An Analog of Titchmarsh’s Theorem of Jacobi Transform

Radouan Daher
Faculty of Sciences Ain Ckock, Casablanca, Morocco
radaher@yahoo.fr

Mohamed El Hamma
Faculty of Sciences Ain Ckock, Casablanca, Morocco
m_elhamma@yahoo.fr

Abstract

In this paper, we prove an analog of Titchmarsh’s theorem for the Jacobi transform for functions satisfying the Jacobi-Lipschitz condition in $L^2(\mathbb{R}^+, \Delta_{\alpha,\beta}(t)dt)$, using a generalized translation operator.

Mathematics Subject Classification: 33C45; 43A90; 42C15

Keywords: Jacobi operator, Jacobi transform, generalized translation operator

1 Introduction and notations

In the present paper, we study a the set of functions in $L^2(\mathbb{R}^+, \Delta_{\alpha,\beta}(t)dt)$ satisfying the Cauchy Lipschitz condition, we use translation operator τ_h associated of Jacobi operators, the operator has played a decisive role in the development of Euclidean harmonic analysis, as evidenced, for example, by landmark paper [3] by Hörmander.

Titchmarsh’s [7, Theorem 85] characterized the set of functions $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of asymptotic estimate growth of the norm of their Fourier transform, namely we have

Theorem 1.1 [7] Let $\alpha \in (0, 1)$ and assume that $f \in L^2(\mathbb{R})$. Then the following are equivalents:

1. $\|f(t + h) - f(t)\|_{L^2(\mathbb{R})} = O(h^\alpha)$ as $h \to 0$

2. $\int_{|\lambda| \geq r} |\hat{f}(\lambda)|^2 d\lambda = O(r^{-2\alpha})$ as $r \to \infty$

where \hat{f} stands for the Fourier transform of f.
The main aim of this paper is to establish of Theorem 1.1 in Jacobi operators setting by means the generalized translation operator τ_h defined in Section 2. We point out that similar results have been established in the context of noncompact rank 1 Riemannian symmetric spaces [6].

In this section, we briefly collect the pertinent definitions and facts relevant for Jacobi analysis, can be found in [4].

Let $(a)_0 = 1$ and $(a)_k = a(a+1)......(a+k-1)$. The hypergeometric function

$$F(a, b, c, z) = \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k k!} z^k, \quad |z| < 1$$

the function $z \rightarrow F(a, b, c, z)$ is the unique solution of the differential equation

$$z(1-z)u''(z) + (c-(a+b+1)z)u'(z) - abu(z) = 0$$

which is regular in 0 and equals 1 there.

The Jacobi function with parameters (α, β) is defined by the formula

$$\varphi^{(\alpha,\beta)}_\lambda(t) = F\left(\frac{1}{2}(\rho - i\lambda), \frac{1}{2}(\rho + i\lambda), \alpha + 1, -\sinh^2 t\right)$$

For $\alpha \geq-\frac{1}{2}$, $\alpha > \beta \geq-\frac{1}{2}$, $\rho = \alpha + \beta + 1$, the system $\{\varphi^{(\alpha,\beta)}_\lambda\}_{\lambda \geq 0}$ is a continuous orthonormal system in \mathbb{R}^+, with respect to the weight

$$\Delta_{\alpha,\beta}(t) = (2 \sinh t)^{2\alpha+1}(2 \cosh t)^{2\beta+1}$$

The Jacobi operator

$$L = L_{\alpha,\beta} = \frac{d^2}{dt^2} + ((2\alpha + 1) \coth t + (2\beta + 1) \tanh t) \frac{d}{dt}$$

By means of which the Jacobi function $\varphi^{(\alpha,\beta)}_\lambda$ may alternatively be characterized as the unique solution to

$$L\varphi + (\lambda^2 + \rho^2)\varphi = 0 \quad (1)$$

on \mathbb{R}^+ satisfying $\varphi^{(\alpha,\beta)}_\lambda(0) = 1$, $\varphi^{(\alpha,\beta)}_\lambda'(0) = 0$, and $\lambda \rightarrow \varphi^{(\alpha,\beta)}_\lambda(t)$ is analytic for all $t \geq 0$.

We adhere to the conventions and normalization used [2], the c-function

$$c(\lambda) = \frac{2^\rho \Gamma(\rho)(1+i\lambda)}{\Gamma(1/2(\rho+i\lambda))\Gamma(1/2(\rho+i\lambda)-\beta)}$$

where $\alpha > 0$, $\alpha > \beta \geq-\frac{1}{2}$.

The Jacobi transform of a function $f \in L^2(\mathbb{R}^+, \Delta_{\alpha,\beta}(t)dt)$ is defined by
\[\hat{f}(\lambda) = \int_0^\infty f(t) \varphi^{(\alpha,\beta)}_\lambda(t) \Delta_{\alpha,\beta}(t) \, dt \]
(2)

and the inversion formula is statement that (cf. [4])

\[f(t) = \frac{1}{2\pi} \int_0^\infty \hat{f}(\lambda) \varphi^{(\alpha,\beta)}_\lambda(t) d\mu(\lambda) \]
(3)

where \(d\mu(\lambda) = |c(\lambda)|^{-2} d\lambda \).

The Jacobi transform is a unitary isomorphism from \(L^2(\mathbb{R}^+, \Delta_{\alpha,\beta}(t) \, dt) \) onto \(L^2(\mathbb{R}^+, \frac{1}{2\pi} d\mu(\lambda)) \), i.e.

\[\|f\| = \|f\|_{L^2(\mathbb{R}^+, \Delta_{\alpha,\beta}(t) \, dt)} = \|\hat{f}\|_{L^2(\mathbb{R}^+, \frac{1}{2\pi} d\mu(\lambda))} \]
(4)

The limiting case \(\alpha = \beta = -\frac{1}{2} \) is the Fourier-cosine transform, which we will not study.

We have

\[\hat{\Delta}(\lambda) = -\lambda^2 \hat{f}(\lambda) \]
(5)

The generalized translation operator was defined by Flensted-Jensen and Koornwinder [2, Formula (5.1)] given by

\[\tau_y f(x) = \int_0^\infty f(z) K(x, y, z) \Delta_{\alpha,\beta}(z) \, dz \]

with kernel

\[K(x, y, z) = \frac{2^{-2\rho} \Gamma(\alpha + 1)(\cosh x \cosh y \cosh z)^{-\alpha-\beta-1}}{\Gamma(\frac{1}{2}) \Gamma(\alpha + \frac{1}{2}) (\sinh x \sinh y \sinh z)^{2\alpha}} (1 - B^2)^{\alpha - \frac{1}{2}} \times F((\alpha + \beta, \alpha - \beta, \alpha + \frac{1}{2}, \frac{1}{2}, 1 - B)) \]

for \(|x - y| < z < x + y \) and \(K(x, y, z) = 0 \) elsewhere and

\[B = \frac{\cosh^2 x + \cosh^2 y + \cosh^2 z - 1}{2 \cosh x \cosh y \cosh z} \]

in [1], we have

\[\tau_h f(\lambda) = \varphi^{(\alpha,\beta)}_\lambda(h) \hat{f}(\lambda) \]
(6)

For \(\alpha \geq -\frac{1}{2} \), we introduce the Bessel normalized function of the first kind \(j_\alpha \) defined by
\[j_\alpha(z) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{2})^{2n}}{n!\Gamma(n + \alpha + 1)}, \quad z \in \mathbb{C} \] (7)

Moreover, from (7) we see that

\[\lim_{z \to 0} \frac{j_\alpha(z) - 1}{z^2} \neq 0 \] (8)

by consequence, there exist \(c > 0 \) and \(\eta > 0 \) satisfying

\[|z| \leq \eta \implies |j_\alpha(z) - 1| \geq c|z|^2 \] (9)

Lemma 1.2 The following inequalities are valid for Jacobi functions \(\varphi^{(\alpha,\beta)}(t) \)

1. \(|\varphi^{(\alpha,\beta)}(t)| \leq 1 \) (10)
2. \(1 - \varphi^{(\alpha,\beta)}(t) \leq t^2(\lambda^2 + \rho^2) \) (11)

Proof: analog (see [lemmas 3.1-3.2, 3])

Lemma 1.3 Let \(\alpha > \frac{1}{2}, \quad \alpha \geq \beta \geq -\frac{1}{2} \). Then for \(|\eta| \leq \rho \), there exists a positive constant \(c_1 \) such that

\[|1 - \varphi^{(\alpha,\beta)}(t)| \geq c_1 |1 - j_\alpha(\mu t)| \] (12)

Proof: (see[Lemma 9, 1])

2 An analog of Titchmarsh’s Theorem

In this section we give the main resultat of this paper, we need first to define Jacobi-Lipschitz class.

Definition 2.1 Let \(\delta \in (0, 1) \). A function \(f \in L^2(\mathbb{R}^+, \Delta_{\alpha,\beta}(t)dt) \) is said to be in the Jacobi-Lipschitz class, denote by \(\text{Lip}(\delta, 2) \), if

\[\|\tau_h f(x) - f(x)\| = O(h^\delta), \quad \text{as } h \to 0 \]

Theorem 2.2 Let \(f \in L^2(\mathbb{R}^+, \Delta_{\alpha,\beta}(t)dt) \). Then the following are equivalents

1. \(f \in \text{Lip}(\delta, 2) \).
2. \(\int_r^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) = O(r^{-2\delta}) \) as \(r \to +\infty \).
Proof: \(1 \implies 2\): Assume that \(f \in \text{Lip}(\delta, 2)\). Then we have

\[\|\tau_h f(x) - f(x)\| = O(h^\delta), \quad \text{as } h \to 0 \]

Formulas (4) and (6) gives

\[\|\tau_h f(x) - f(x)\|^2 = \int_0^\infty |1 - \varphi_X^{(\alpha,\beta)}(h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

Since (12) and \(\lambda \in \mathbb{R}^+\), we have

\[\int_{\frac{\pi}{2\pi}}^{\frac{\pi}{2\pi}} |1 - \varphi_X^{(\alpha,\beta)}(h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \geq c_1 \int_{\frac{\pi}{2\pi}}^{\frac{\pi}{2\pi}} |1 - j_\alpha(\lambda h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

From (9), we obtain

\[\int_{\frac{\pi}{2\pi}}^{\frac{\pi}{2\pi}} |1 - \varphi_X^{(\alpha,\beta)}(h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \geq \frac{c_1 c^2 \eta^4}{16} \int_{\frac{\pi}{2\pi}}^{\frac{\pi}{2\pi}} |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

There exists then a positive constant \(K\) such that

\[\int_{\frac{\pi}{2\pi}}^{\frac{\pi}{2\pi}} |\hat{f}(\lambda)|^2 d\mu(\lambda) \leq K \int_0^\infty |1 - \varphi_X^{(\alpha,\beta)}(h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

\[\leq K h^{2\delta} \]

For all \(h > 0\). Then

\[\int_{r}^{2r} |\hat{f}(\lambda)|^2 d\mu(\lambda) \leq K r^{-2\delta} \]

for all \(r > 0\). Furthermore, we have

\[\int_r^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) = \sum_{i=0}^{\infty} \int_{2^i r}^{2^{i+1} r} |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

\[\leq K \sum_{i=0}^{\infty} (2^i r)^{-2\delta} \]

\[\leq K r^{-2\delta} \]

This proves

\[\int_r^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) = O(r^{-2\delta}) \quad \text{as } r \to +\infty \]

\(2 \implies 1\): Suppose now that
\[\int_r^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) = O(r^{-2\delta}) \quad \text{as } r \to +\infty \]

we write
\[\|\tau_h f(x) - f(x)\|^2 = I_1 + I_2 \]

where
\[I_1 = \int_0^1 |1 - \varphi^{(\alpha,\beta)}(h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

and
\[I_2 = \int_1^\infty |1 - \varphi^{(\alpha,\beta)}(h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

Estimate the summands \(I_1 \) and \(I_2 \).
we have from (10)
\[I_2 \leq 4 \int_{\frac{1}{h}}^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) = O(h^{2\delta}) \]

To estimate \(I_1 \), we use the inequality (10).
\[I_1 = \int_0^1 |1 - \varphi^{(\alpha,\beta)}(h)|^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \leq 2 \int_0^1 |1 - \varphi^{(\alpha,\beta)}(h)||\hat{f}(\lambda)|^2 d\mu(\lambda) \]

From the inequality (11), we have
\[I_1 \leq 2h^2 \int_0^\infty (\lambda^2 + \rho^2) |\hat{f}(\lambda)|^2 d\mu(\lambda) \]
\[= 2\rho^2 h^2 \int_0^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) + 2h^2 \int_0^\frac{1}{h} \lambda^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

Note that
\[2\rho^2 h^2 \int_0^\frac{1}{h} |\hat{f}(\lambda)|^2 d\mu(\lambda) \leq 2\rho^2 h^2 \int_0^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) \]
\[= 2\rho^2 \|f\|^2 \]
\[= O(h^{2\delta}) \]

since \(2\delta < 2 \)
We put
An analog of Titchmarsh’s theorem

\[\psi(r) = \int_r^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda) \]

Integrating by parts, we obtain

\[2h^2 \int_0^{\frac{1}{h}} \lambda^2 |\hat{f}(\lambda)|^2 d\mu(\lambda) = 2h^2 \int_0^{\frac{1}{h}} (-r^2 \psi'(r)) dr \]

\[= 2h^2 (-\frac{1}{h^2} \psi(1) + 2 \int_0^{\frac{1}{h}} r \psi(r) dr) \]

\[= -2 \psi(1) + 4h^2 \int_0^{\frac{1}{h}} r \psi(r) dr \]

\[\leq 4Ch^2 \int_0^{\frac{1}{h}} r^{1-2\delta} dr \]

\[= O(h^{2\delta}) \]

Finally, then

\[\| \tau_h f(x) - f(x) \| = O(h^\delta), \quad \text{as } h \to 0 \]

which completes the proof of Theorem.

References

Received: September, 2011