Common Fixed Point Theorems for Maps Altering Distance under a Contractive Condition of Integral Type for Pairs of Sumcompatible Maps

Massoumeh Hosseinjani Zamenjani
Department of Engineering, Faculty of Mathematics
Islamic Azad University, Shoshtar Branch, Shoshtar, Iran
hosseinjani822@yahoo.com

Vahid Reza Hosseini
Department of Mathematics, Faculty of Science
Imam Khomeini International University Qazvine, Iran
v.r.hossini@gmail.com

Abstract

In this paper we obtain a unique common fixed point theorem under a contractive condition of integral type for four self maps using generalized altering distance function in four variables. which generalizes and improves the main theorems of [1].

1 Introduction

M.S.Khan [9] introduced the altering distances and used it for solving fixed points problems in metric spaces. Recently many authors, for example [3] and [10] used the altering distance function and obtained some fixed point theorems. Choudhury [6] in 2005 introduced generalized distance function in three variables and obtain a common fixed point theorem for a pair of self maps in a complete metric space. The main aim of this paper is to prove the existence and uniqueness of common fixed points of two pairs of compatible of sumcompatible mappings by using a
generalized distance function of four variables under a contractive condition of integral type. Recently, H.Bouhadjera and C.Godet Thbie [5] obtained common fixed point theorems for some sumcompatible maps type mappings, in this paper we show two OWC maps are subcompatible, however the converse is not true in general.

Definition 1.1. Let \((X, d)\) be a metric space. Maps \(f\) and \(g : X \to X\) are said to be subcompatible iff there exists a sequence \(\{x_n\}\) in \(X\) such that \(\lim_{n \to \infty} f_n = \lim_{n \to \infty} g_n = t, t \in X\) and which satisfy \(\lim_{n \to \infty} d(fgx_n;gfx_n) = 0\).

Obviously, two OWC maps are subcompatible, however the converse is not true in general. The example below shows that there exist subcompatible maps which are not OWC.

Example 1.2. Let \(X = [0, \infty)\) with the usual metric \(d\). Define \(f\) and \(g\) as follows:

\[
f(x) = x^2 \quad \text{and} \quad g(x) = \begin{cases} x + 2 & \text{if } x \in [0,4] \cup (9, \infty) \\ x + 12 & \text{if } x \in [4,9] \end{cases}
\]

(1.1)

Let \(\{x_n\}\) be a sequence in \(X\) defined by \(x_n = 2 + \frac{1}{n}\) for \(n = 1,2,3,\ldots\).

Then

\[\lim_{n \to \infty} fx_n = \lim_{n \to \infty} x_n^2 = 4 = \lim_{n \to \infty} gfx_n = \lim_{n \to \infty}(x_n + 2)\] (1.2)

And

\[fgx_n = f(x_n + 2) = (x_n + 2)^2 \to 16 \text{ when } n \to \infty\] (1.3)

\[gfx_n = g(x_n^2) = x_n^2 + 12 \to 16 \text{ when }\] (1.4)

Thus, \(\lim_{n \to \infty} d(fgx_n;gfx_n) = 0\)

That is, \(f\) and \(g\) are subcompatible.

On the other hand, we have \(fx = gx\) iff \(x = 2\) and

\[fg(2) = f(4) = 4^2 = 16\]

\[gf(2) = g(4) = 4 + 2 = 6\]

Then, \(f(2) = 4 = g(2)\) but \(fg(2) = 16 \neq 6 = gf(2)\), hence \(f\) and \(g\) are not own.

Definition 1.3. Let \(\Psi_n\) denote the set of all the variables

(i) \(\psi\) is continuous;

(ii) \(\psi\) is monotone increasing in all the variables;

(iii) \(\psi(t_1, t_2, t_3, t_4, \ldots, t_n) = 0\) if and only if \(t_1 = t_2 = t_3 = t_4 = \cdots = t_n = 0\)

we define \(\phi(x) = \psi(x,x,x,x,\ldots)\) for \(x \in [0, \infty]\). Clear, \(\phi(x) = 0\) if only if \(x = 0\).
Example of ψ are $\psi(t_1,t_2,t_3,t_4,...,t_n) = k \max\{t_1,t_2,t_3,...,t_n\}$, for $k > 0$ \hspace{1cm} (1.6)

$\psi(t_1,t_2,t_3,t_4,...,t_n) = t_1^{a_1} + t_2^{a_2} + ... + t_n^{a_n}$; $a_1,a_2,a_3,... \geq 1$ \hspace{1cm} (1.7)

2 Main Result

Theorem 2.1. Let (X,d) be a complete metric space and $f,g,S,T : X \to X$ such that:

(i) $\int_0^{\phi_1(d(fx,gy))} \varphi(t)dt \leq \int_0^{\psi_1(d(Sx,Ty),d(Sx,fx),d(Ty,gy))} \frac{1}{2}(d(Sx,gy)+d(Ty,fx))) \varphi(t)dt - \int_0^{\psi_2(d(Sx,Ty),d(Sx,fx),d(Ty,gy))} \frac{1}{2}(d(Sx,gy)+d(Ty,fx))) \varphi(t)dt$

For all $x,y \in X$ where $\psi_1, \psi_2 \in \mathcal{U}_4$ and $\phi_1 = \psi(x,x,x,x) \in [0,\infty)$

(ii) One of four mapping f,g,S and T is continuous;

(iii) (f,S) and (g,T) are subcompatible.

(iv) pairs; $f(x) \subseteq T(x)$, $g(x) \subseteq S(x)$

(v) where $\varphi : R^+ \to R^+$ is a lebesgue integrable mapping which is sum able, non negative and such that for each $\varepsilon > 0$, $\int_0^{\varepsilon} \varphi(t)dt > 0$ then f,g,S,T have a unique common fixed point in X.

Proof. Let $x_0 \in X$, be an arbitrary point. From (iv) construct the sequence $\{x_n\}$ and $\{y_n\}$ in X such that:

$$fx_{2n} = Tx_{2n+1} = y_{2n}$$

$$gx_{2n+1} = Sx_{2n+2} = y_{n+1} \hspace{1cm} ; \hspace{1cm} n = 0,1,2,3,...$$

Let $a_n = d(y_n,y_{n+1})$. Putting $x = x_{2n}$, $y = x_{2n+1}$ in (i) we get

$$\int_0^{\phi_1(a_{2n})} \varphi(t)dt \leq \int_0^{\psi_1(a_{2n-1},a_{2n-1},a_{2n},a_{2n})} \varphi(t)dt - \int_0^{\psi_2(a_{2n-1},a_{2n-1},a_{2n},a_{2n})} \varphi(t)dt \hspace{1cm} (2.8)$$

If $a_{2n-1} \leq a_{2n}$ then

$$\int_0^{\phi_1(a_{2n})} \varphi(t)dt \leq \int_0^{\psi_1(a_{2n},a_{2n-1},a_{2n})} \varphi(t)dt - \int_0^{\psi_2(a_{2n},a_{2n},a_{2n},a_{2n})} \varphi(t)dt \hspace{1cm} (2.10)$$
\[\int_0^{\psi_2(a_{2n-1}, a_{2n-1}, a_{2n-1})} \varphi(t) \, dt < \int_0^{\phi_1(a_{2n})} \varphi(t) \, dt \]

(2.11)

Which is contradiction? Hence \(a_{2n} \leq a_{2n-1} \), \(n = 0, 1, 2, 3, 4, \ldots \)

Similarly by putting \(x = x_{2n+1}, y = x_{2n+1} \) in (i) we can show that \(a_{2n+1} \leq a_{2n} \), \(n = 0, 1, 2, 3, 4, \ldots \) thus \(a_{n+1} \leq a_n \), \(n = 0, 1, 2, 3, 4, \ldots \) so that \(\{a_n\} \) is a decreasing sequence of non-negative real numbers and hence convergent to some \(a \in R \)

Let \(b = \lim_{n \to \infty} \frac{1}{2} d(y_n, y_{n+1}) \).

Letting \(n \to \infty \) in (i) we get

\[\int_0^{\phi_1(a)} \varphi(t) \, dt \leq \int_0^{\psi_1(a, a, a, a)} \varphi(t) \, dt - \int_0^{\psi_2(a, a, a, b)} \varphi(t) \, dt = \]

\[\int_0^{\phi_1(a)} \varphi(t) \, dt - \int_0^{\psi_2(a, a, a, b)} \varphi(t) \, dt \]

Thus

\[\psi_2(a, a, a, a, b) = 0 \]

so that \(a = b = 0 \) hence

\[\lim_{n \to \infty} d(y_n, y_{n+1}) = 0 \]

(2.12)

To show that \(\{y_n\} \) is Cauchy sequence, it is sufficient to show that the subsequence \(\{y_{2n}\} \) of \(\{y_n\} \) is Cauchy sequence in view of (2.12). If \(\{y_{2n}\} \) is not Cauchy. There exists \(\alpha > 0 \) and monotone increasing sequence of natural numbers \(\{2m(k)\} \) and \(\{2n(k)\} \) such that \(n(k) > m(k) \),

\[d(y_{2m(k)}, y_{2n(k)}) \geq \alpha \quad \text{and} \quad d(y_{2m(k)}, y_{2n(k) - 2}) < \varepsilon \]

(2.13)

From (2.13)

\[\varepsilon \leq d(y_{2m(k)}, y_{2n(k)}) \]

\[\leq d(y_{2m(k)}, y_{2n(k) - 2}) + d(y_{2n(k) - 2}, y_{2n(k) - 2}) + d(y_{2n(k) - 2}, y_{2n(k)}) \]

(2.14)

\[\leq \varepsilon + d(y_{2n(k) - 1}, y_{2n(k)}) + d(y_{2n(k) - 1}, y_{2n(k)}) \]

Letting \(k \to \infty \) using (2.12) we have
Common fixed point theorems

\[\lim_{n \to \infty} d\left(y_{2m(k)}, y_{2n(k)}\right) = \varepsilon \]
(2.15)

Letting \(k \to \infty \) using (2.12), and (2.13) in

\[|d\left(y_{2m(k)}, y_{2n(k)}\right) - d\left(y_{2m(k)}, y_{2n(k)+1}\right)| \leq d\left(y_{2n(k)}, y_{2n(k)+1}\right) \]
(2.16)

We get

\[\lim_{n \to \infty} d\left(y_{2n(k)+1}, y_{2m(k)}\right) = \varepsilon \]
(2.17)

Letting \(k \to \infty \) and using (2.12), (2.13) in

\[|d\left(y_{2m(k)-1}, y_{2n(k)}\right) - d\left(y_{2m(k)}, y_{2n(k)}\right)| \leq d\left(y_{2m(k)}, y_{2m(k)-1}\right) \]

We get

\[\lim_{n \to \infty} d\left(y_{2n(k)}, y_{2m(k)-1}\right) = \varepsilon \]
(2.18)

Putting in \(x = x_{2m(k)} \), \(y = x_{2n(k)-1} \) in (i) we have

\[\int_0^{\phi_1 d(y_{2m(k)}, y_{2n(k)+1})} \varphi(t) dt \leq \]

\[\int_0^{\psi_1(d(y_{2m(k)-1}, y_{2n(k)}), d(y_{2m(k)}, y_{2n(k)}), d(y_{2n(k)+1}, y_{2n(k)}))} d\left(y_{2m(k)-1}, y_{2n(k)+1}\right) + d\left(y_{2m(k)}, y_{2n(k)}\right) \]

\[- \int_0^{\psi_2(d(y_{2m(k)-1}, y_{2n(k)}), d(y_{2m(k)-1}, y_{2m(k)}), d(y_{2n(k)+1}, y_{2n(k)}))} d\left(y_{2m(k)-1}, y_{2n(k)+1}\right) + d\left(y_{2m(k)}, y_{2n(k)}\right) \]

\[\varphi(t) dt \]

Letting \(k \to \infty \) and using (2.12), (2.13), (2.15), (2.16) and (2.18) we get

\[\int_0^{\phi_1(\varepsilon)} \varphi(t) dt \leq \int_0^{\psi_1(\varepsilon, 0, 0, \varepsilon)} \varphi(t) dt - \int_0^{\psi_2(\varepsilon, 0, 0, \varepsilon)} \varphi(t) dt \]

\[< \int_0^{\psi_1(\varepsilon, \varepsilon, \varepsilon, \varepsilon)} \varphi(t) dt = \int_0^{\phi_1(\varepsilon)} \varphi(t) dt \]
It is a contraction. Therefore \(\{y_{2n}\} \) is a Cauchy sequence hence is a Cauchy sequence from (3) since \(X \) is complex, there exists \(z \in X \) such that \(y_n \to z \) as \(n \to \infty \).

Case: suppose \(S \) is continuous. Then \(Sf x_{2n} \to Sz, S^2 x_{2n} \to Sz \) since \((f, S) \) is subcompatible. We have \(fS x_{2n} \to Sz \).

Step (I): putting in \(x = S x_{2n} \), \(y = x_{2n+1} \) (i) we have:

\[
\int_0^{\Phi_1 d(fS x_{2n}, g x_{2n+1})} \varphi(t) dt \leq \\
\int_0^{\psi_1(d(S^2 x_{2n} T x_{2n+1}) d(S^2 x_{2n} fS x_{2n}), (T x_{2n+1} g x_{2n+1}), \frac{1}{2}(S^2 x_{2n} g x_{2n+1} + (T x_{2n+1} fS x_{2n})))} \varphi(t) dt \\
- \int_0^{\psi_2(d(S^2 x_{2n} T x_{2n+1}), (S^2 x_{2n} fS x_{2n}), (T x_{2n+1}, g x_{2n+1}), \frac{1}{2}(S^2 x_{2n} g x_{2n+1} + (T x_{2n+1} fS x_{2n})))} \varphi(t) dt
\]

Therefore:

\[
\int_0^{\Phi_1 d(Sz, z)} \varphi(t) dt \leq \int_0^{\psi_1(d(Sz, z), d(Sz, z), d(Sz, z))} \varphi(t) dt \leq \int_0^{\Phi_1 d(Sz, z)} \varphi(t) dt - \int_0^{\psi_1(d(Sz, z), 0, 0, d(Sz, z))} \varphi(t) dt < \int_0^{\Phi_1 d(Sz, z)} \varphi(t) dt
\]

It is contradiction if \(Sz \neq z \) hence \(Sz = z \)

Step (II): putting in \(x = z, y = x_{2n+1} \) (i) and letting \(n \to \infty \); we get \(fz = z \).

Step (III): since \(z = fz \in f(x) \subseteq T(x) \) there exists \(u \in X \) such that \(z = Tu \) putting \(x = x_{2n} \), \(y = u \) in (i), we get \(gz = z \) so that \(gz = Tz \) and hence \(gu = Tu \) since \((g, T) \) is subcompatible we have \(gTu = T gu \) so that \(gz = Tz \)

Step (IV): putting \(x = z \), \(y = z \), in (i) we get \(g(z) = z \) so that \(gz = Tz \).

Thus \(z \) is a common fixed point of \(f, g, S \) and \(T \).

Case: suppose is continuous, then \(f^2 x_{2n} \to fz \), \(fS x_{2n} \to fz \) since is similarly we can show that \(z \) is a common fixed point of \(f, g, S \) and \(T \) when \(g \) or \(T \) is continuous as a previous two cases uniqueness of common fixed point follows easily from (i). \(\Box \)

Example 2.2. Let \(X = [0,1] \) with the usual metric \((x,y) = |x-y| \). Define \(f, g, T, S : X \to X ; fx = \frac{x}{2} ; gy = \frac{y}{2} ; Sx = x ; Ty = y \).

Let \(\psi_1(t_1, t_2, t_3, t_4) = Max\{t_1, t_2, t_3, t_4\} ; \phi(t) = 2t ; \psi_2 = \psi_1 \frac{1}{2} \psi_1 \)
Then $\phi_i(t) = t \quad \forall t \in [0, \infty)$.

$$
\left(\frac{x - y}{2}\right)^2 \leq \frac{1}{2} \max \left\{ \left| x - y \right|^2, \left| x - \frac{x_i}{2}\right|^2, \left| y - \frac{y_i}{2}\right|^2, \left(\frac{1}{2}\left[\left| x - \frac{y_i}{2}\right| + \left| y - \frac{x_i}{2}\right|\right]\right)^2 \right\}
$$

For all $x, y \in X$, it follows that the condition (i).

Let x_n be any sequence in X such that $fx_n \to t$ and $Sx_n \to t$ for some t in X. Then $t = 0$; $d(fSx_n, Sfx_n) \to 0$. Hence $\{f, S\}$ subcompatible. We have common fixed point in X.

References

Received: December, 2011