n-Tuples and Chaoticity

Mezban Habibi

Department of Mathematics
Dehdasht Branch, Islamic Azad University, Dehdasht, Iran
P.O. Box 181 40, Lidingo, Stockholm, Sweden
habibi.m@iaudehdasht.ac.ir

Abstract

In this paper we characterize the Condition for Chaoticity of Tuples of operators on a Frechet space.

Mathematics Subject Classification: 47A16, 47B37

Keywords: Hypercyclic vector, Hypercyclicity Criterion, Periodic vector, Chaotic n-tuple, n-Tuple of operators

1 Introduction

Let $T_1, T_2, ..., T_n$ be commutative bounded linear operators on a Banach space \mathcal{X}. For n-Tuple $\mathcal{T} = (T_1, T_2, ..., T_n)$, put

$$\Gamma = \{T_1^{m_1}T_2^{m_2}...T_n^{m_n} : m_1, m_2, ..., m_n \geq 0\}$$

the semigroup generated by \mathcal{T}. For $x \in \mathcal{X}$, the orbit of x under \mathcal{T} is the set $\text{Orb}(\mathcal{T}, x) = \{S(x) : S \in \Gamma\}$, that is

$$\text{Orb}(\mathcal{T}, x) = \{T_1^{m_1}T_2^{m_2}...T_n^{m_n}(x) : m_1, m_2, ..., m_n \geq 0\}$$

The vector x is called Hypercyclic vector for \mathcal{T} and n-Tuple \mathcal{T} is called Hypercyclic n-Tuple, if the set $\text{Orb}(\mathcal{T}, x)$ is dense in \mathcal{X}, that is

$$\text{Orb}(\mathcal{T}, x) = \{T_1^{m_1}T_2^{m_2}...T_n^{m_n}(x) : m_1, m_2, ..., m_n \geq 0\} = \mathcal{X}$$

The vector x in \mathcal{X} is called a Periodic vector for the n-Tuple $\mathcal{T} = (T_1, T_2, ..., T_n)$, if there exist some numbers $\mu_1, \mu_2, ..., \mu_n \in \mathbb{N}$ such that

$$T_1^{\mu_1}T_2^{\mu_2}...T_n^{\mu_n}(x) = x.$$
Also the n-Tuple $T = (T_1, T_2, ..., T_n)$, is called chaotic tuple, if we have tree below conditions together,

1. It is topologically transitive, that is, if for any given open sets U and V, there exist positive integer numbers $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{N}$ such that

 $T_{\alpha_1}^1 T_{\alpha_2}^2 ... T_{\alpha_n}^n (U) \cap V \neq \emptyset$

2. It has a dense set of periodic points, in other word, there is a set X such that for each $x \in X$, there exist some numbers $\beta_1, \beta_2, ..., \beta_n \in \mathbb{N}$ such that

 $T_{\beta_1}^1 T_{\beta_2}^2 ... T_{\beta_n}^n (x) = x$

3. It has a certain property called sensitive dependence on initial conditions.

Notice that, all operators in this paper are commutative. For some topics see [1–12].

2 Main Results

Theorem 2.1. [The Hypercyclicity Criterion] Let X be a separable Banach space and $T = (T_1, T_2, ..., T_n)$ is an n-tuple of continuous linear mappings on X. If there exist two dense subsets Y and Z in X, and n strictly increasing sequences $\{m_j, 1 \}$, $\{m_j, 2 \}$, ..., $\{m_j, n \}$ such that:

1. $T_{m_j, 1}^1 T_{m_j, 2}^2 ... T_{m_j, n}^n \to 0$ on Y as $j \to \infty$,
2. There exist function $\{S_j : Z \to X\}$ such that for every $z \in Z$, $S_j z \to 0$, and $T_{m_j, 1}^1 T_{m_j, 2}^2 ... T_{m_j, n}^n S_j z \to z$,

then T is a Hypercyclic n-tuple.

If the tuple T satisfying the hypothesis of previous theorem then we say that T satisfying the Hypercyclicity criterion.

Theorem 2.2. Suppose X be an F-sequence space whith the unconditional basis $\{e_\kappa\}_{\kappa \in \mathcal{N}}$. Let $T_1, T_2, ..., T_n$ are unilateral weighted backward shifts with weight sequence $\{a_{i, 1} : i \in \mathcal{N}\}$, $\{a_{i, 2} : i \in \mathcal{N}\}$, ..., $\{a_{i, n} : i \in \mathcal{N}\}$ and $T = (T_1, T_2, ..., T_n)$ be an n-tuple of operators $T_1, T_2, ..., T_n$. Then the following assertions are equivalent:

1. T is chaotic,
2. T is Hypercyclic and has a non-trivial periodic point,
3. T has a non-trivial periodic point,
4. the series $\sum_{m=1}^{\infty} \prod_{k=1}^{m} (a_{k, i})^{-1} e_m$ convergence in X for $i = 1, 2, ..., n$.

Proof. Proof of the cases (1) \to (2) and (2) \to (3) are trivial, so we just proof (3) \to (4) and (4) \to (1). First we proof (3) \to (4), for this, Suppose
that \(\mathcal{T} \) has a non-trivial periodic point, and \(x = \{x_n\} \in \mathcal{X} \) be a non-trivial periodic point for \(\mathcal{T} \), that is there are \(\mu_1, \mu_2, \ldots, \mu_n \in \mathbb{N} \) such that,

\[
T_1^{\mu_1}T_2^{\mu_2} \ldots T_n^{\mu_n}(x) = x.
\]

Comparing the entries at positions \(j + kN \), and \(j + kN, \ k \in \mathbb{N} \cup \{0\} \), of \(x \) and \(T_1^{M}T_2^{N}(x) \) we find that

\[
x_{j+kM_1} = \left(\prod_{t=1}^{M} (a_{j+kN+t}) \right) x_{j+(k+1)}
\]

\[
x_{j+kM_2} = \left(\prod_{t=1}^{N} (b_{j+kN+t}) \right) x_{j+(k+1)}
\]

\[
\ldots
\]

\[
x_{j+kM_n} = \left(\prod_{t=1}^{M} (b_{j+kN+t}) \right) x_{j+(k+1)}
\]

so that we have,

\[
x_{j+kM_1} = \left(\prod_{t=j+1}^{j+kM_1} (a_t)^{-1} \right) x_j = c_1 \left(\prod_{t=1}^{j+kM_1} (a_t)^{-1} \right), \ k \in \mathbb{N} \cup \{0\}
\]

\[
x_{j+kM_2} = \left(\prod_{t=j+1}^{j+kM_2} (a_t)^{-1} \right) x_j = c_2 \left(\prod_{t=1}^{j+kM_2} (a_t)^{-1} \right), \ k \in \mathbb{N} \cup \{0\}
\]

\[
\ldots
\]

\[
x_{j+kM_n} = \left(\prod_{t=j+1}^{j+kM_n} (a_t)^{-1} \right) x_j = c_n \left(\prod_{t=1}^{j+kM_n} (a_t)^{-1} \right), \ k \in \mathbb{N} \cup \{0\}
\]

with

\[
c_1 = \left(\prod_{t=1}^{j} (m_{j,1}) \right) x_j
\]

\[
c_2 = \left(\prod_{t=1}^{j} (m_{j,2}) \right) x_j
\]

\[
\ldots
\]

\[
c_n = \left(\prod_{t=1}^{j} (m_{j,n}) \right) x_j.
\]

Since \(\{e_\kappa\} \) is an unconditional basis and \(x \in \mathcal{X} \) it follows from [..] that

\[
\sum_{k=0}^{\infty} \left(\prod_{t=1}^{j+kM_1} (m_{j,1}) \right) e_{j+kM_1} = \frac{1}{c_1} \sum_{k=0}^{\infty} x_{j+kM_1} e_{j+kM_1}
\]
we deduce that convergence in \mathcal{X}. Without loss of generality we may assume that $j \geq N$. Applying the operators T, T^2, T^3, ..., T^{R-1}, with $R = \text{Min}\{M_i : i = 1, 2, ..., n\}$, to this series and note that $T_1(e_n) = a_ne_{n-1}$ and $T_2(e_n) = b_ne_{n-1}$ for $n \geq 2$, we deduce that

$$\sum_{k=0}^{\infty} \left(\prod_{l=1}^{k} \frac{1}{(m_{j,2})} \right) e_{j+kM_2} = \frac{1}{c_2} \sum_{k=0}^{\infty} x_{j+kM_2} e_{j+kM_2}$$

$$\sum_{k=0}^{\infty} \left(\prod_{l=1}^{k} \frac{1}{(m_{j,n})} \right) e_{j+kM_n} = \frac{1}{c_n} \sum_{k=0}^{\infty} x_{j+kM_n} e_{j+kM_n}$$

convergence in \mathcal{X} for $\gamma = 0, 1, 2, ..., N - 1$. By adding these series, we see that condition (4) holds. Proof of (4) \Rightarrow (1). It follows from theorem (2.1), that under condition (4) the operator T is Hypercyclic. Hence it remains to show that \mathcal{T}_t is Hypercyclic. Hence it remains to show that \mathcal{T}_t has a dense set of periodic points. Since $\{e_\kappa\}$ is an unconditional basis, condition (4) with proposition 2.3 implies that for each $j \in \mathcal{N}$ and $M, N \in \mathcal{N}$ the series

$$\psi_1(j, M_1) = \sum_{k=0}^{\infty} \left(\prod_{l=1}^{j+kM_1} \frac{1}{(m_{k,1})} \right) e_{j+kM_1} = \left(\prod_{l=1}^{j} m_{k,1} \right) \left(\sum_{k=0}^{\infty} \frac{1}{\prod_{l=1}^{j+kM_1} m_{k,1}} e_{j+kM_1} \right)$$

$$\psi_2(j, M_2) = \sum_{k=0}^{\infty} \left(\prod_{l=1}^{j+kM_2} \frac{1}{(m_{k,2})} \right) e_{j+kM_2} = \left(\prod_{l=1}^{j} m_{k,2} \right) \left(\sum_{k=0}^{\infty} \frac{1}{\prod_{l=1}^{j+kM_2} m_{k,2}} e_{j+kM_2} \right)$$

$$\psi_n(j, M_n) = \sum_{k=0}^{\infty} \left(\prod_{l=1}^{j+kM_n} \frac{1}{(m_{k,n})} \right) e_{j+kM_n} = \left(\prod_{l=1}^{j} m_{k,n} \right) \left(\sum_{k=0}^{\infty} \frac{1}{\prod_{l=1}^{j+kM_n} m_{k,n}} e_{j+kM_n} \right)$$

converges and define n elements in \mathcal{X}. Moreover, if $M \geq i$ then

$$T_1^{m_{j,1}} T_2^{m_{j,2}} ... T_n^{m_{j,n}} = \psi_1(j, M_1)$$

$$T_1^{m_{j,1}} T_2^{m_{j,2}} ... T_n^{m_{j,n}} = \psi_2(j, M_2)$$

$$...$$

$$T_1^{m_{j,1}} T_2^{m_{j,2}} ... T_n^{m_{j,n}} = \psi_n(j, M_n)$$

$$T_1^{m_{j,1}} T_2^{m_{j,2}} ... T_n^{m_{j,n}} = \psi_1(j, M_1) T_1^{M_1} T_2^{M_2} ... T_n^{M_n} \psi_1(j, M_1) = \omega(j, M_1)$$

(1)
\[T_{1}^{m_{1}} T_{2}^{m_{2}} \ldots T_{n}^{m_{n}} = \psi_{2}(j, M_{2}) T_{1}^{M_{1}} T_{2}^{M_{2}} \ldots T_{n}^{M_{n}} \psi_{2}(j, M_{2}) = \omega(j, M_{2}) \]

\[T_{1}^{m_{1}} T_{2}^{m_{2}} \ldots T_{n}^{m_{n}} = \psi_{1}(j, M_{1}) T_{1}^{M_{1}} T_{2}^{M_{2}} \ldots T_{n}^{M_{n}} \psi_{1}(j, M_{1}) = \omega(j, M_{1}) \]

and, if \(N \geq j \) then

\[T_{1}^{m_{1},1} T_{2}^{m_{2},2} \ldots T_{n}^{m_{n},n} \omega((j, i), N) = \omega((j, i), N) \quad (2) \]

for \(m_{j,i} \geq N \) and \(i = 1, 2, \ldots, n \). So that each \(\psi(j, N) \) for \(j \leq N \) is a periodic point for \(T \). We shall show that \(T \) has a dense set of periodic points. Since \(\{e_{\kappa}\} \) is a basis, it suffices to show that for every element \(x \in \text{span}\{e_{\kappa}: \kappa \in \mathcal{N}\} \) there is a periodic point \(y \) arbitrarily close to it. For this, let \(x = \sum_{j=1}^{m} x_{j} e_{j} \) and \(\varepsilon > 0 \). We can assume without lost of generality that

\[
| x_{i} \prod_{t=1}^{i} a_{t,1} | \leq 1 \quad , \quad i = 1, 2, 3, \ldots, m_{1}
\]

\[
| x_{j} \prod_{t=1}^{i} a_{t,2} | \leq 1 \quad , \quad i = 1, 2, 3, \ldots, m_{2}
\]

\[
| x_{i} \prod_{t=1}^{i} a_{t,n} | \leq 1 \quad , \quad i = 1, 2, 3, \ldots, m_{n}
\]

Since \(\{e_{n}\} \) is an unconditional basis, then condition (4) implies that there are an \(M, N \geq m \) such that

\[
\left\| \sum_{n=M_{1}+1}^{\infty} \varepsilon_{\kappa,1} \frac{1}{\prod_{t=1}^{i} a_{t,1}} e_{\kappa} \right\| < \frac{\varepsilon}{m_{1}}
\]

\[
\left\| \sum_{n=M_{2}+1}^{\infty} \varepsilon_{\kappa,2} \frac{1}{\prod_{t=1}^{i} a_{t,2}} e_{\kappa} \right\| < \frac{\varepsilon}{m_{2}}
\]

\[
\left\| \sum_{n=M_{n}+1}^{\infty} \varepsilon_{\kappa,n} \frac{1}{\prod_{t=1}^{i} a_{t,n}} e_{\kappa} \right\| < \frac{\varepsilon}{m_{n}}
\]

for every sequences \(\{\varepsilon_{\kappa,i}\}, i = 1, 2, \ldots, n \) taking values 0 or 1. By (1) and (2) the elements

\[
y_{1} = \sum_{i=1}^{m_{1}} x_{i} \psi(i, M_{1})
\]

\[
y_{2} = \sum_{i=1}^{m_{2}} x_{i} \psi(i, M_{2})
\]

...
\[y_n = \sum_{i=1}^{m_n} x_i \psi(i, M_n) \]

of \(X \) is a periodic point for \(T \), and we have
\[
\| y_\lambda - x \| = \| \sum_{i=1}^{m_\lambda} x_i (\psi(i, M_\lambda) - e_i) \|
\]
\[
= \| \sum_{i=1}^{m_\lambda} x_i \prod_{t=1}^{\frac{i}{M_\lambda}} d_{t,M_\lambda} \left(\sum_{k=1}^{\infty} \frac{1}{\prod_{t=1}^{\frac{1+kM_\lambda}{M_\lambda}} a_{t,M_\lambda}} e_{i+kM_\lambda} \right) \|
\]
\[
\leq \sum_{i=1}^{m_\lambda} \left\| \sum_{k=1}^{\infty} \frac{1}{\prod_{t=1}^{\frac{1+kM_\lambda}{M_\lambda}} a_{t,M_\lambda}} e_{i+kM_\lambda} \right\|
\leq \epsilon
\]
as \(\lambda = 1, 2, \ldots, n \) and by this, the proof is complete.

References

Received: September, 2011