{x \in \mathbb{R}} \) is a neighborhood system. The unique topology on \(\mathbb{R} \) generated by \(\{\mathcal{B}(x)\}_{x \in \mathbb{R}} \) is called the Rational Sequence topology on \(\mathbb{R} \) and denoted by \(RS \).

It is well known that the Rational Sequence topology is a Tychonoff, first countable and not normal, see [16]. Also, we proved that it is almost normal and not \(\pi \)-normal in [14]. Now, we give the following lemma.

Lemma 2.14 Every p-open subset of the Rational Sequence topology is an open subset.

Proof. Let \(A \) be a p-open subset of \(X \), then \(A \subseteq \text{int}(\overline{A}) \). \(A \) can not be in \(\mathbb{P} \) (i.e. \(A \not\subseteq \mathbb{P} \)). In fact, if \(A \subseteq \mathbb{P} \) we have \(\text{int}(\overline{A}) = \text{int}(A) = \emptyset \) and thus \(A \not\subseteq \text{int}(\overline{A}) \). Hence, \(A \not\subseteq \mathbb{P} \). Then, either \(A \subseteq \mathbb{Q} \) or \(A \cap \mathbb{P} \neq \emptyset \neq A \cap \mathbb{Q} \). Now, we show that \(A \) is an open subset of \(X \) for each case.

Case 1. Let \(A \subseteq \mathbb{Q} \).

Then, \(A \) is an open subset of \(X \).

Case 2. Let \(A \cap \mathbb{P} \neq \emptyset \neq A \cap \mathbb{Q} \).

For each \(x \in A \cap \mathbb{P} \), there is a sequence \(\{x_n : n \in \mathbb{N}\} \subset \mathbb{Q} \) such that \(x_n \to x \).

Let \(D_x(n) = \{x_j : j \geq n, n \in \mathbb{N}\} \cup \{x\} \) be a basic open neighborhood of \(x \) and let \(E = \bigcup_{x \in A \cap \mathbb{P}} D_x(n) \).

Claim: For each \(x \in A \cap \mathbb{P} \), there is a natural number \(m_x \) such that \(x \in D_x(m_x) \subseteq A \).

Suppose that there exists an \(x \in A \cap \mathbb{P} \) such that \(D_x(n) \not\subseteq A \) for each \(n \in \mathbb{N} \).

Without loss of generality, we may assume that \(D_x(n) \cap A = \{x\} \). This implies that \(\overline{A} = (E \setminus D_x(n)) \cup \{x\} \cup (A \cap \mathbb{Q}) \) and \(\text{int}(\overline{A}) = (E \setminus D_x(n)) \cup (A \cap \mathbb{Q}) \). So, we have \(x \not\in \text{int}(\overline{A}) \). But \(x \in A \). Thus, \(A \not\subseteq \text{int}(\overline{A}) \) and hence \(A \) is not p-open, which is a contradiction. Hence, there is an \(m_x \) such that \(x \in D_x(m_x) \subseteq A \) for each \(x \in A \cap \mathbb{P} \). Therefore, \(D = \bigcup_{x \in A \cap \mathbb{P}} D_x(m_x) \subseteq A \). Thus, \(D \) is an open subset of \(X \) and it is contained in \(A \). So, we have \(D \cup (A \cap \mathbb{Q}) \subseteq A \). Since \(A \subseteq D \cup (A \cap \mathbb{Q}) \), then \(A = D \cup (A \cap \mathbb{Q}) \). Therefore, \(A \) is open set in \(X \). □
Theorem 2.15 The Rational Sequence topology is an almost \(p \)-normal and not a \(\pi p \)-normal.

Proof. Since \(X \) is an almost normal, see [14], then it is an almost \(p \)-normal. Now, we need to show that \(X \) is not \(\pi p \)-normal. For that, suppose \(X \) is \(\pi p \)-normal. Let \(A \) and \(B \) be any disjoint closed subsets of \(X \) such that \(A \) is \(\pi \)-closed. By \(\pi p \)-normality of \(X \), there exist disjoint \(p \)-open subsets \(U \) and \(V \) of \(X \) such that \(A \subseteq U \) and \(B \subseteq V \). By the Lemma 2.14, \(U \) and \(V \) are disjoint open subsets of \(X \). Thus, \(A \) and \(B \) can be separated by two disjoint open subsets. Hence, \(X \) is \(\pi \)-normal, which is a contradiction as \(X \) is not \(\pi \)-normal, see [14]. Therefore, \(X \) is not \(\pi p \)-normal. \(\square \)

Observe that the Rational Sequence topology is an example of an almost \(p \)-normal Tychonoff space but not \(\pi p \)-normal.

3 Characterizations of \(\pi p \)-Normality and Preservation Theorems

Now, we give some characterizations of \(\pi p \)-normal spaces.

Theorem 3.1 For a space \(X \), the following are equivalent:

(a) \(X \) is \(\pi p \)-normal.

(b) For every pair of open sets \(U \) and \(V \), one of which is \(\pi \)-open, whose union is \(X \), there exist \(p \)-closed sets \(G \) and \(H \) such that \(G \subseteq U \), \(H \subseteq V \) and \(G \cup H = X \).

(c) For every closed set \(A \) and every \(\pi \)-open set \(B \) such that \(A \subseteq B \), there is a \(p \)-open set \(V \) such that \(A \subseteq V \subseteq p \text{cl}(V) \subseteq B \).

Proof. (a) \(\Longrightarrow \) (b). Let \(U \) and \(V \) be open sets in a \(\pi p \)-normal space \(X \) such that \(V \) is \(\pi \)-open and \(U \cup V = X \). Then, \(X \setminus U \) and \(X \setminus V \) are closed sets in \(X \) such that \(X \setminus V \) is \(\pi \)-closed and \((X \setminus U) \cap (X \setminus V) = \emptyset \). By \(\pi p \)-normality of \(X \), there exist disjoint \(p \)-open sets \(U_1 \) and \(V_1 \) such that \(X \setminus U \subseteq U_1 \) and \(X \setminus V \subseteq V_1 \). Let \(G = X \setminus U_1 \) and \(H = X \setminus V_1 \). Then, \(G \) and \(H \) are \(p \)-closed sets of \(X \) such that \(G \subseteq U \), \(H \subseteq V \) and \(G \cup H = X \).

(b) \(\Longrightarrow \) (c). Let \(A \) be a closed set and let \(B \) be a \(\pi \)-open set of \(X \) such that \(A \subseteq B \). Then, \(A \cap (X \setminus B) = \emptyset \). Thus, \((X \setminus A) \cup B = X \), where \(X \setminus A \) is open. By (b), there exist \(p \)-closed sets \(G \) and \(H \) of \(X \) such that \(G \subseteq X \setminus A \), \(H \subseteq B \) and \(G \cup H = X \). Thus, we obtain that \(A \subseteq X \setminus G \) and \(X \setminus G \subseteq H \). Let \(V = X \setminus G \), then \(V \) is \(p \)-open set of \(X \). Therefore, we have \(A \subseteq V \subseteq p \text{cl}(V) \subseteq B \).

(c) \(\Longrightarrow \) (a). Let \(A \) and \(B \) be any disjoint closed sets of \(X \) such that \(B \) is
π-closed. Since $A \cap B = \emptyset$, then $A \subseteq X \setminus B$ and $X \setminus B$ is π-open. By (c), there exists a p-open set V such that $A \subseteq V \subseteq p\text{cl}(V) \subseteq X \setminus B$. Put $G = V$ and $H = X \setminus p\text{cl}(V)$. Then, G and H are disjoint p-open subsets of X such that $A \subseteq G$ and $B \subseteq H$. Hence, X is πp-normal. □

The following important proposition can be proved easily.

Proposition 3.2 Let $f : X \rightarrow Y$ be a function, then:

(a) The image of p-open subset under an open continuous function is p-open.

(b) The inverse image of p-open (resp. p-closed) subset under an open continuous function is p-open.

(c) The image of p-closed subset under an open and a closed continuous surjective function is p-closed.

Now, we prove the following result.

Theorem 3.3 The image of a πp-normal space under an open continuous injective function is πp-normal.

Proof. Let X be a πp-normal space and let $f : X \rightarrow Y$ be an open continuous injective function. We need to show that $f(X)$ is πp-normal. Let A and B be two disjoint closed sets in $f(X)$ such that A is π-closed. Then, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed sets in X such that $f^{-1}(A)$ is π-closed. By πp-normality of X, there exist p-open sets U and V of X such that $f^{-1}(A) \subseteq U$, $f^{-1}(B) \subseteq V$ and $U \cap V = \emptyset$. Since f is an open continuous one-to-one function, we have $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. By the Proposition 3.2, $f(U)$ and $f(V)$ are disjoint p-open sets in $f(X)$ such that $A \subseteq f(U)$ and $B \subseteq f(V)$. Hence, $f(X)$ is πp-normal space. □

From the above Theorem, we obtain the following corollary.

Corollary 3.4 πp-Normality is a topological property.

The following lemmas help us to show that πp-normality is a hereditary property with respect to closed domain subspaces.

Lemma 3.5 If M be a subspace of a space X and $A \subseteq M$, then $\text{int}_M(A) = \text{int}_M(A) \cap \text{int}_X(M)$.

Remark. If M be an open subspace of a space X and $A \subseteq M$, then $\text{int}_M(\overline{A}^M) = \text{int}_X(\overline{A}^M) = \text{int}_X(\overline{A}) \cap M$.

Lemma 3.6 Let M be a closed domain subspace of a space X and $A \subseteq M$. A is p-closed set in M if and only if A is p-closed set in X.

Proof. Let M be a closed domain subspace of X and $A \subseteq M$. Then, $M = \text{int}_X(M)^X$. Let A be a p-closed set in M. Then, $\text{int}_M(A)^M \subseteq A$. Since $\text{int}_X(M)$ is dense in M, then $\text{int}_M(A)^M = \text{int}_M(A) \cap \text{int}_X(M)^M = \text{int}_X(A)^X \cap M = \text{int}_X(A)^X$ as $\text{int}_X(A)^X \subseteq M$. Thus, $\text{int}_X(A)^X \subseteq A$. Hence, A is p-closed set in X.

Conversely, suppose that A is p-closed set in X. Then, $\text{int}_X(A)^X \subseteq A$. Now, $\text{int}_M(A)^M = \text{int}_X(A)^X \cap M = \text{int}_X(A)^M = \text{int}_M(A) \cap \text{int}_X(M)^M = \text{int}_M(A)^M$. Thus, $\text{int}_M(A)^M \subseteq A$. Hence, A is p-closed set in M. □

Lemma 3.7 Let M be an open subspace of a space X and $A \subseteq M$. A is p-open set in M if and only if A is p-open set in X.

Proof. Let A be a p-open set in M. Then, $A \subseteq \text{int}_M(A)^M = \text{int}_X(A)^M = \text{int}_X(A^X) \cap M \subseteq \text{int}_X(A^X)$ as M is open. Thus, $A \subseteq \text{int}_X(A^X)$. Hence, A is p-open set in X.

Conversely, suppose that A is p-open set in X. Then, $A \subseteq \text{int}_X(A^X)$. Thus, we have $A \subseteq \text{int}_X(A^X) \cap M = \text{int}_M(A^M)$ as M is open. Therefore, $A \subseteq \text{int}_M(A^M)$. Hence, A is p-open in M. □

Lemma 3.8 Let M be a closed domain subspace of a space X. If A is a p-closed set in X, then $A \cap M$ is p-closed set in M.

Proof. Let A be a p-closed set in X. Then, $\text{int}_X(A)^X \subseteq A$. We need to show that $A \cap M$ is p-closed set in M.

Now we have, $\text{int}_M(A \cap M)^M = \text{int}_M(A \cap M) \cap \text{int}_X(M)^M = \text{int}_X(A \cap M)^X \cap M = \text{int}_X(A \cap M)^X \cap M \subseteq \text{int}_X(A)^X \cap M \subseteq A \cap M$. Hence, $A \cap M$ is p-closed set in M. □

Lemma 3.9 Let M be a closed domain subspace of a space X. If A is a p-open set in X, then $A \cap M$ is p-open set in M.

Proof. Let A be a p-open set in X. Then, $X \setminus A$ is p-closed set in X. Thus by the Lemma 3.8, the set $G = (X \setminus A) \cap M$ is p-closed set in M. Therefore, $M \setminus G$ is p-open set in M. But $M \setminus G = A \cap M$. Hence, $A \cap M$ is p-open set in M. □

Now, we prove the following result.

Theorem 3.10 A closed domain subspace of a πp-normal space is πp-normal.

Proof. Let M be a closed domain subspace of a πp-normal space X. Let A and B be any disjoint closed sets in M such that B is π-closed. Then, A and B are disjoint closed sets in X such that B is π-closed set in X. By πp-normality of
πp-normal topological spaces

Let X, there exist disjoint p-open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$. By the Lemma 3.9 (also, since every closed domain is semi-open, then by the Lemma 6.3 in [3]), we obtain that $U \cap M$ and $V \cap M$ are disjoint p-open sets in M such that $A \subseteq U \cap M$ and $B \subseteq V \cap M$. Hence, M is πp-normal subspace.

Since every closed-and-open (clopen) subset is a closed domain, then we have the following corollary.

Corollary 3.11 πp-Normality is a hereditary with respect to clopen subspaces.

Now, let us recall the following definitions.

Definition 3.12 A function $f : X \rightarrow Y$ is said to be:

(a) π-continuous, see [1, 10], (resp. rc-continuous, see [5]) if $f^{-1}(F)$ is π-closed (resp. closed domain) set in X for each closed (resp. closed domain) set F in Y.

(b) almost p-irresolute, see [8], if for each $x \in X$ and each p-neighborhood V of $f(x)$ in Y, $p\text{cl}(f^{-1}(V))$ is a p-neighborhood of x in X.

(c) Mp-closed (Mp-open), see [8], if $f(U)$ is p-closed (resp. p-open) set in Y for each p-closed (resp. p-open) set U in X.

Now, we prove the following results on the invariance of πp-normality.

Theorem 3.13 If $f : X \rightarrow Y$ is a continuous Mp-open rc-continuous and almost p-irresolute surjection from a πp-normal space X onto a space Y, then Y is πp-normal.

Proof. Let A be a closed subset of Y and B be a π-open subset of Y such that $A \subseteq B$. By continuity and rc-continuity of f, we obtain that $f^{-1}(A)$ is closed in X and $f^{-1}(B)$ is π-open in X such that $f^{-1}(A) \subseteq f^{-1}(B)$. Since X is πp-normal, then by the Theorem 3.1, there exists a p-open set U of X such that $f^{-1}(A) \subseteq U \subseteq p\text{cl}(U) \subseteq f^{-1}(B)$. Then, $f(f^{-1}(A)) \subseteq f(U) \subseteq f(p\text{cl}(U)) \subseteq f(f^{-1}(B))$. Since f is Mp-open almost p-irresolute surjection, we obtain that $A \subseteq f(U) \subseteq p\text{cl}(f(U)) \subseteq B$ and $f(U)$ is p-open set in Y. Hence by the Theorem 3.1, Y is πp-normal space. □

Theorem 3.14 If $f : X \rightarrow Y$ is an Mp-open π-continuous almost p-irresolute function from a πp-normal space X onto a space Y, then Y is πp-normal.

Proof. Let A be a closed set of Y and let B be a π-open set in Y such that $A \subseteq B$. Then by π-continuity of f, $f^{-1}(A)$ is π-closed (hence closed) and $f^{-1}(B)$ is π-open set in X such that $f^{-1}(A) \subseteq f^{-1}(B)$. By πp-normality of X,
there exists a p-open set U of X such that $f^{-1}(A) \subseteq U \subseteq p\text{cl}(U) \subseteq f^{-1}(B)$. Since f is Mp-open almost p-irresolute surjection, we obtain that $A \subseteq f(U) \subseteq p\text{cl}(f(U)) \subseteq B$, where $f(U)$ is p-open set in Y. Hence by the Theorem 3.1, Y is πp-normal. □

Theorem 3.15 If $f : X \rightarrow Y$ is an Mp-closed π-continuous function from a πp-normal space X onto a space Y, then Y is πp-normal.

Proof. The proof is routine and hence omitted. □

Theorem 3.16 If $f : X \rightarrow Y$ is an a closed π-continuous surjection and X is π-normal, then Y is πp-normal.

Proof. Let A and B be disjoint closed sets in Y such that A is π-closed. By π-continuity of f, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π-closed sets of X. Since X is π-normal, there exist disjoint open sets U and V of X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By the Proposition 6. in [9], there are disjoint α-open sets G and H in Y such that $A \subseteq G$ and $B \subseteq H$. Since every α-open set is p-open, then G and H are disjoint p-open sets containing A and B, respectively. Therefore, Y is πp-normal. □

4 Conclusion

We introduced a weaker version of p-normality called πp-normality. We proved that it is a topological property and a hereditary property with respect to closed domain subspaces. We gave some characterizations and preservation theorems of it. Some counterexamples were given and some basic properties were presented.

ACKNOWLEDGEMENTS. The authors would like to thank University Sains Malaysia, Research University Grant and USM Fellowship for funding and supporting this research.

References

Received: November, 2011