Three-Point Boundary Value Problems for Second-Order Impulsive Integro-Differential Equations

Chatthai Thaiprayoona,c,1, Decha Samanaa,c,2 and Jessada Tariboonb,c,3

aDepartment of Mathematics, Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang
Bangkok 10520, Thailand

bDepartment of Mathematics, Faculty of Applied Science
King Mongkut’s University of Technology North Bangkok
Bangkok 10800, Thailand

cCentre of Excellence in Mathematics, CHE, Sri Ayutthaya Road
Bangkok 10400, Thailand

Abstract

In this paper, by using the method of lower and upper solutions coupled with monotone iterative technique, we investigate the existence of extreme solutions of the three-point boundary value problem for second-order impulsive integro-differential equations. Some comparison results are also formulated.

Mathematics Subject Classification: 34B15; 34B37

Keywords: Monotone iterative technique; Impulsive differential equations; Three-point boundary value problem

1 Introduction

Impulsive differential equations appear as a description of many real world applications which have a short-term rapid change of their states at certain moments (see [1]). In this area, there are many publications that study two-point
conditions for boundary value problems of second-order impulsive differential equations by using the method of upper and lower solutions coupled with the monotone iterative techniques (see, [2-9] etc). However only a few papers, [10-12], have appeared where this technique is applied to second-order three-point boundary value problems without impulses.

In this paper, we study three-point boundary value problem for second-order impulsive integro-differential equations:

\[
\begin{aligned}
&x''(t) = f(t, x(t), (Tx)(t), (Sx)(t)) \equiv Fx(t), \quad t \neq t_k, \quad t \in J = [a, b], \\
&\Delta x(t_k) = I_k(x(t_k), x'(t_k)), \quad k = 1, \ldots, m, \\
&\Delta x'(t_k) = I_k^*(x(t_k)), \quad k = 1, \ldots, m, \\
&\omega x(a) = x(\eta), \quad x'(b) = 0,
\end{aligned}
\]

where \(a = t_0 < t_1 < t_2 < \cdots < t_m < t_{m+1} = b \), \(\eta \in (a, b) \), \(\omega > 1 \), \(f \in C(J \times R^3, R) \), \(I_k \in C(R^2, R) \), \(I_k^* \in C(R, R) \),

\[
(Tx)(t) = \int_a^t k(t, s)x(s)ds,
\]

\[
(Sx)(t) = \int_a^b h(t, s)x(s)ds,
\]

\(k \in C(D, R^+) \), \(D = \{(t, s) \in J \times J : t \geq s\} \), \(h \in C(J \times J, R^+) \), \(\Delta x(t_k) = x(t_k^+) - x(t_k^-) \), \(\Delta x'(t_k) = x'(t_k^+) - x'(t_k^-) \), \(x(t_k^+) \) and \(x(t_k^-) \) denote the right and left limits of \(x \) at \(t_k \), respectively. Similarly, \(x'(t_k^+) \) and \(x'(t_k^-) \) denote the right and left limits of \(x' \) at \(t_k \), respectively.

\section{Preliminaries}

Let \(J' = J \setminus \{t_1, t_2, \ldots, t_m\} \), \(J_0 = [t_0, t_1] \), \(J_k = (t_k, t_{k+1}] \), \(k = 1, 2, \ldots, m \), \(PC(J, R) = \{x : J \rightarrow R \mid x(t) \text{ be continuous everywhere except for some} \ t_k \text{ at which} \ x(t_k^+) \text{ and} x(t_k^-) \text{ exist and} x(t_k^-) = x(t_k)\} \), \(PC^1(J, R) = \{x \in PC(J, R) \mid x(t) \text{ be continuous everywhere except for some} \ t_k \text{ at which} \ x'(t_k^+) \text{ and} x'(t_k^-) \text{ exist and} x'(t_k^-) = x'(t_k)\} \). Let \(PC(J, R) \) and \(PC^1(J, R) \) be Banach spaces with the respective norms,

\[
\|x\|_{PC} = \sup_{t \in J} |x(t)|, \quad \|x\|_{PC^1} = \max_{t \in J} \{\|x\|_{PC}, \|x'\|_{PC}\}.
\]

A function \(x \in PC^1(J, R) \cap C^2(J', R) \) is called a solution of BVP (1) if it satisfies (1).

\textbf{Definition 2.1} A function \(y_0 \in PC^1(J, R) \cap C^2(J', R) \) is called a lower solution of BVP (1) if

\[
\begin{aligned}
&y''_0(t) \geq f(t, y_0(t), (Ty_0)(t), (Sy_0)(t)) \equiv Fy_0(t), \quad t \in J', \\
&\Delta y_0(t_k) = I_k(y_0(t_k), y'_0(t_k)), \quad k = 1, \ldots, m, \\
&\Delta y'_0(t_k) \geq I_k^*(y_0(t_k)), \quad k = 1, \ldots, m, \\
&\omega y_0(a) \leq y_0(\eta), \quad y'_0(b) \leq 0.
\end{aligned}
\]
Definition 2.2 A function \(z_0 \in PC^1(J, R) \cap C^2(J', R) \) is called an upper solution of BVP (1) if

\[
\begin{cases}
 z_0''(t) \leq f(t, z_0(t)), & t \in J', \\
 \Delta z_0(t_k) = I_k(z_0(t_k), z_0'(t_k)), & k = 1, ..., m, \\
 \Delta z_0'(t_k) \leq I_k^*(z_0(t_k)), & k = 1, ..., m, \\
 \omega z_0(a) \geq z_0(\eta), & z_0(b) \geq 0.
\end{cases}
\]

(3)

Consider the BVP

\[
\begin{cases}
 p''(t) = M p(t) + N(T p)(t) + N_1(S p)(t) + \sigma(t), & t \in J', \\
 \Delta p(t_k) = L_k p'(t_k) + \lambda_k, & k = 1, ..., m, \\
 \Delta p'(t_k) = L_k^* p(t_k) + \gamma_k, & k = 1, ..., m, \\
 \omega p(a) = p(\eta), & p(b) = 0.
\end{cases}
\]

(4)

where \(M > 0, N \geq 0, N_1 \geq 0, \omega > 1, \eta \in (a, b), \lambda_k, \gamma_k, k = 1, ..., m, \) are constants and \(\sigma(t) \in PC(J, R). \)

Lemma 2.3 \(p \in PC^1(J, R) \cap C^2(J', R) \) is a solution of (4) if and only if \(p \in PC^1(J, R) \) is a solution of the impulsive integral equation

\[
p(t) = \int_a^b G_1(t, s) \sigma_1(s) ds + \sum_{k=1}^m G_1(t, t_k)(L_k p(t_k) + \gamma_k) + \sum_{k=1}^m G_2(t, t_k)(L_k^* p(t_k) + \lambda_k),
\]

(5)

where \(\sigma_1(t) = M p(t) + N(T p)(t) + N_1(S p)(t) + \sigma(t), \)

\[
G_1(t, s) = \frac{1}{\omega - 1} \begin{cases}
-\omega s + \omega a, & a \leq s \leq t \leq \eta \leq b, \\
-\omega s + \omega a, & a \leq \eta \leq t \leq b, \\
-\eta - \omega s + s + \omega a, & a \leq \eta \leq s \leq t \leq b, \\
-\eta - \omega t + t + \omega a, & a \leq \eta \leq t \leq s \leq b, \\
-\eta - \omega t + t + \omega a, & a \leq t \leq \eta \leq s \leq b, \\
-s - \omega t + t + \omega a, & a \leq t \leq s \leq \eta \leq b,
\end{cases}
\]

and

\[
G_2(t, s) = \frac{1}{\omega - 1} \begin{cases}
\omega, & a \leq s \leq t \leq \eta \leq b, \\
\omega, & a \leq s \leq \eta \leq t \leq b, \\
\omega - 1, & a \leq \eta \leq s \leq t \leq b, \\
0, & a \leq \eta \leq t \leq s \leq b, \\
0, & a \leq t \leq \eta \leq s \leq b, \\
1, & a \leq t \leq s \leq \eta \leq b.
\end{cases}
\]
Proof. Suppose that \(p(t) \) is a solution of (4) for \(t \in J \). Integrating (4) from \(a \) to \(t \), it follows that

\[
p'(t) = p'(a) + \int_a^t \sigma_1(s)ds - \sum_{a < t_k < t} \left(L_k^* p(t_k) + \gamma_k \right).
\] (6)

Again integrating (6) from \(a \) to \(t \), then

\[
p(t) = p(a) + p'(a)(t - a) + \int_a^t (t - s)\sigma_1(s)ds + \sum_{a < t_k < t} \left(L_k^* p(t_k) + \gamma_k \right)(t - t_k) + \sum_{a < t_k < t} \left(L_k p'(t_k) + \lambda_k \right).
\] (7)

By (6) and \(p'(b) = 0 \), we have

\[
0 = p'(b) = p'(a) + \int_a^b \sigma_1(s)ds + \sum_{a < t_k < b} \left(L_k^* p(t_k) + \gamma_k \right).
\]

Thus

\[
p'(a) = -\int_a^b \sigma_1(s)ds - \sum_{a < t_k < b} \left(L_k^* p(t_k) + \gamma_k \right).
\] (8)

Substituting \(t = \eta \) into (7), we get

\[
p(\eta) = p(a) + p'(a)(\eta - a) + \int_a^\eta (\eta - s)\sigma_1(s)ds + \sum_{a < t_k < \eta} \left(L_k^* p(t_k) + \gamma_k \right)(\eta - t_k) + \sum_{a < t_k < \eta} \left(L_k p'(t_k) + \lambda_k \right).
\]

Since \(\omega p(a) = p(\eta) \), we have

\[
p(a) = \frac{1}{\omega - 1} \left[p'(a)(\eta - a) + \int_a^\eta (\eta - s)\sigma_1(s)ds + \sum_{a < t_k < \eta} \left(L_k^* p(t_k) + \gamma_k \right)(\eta - t_k) + \sum_{a < t_k < \eta} \left(L_k p'(t_k) + \lambda_k \right) \right].
\]

Then

\[
p(t) = \frac{1}{\omega - 1} \left[\int_a^\eta (\eta - s)\sigma_1(s)ds + \sum_{a < t_k < \eta} \left(L_k^* p(t_k) + \gamma_k \right)(\eta - t_k) \right.
\]

\[
+ \sum_{a < t_k < \eta} \left(L_k p'(t_k) + \lambda_k \right) - \left(\frac{\eta + \omega t - t - \omega a}{\omega - 1} \right) \left[\int_a^\eta \sigma_1(s)ds + \sum_{a < t_k < \eta} \left(L_k^* p(t_k) + \gamma_k \right) + \int_a^t (t - s)\sigma_1(s)ds \right.
\]

\[
+ \sum_{a < t_k < b} \left(L_k^* p(t_k) + \gamma_k \right) + \int_a^t (t - s)\sigma_1(s)ds + \sum_{a < t_k < t} \left(L_k^* p(t_k) + \gamma_k \right)(t - t_k) + \sum_{a < t_k < t} \left(L_k p'(t_k) + \lambda_k \right) \bigg].
\] (9)
Let $\gamma_k^* = L_k^* p(t_k) + \gamma_k$ and $\lambda_k^* = L_k p(t_k) + \lambda_k$, we obtain

$$p(t) = \int_a^b G_1(t, s)\sigma_1(s)ds + \sum_{a<t_k<b} G_1(t, t_k)\gamma_k^* + \sum_{a<t_k<b} G_2(t, t_k)\lambda_k^*,$$

i.e., $p(t)$ is also the solution of (4).

Conversely, assume that $p(t)$ is a solution of (5), then differentiating on (5) for $t \neq t_k$, we obtain

$$p'(t) = -\left(\int_a^b \sigma_1(s)ds + \sum_{a<t_k<b} \gamma_k^*\right) + \int_a^t \sigma_1(s)ds + \sum_{a<t_k<t} \gamma_k^*.$$ (10)

Again differentiating on (10) for $t \neq t_k$, we have

$$p''(t) = M p(t) + N(Tp)(t) + N_1(Sp)(t) + \sigma(t).$$

By computing directly, we have

$$\Delta p(t_k) = L_k p'(t_k) + \lambda_k \quad \text{and} \quad \Delta p'(t_k) = L_k^* p(t_k) + \gamma_k.$$ (11)

It is easy to see that $\omega p(a) = p(\eta)$ and $p'(b) = 0$, for $\eta \in (a, b)$. This completes the proof. \hfill \square

Lemma 2.4 Assume that $p \in PC^1(J, R) \cap C^2(J', R)$ satisfies

$$\begin{cases}
p''(t) \geq M p(t) + N(Tp)(t) + N_1(Sp)(t), & t \in J', \\
\Delta p(t_k) = L_k p'(t_k), & k = 1, \ldots, m, \\
\Delta p'(t_k) \geq L_k^* p(t_k), & k = 1, \ldots, m, \\
\omega p(a) \leq p(\eta), & p'(b) \leq 0,
\end{cases}$$

where the constants $M > 0$, $N \geq 0$, $N_1 \geq 0$, $\omega > 1$, $L_k \geq 0$, $L_k^* \geq 0$, $(k = 1, 2, \ldots, m)$ also satisfy the inequality

$$\left(\int_a^b (M + N \int_a^s k(s, r)dr) + N_1 \int_a^b h(s, r)dr ds + \sum_{i=1}^m L_i^* \right) \left(b - a + \sum_{i=r}^v L_i \right) \leq 1.$$ (12)

Then $p(t) \leq 0$ for all $t \in J$.

Proof. Firstly, we show that $\inf_{t \in J} \{p(t)\} \leq 0$. Let $\inf_{t \in J} \{p(t)\} = c$, where c is a constant. There exists a point $t_\ast \in J$, $r \in \{0, 1, \ldots, m\}$, such that $p(t_\ast) = c$ or $p(t_\ast^+) = c$. We will only consider $p(t_\ast) = c$. For the case $p(t_\ast^+) = c$ the proof is similar. It is easy to verify that

$$p''(t) \geq M p(t) + N(Tp)(t) + N_1(Sp)(t) \geq c \left(M + N \int_a^t k(t, s)ds + N_1 \int_a^b h(t, s)ds \right).$$ (13)
Integrating the differential inequality (13) from $t \in J_h (h \in \{0, 1, \ldots, m\})$ to b, we have

$$p'(b) - p'(t) \geq c \int_t^b \left(M + N \int_a^s k(s, r)dr + N_1 \int_a^b h(s, r)dr \right) ds + c \sum_{i=h+1}^m L_i^*,$$

where $\sum_r^l = 0$, when $r > l$, and then

$$0 \geq p'(b) \geq p'(t) + c \int_t^b \left(M + N \int_a^s k(s, r)dr + N_1 \int_a^b h(s, r)dr \right) ds + c \sum_{i=h+1}^m L_i^*.$$

Hence

$$p'(t) \leq -c \left(\int_t^b \left(M + N \int_a^s k(s, r)dr + N_1 \int_a^b h(s, r)dr \right) ds + \sum_{i=h+1}^m L_i^* \right). \tag{14}$$

If $c > 0$, then $p'(t) < 0$ for all $t \in J$ and $\Delta p(t_k) \leq L_k p'(t_k) \leq 0$, $k = 1, 2, \ldots, m$. Therefore, $p(a) > p(\eta)$, a contradiction. Then $\inf_{t \in J} \{p(t)\} = c \leq 0$.

Next, we will show that $p(t) \leq 0$ for all $t \in J$. Suppose, to the contrary, that $p(t^*) > 0$ for $t^* \in J_v$, $v \in \{0, 1, \ldots, m\}$. Let $d = -c$. Then from (14), we have

$$p'(t) \leq d \left(\int_a^b \left(M + N \int_a^s k(s, r)dr + N_1 \int_a^b h(s, r)dr \right) ds + \sum_{i=1}^m L_i^* \right). \tag{15}$$

Assume that $t^* > t_v$. Then $v > r$. For the case $t^* \leq t_v$, the proof is similar and thus we omit it. By mean value theorem, we have

$$p(t^*) - p(t_{v}^-) \leq d \left(\int_a^b \left(M + N \int_a^s k(s, r)dr + N_1 \int_a^b h(s, r)dr \right) ds + \sum_{i=1}^m L_i^* \right) \times \left(t^* - t_v^+ \right) + L_v,$$

$$p(t_v^-) - p(t_{v-1}^-) \leq d \left(\int_a^b \left(M + N \int_a^s k(s, r)dr + N_1 \int_a^b h(s, r)dr \right) ds + \sum_{i=1}^m L_i^* \right) \times \left(t_v^- - t_{v-1}^+ \right) + L_{v-1},$$

$$\vdots$$

$$p(t_{r+1}^-) - p(t_r) \leq d \left(\int_a^b \left(M + N \int_a^s k(s, r)dr + N_1 \int_a^b h(s, r)dr \right) ds + \sum_{i=1}^m L_i^* \right) \times \left(t_{r+1}^- - t_r \right).$$
Summing, we get

\[p(t^*) - p(t_*) \leq d \left(\int_a^b \left(M + N \int_a^s k(s, r) dr + N_1 \int_a^b h(s, r) dr \right) ds + \sum_{i=1}^m L_i^* \right) \times \left((t^* - t_*) + \sum_{i=r+1}^v L_i \right), \]

then

\[0 < p(t^*) \leq p(t_*) + d \left(\int_a^b \left(M + N \int_a^s k(s, r) dr + N_1 \int_a^b h(s, r) dr \right) ds + \sum_{i=1}^m L_i^* \right) \times \left((t^* - t_*) + \sum_{i=r+1}^v L_i \right). \]

Thus

\[\left(\int_a^b \left(M + N \int_a^s k(s, r) dr + N_1 \int_a^b h(s, r) dr \right) ds + \sum_{i=1}^m L_i^* \right) \left((b - a) + \sum_{i=1}^m L_i \right) > 1, \]

which contradicts (12). This completes the proof. \(\square \)

Lemma 2.5 Let \(M > 0, N, N_1 \geq 0, 0 \leq L_k < 1, 0 \leq L_k^* < 1, \omega > 1, \eta \in (a, b), \) and assume that

\[\psi \equiv \int_a^b \left(M + N \int_a^s k(s, r) dr + N_1 \int_a^b h(s, r) dr \right) ds + \sum_{k=1}^m L_k^* < 1. \quad (16) \]

and

\[\xi \equiv \psi \left(\frac{(b - a)\omega - b + \eta}{\omega - 1} \right) + \frac{\omega}{\omega - 1} \sum_{k=1}^m L_k < 1. \quad (17) \]

Then (4) has an unique solution.

Proof. For any \(p \in PC^1(J, R) \cap C^2(J', R), \) define an operator \(A \) by

\[(Ap)(t) = \int_a^b G_1(t, s) \left[M p(s) + N(Tp)(s) + N_1(Sp)(s) + \sigma(s) \right] ds + \sum_{k=1}^m G_1(t, t_k) \times \left(L_k^* p(t_k) + \gamma_k \right) + \sum_{k=1}^m G_2(t, t_k) \left(L_k p'(t_k) + \lambda_k \right). \]
where G_1, G_2 are given by Lemma 2.3. Since
\[
\max_{t \in J} \{|G_1(t, s)|\} = \frac{(b-a)\omega - b + \eta}{\omega - 1},
\]
\[
\max_{t \in J} \{|G_2(t, s)|\} = \frac{\omega}{\omega - 1},
\]
then for any $x, y \in PC^1(J, R)$, we have
\[
\|Ax - Ay\|_{PC} = \sup_{t \in J} |Ax - Ay|
\leq \sup_{t \in J} \left\{ \int_a^b |G_1(t, s)| \left(M + N \int_a^s k(s, r)dr
+ N_1 \int_a^b h(s, r)dr \right) ds \right\} \|x - y\|_{PC}
+ \sup_{t \in J} \left\{ \sum_{k=1}^m |G_1(t, s)| L_k^* + |G_2(t, t_k)| L_k \right\} \|x - y\|_{PC^1}
\leq \xi \|x - y\|_{PC^1}.
\]
Similarly,
\[
\|Ax' - Ay'\|_{PC} = \sup_{t \in J} |Ax' - Ay'|
\leq \sup_{t \in J} \left\{ \int_a^b |G_1(t, s)| \left(M + N \int_a^s k(s, r)dr
+ N_1 \int_a^b h(s, r)dr \right) ds \right\} \|x - y\|_{PC}
+ \sup_{t \in J} \left\{ \sum_{k=1}^m |G_1(t, s)| L_k^* + |G_2(t, t_k)| L_k \right\} \|x - y\|_{PC^1}
\leq \psi \|x - y\|_{PC^1}.
\]
Hence
\[
\|Ax - Ay\|_{PC^1} \leq \max\{\xi, \psi\} \|x - y\|_{PC^1}.
\]

By (16), (17) and Banach fixed point theorem, A has an unique fixed point $y^* \in PC^1$. By Lemma 2.3, y^* is also the unique solution of (4), which completes the proof. \qed
3 Main Results

We are now in a position to prove that the problem (1) has extremal solutions.

Theorem 3.1 Let the following assumptions hold:

(H1): The function \(y_0, z_0 \in PC^1(J, R) \cap C^2(J', R) \) are lower and upper solutions of problem (1), respectively, with \(y_0(t) \leq z_0(t) \) on \(J \).

(H2): The function \(f \) satisfies

\[
f(t, u, v, w) - f(t, \bar{u}, \bar{v}, \bar{w}) \geq M[u - \bar{u}] + N[v - \bar{v}] + N_1[w - \bar{w}]
\]

for \(y_0(t) \leq u \leq \bar{u} \leq z_0(t), (Ty_0)(t) \leq v \leq \bar{v} \leq (Tz_0)(t), (Sy_0)(t) \leq w \leq \bar{w} \leq (Sz_0)(t), t \in J \).

(H3): There exist constants \(L_k, L_k^* \), \(k = 1, 2, \ldots, m \), such that

\[
I_k(r(t_k), r'(t_k)) - I_k(\bar{r}(t_k), \bar{r}'(t_k)) = L_k[r'(t_k) - \bar{r}'(t_k)],
\]

\[
I_k^*(r(t_k)) - I_k^*(\bar{r}(t_k)) \geq L_k^*[r(t_k) - \bar{r}(t_k)],
\]

for \(y_0(t) \leq r(t) \leq \bar{r}(t) \leq z_0(t), k = 1, 2, \ldots, m \).

(H4): Constant \(\eta \in (a, b), \omega > 1, M > 0, N, N_1 \geq 0, L_k \geq 0, L_k^* \geq 0, k = 1, 2, \ldots, m \), and satisfy (12), (16) and (17).

Then problem (1) has extremal solutions \(y_0(t) \leq w(t) \leq z_0(t), t \in J \).

Proof. Consider the following sequence:

\[
\begin{align*}
y_n(t) &= Fy_{n-1}(t) + M(y_n(t) - y_{n-1}(t)) \\
&\quad + N(T(y_n - y_{n-1}))(t) + N_1(S(y_n - y_{n-1}))(t), \quad t \in J', \\
\Delta y_n(t_k) &= I_k(y_{n-1}(t_k), y'_{n-1}(t_k)) + L_k[y_n(t_k) - y_{n-1}(t_k)], \quad k = 1, 2, \ldots, m, \\
\Delta y'_n(t_k) &= I_k^*(y_{n-1}(t_k)) + L_k^*[y_n(t_k) - y_{n-1}(t_k)], \quad k = 1, 2, \ldots, m, \\
\omega y_n(a) &= y_n(\eta), \quad y'_n(b) = 0,
\end{align*}
\]

and

\[
\begin{align*}
z_n(t) &= Fz_{n-1}(t) + M[z_n(t) - z_{n-1}(t)] \\
&\quad + N(T(z_n - z_{n-1}))(t) + N_1(S(z_n - z_{n-1}))(t), \quad t \in J', \\
\Delta z_n(t_k) &= I_k(z_{n-1}(t_k), z'_{n-1}(t_k)) + L_k[z_n(t_k) - z_{n-1}(t_k)], \quad k = 1, 2, \ldots, m, \\
\Delta z'_n(t_k) &= I_k^*(z_{n-1}(t_k)) + L_k^*[z_n(t_k) - z_{n-1}(t_k)], \quad k = 1, 2, \ldots, m, \\
\omega z_n(a) &= z_n(\eta), \quad z'_n(b) = 0,
\end{align*}
\]

for \(n = 1, 2, \ldots \) Moreover, by Lemma 2.5, we have \(y_1 \) and \(z_1 \) are well defined. Firstly, we show that

\[
y_0(t) \leq y_1(t) \leq z_1(t) \leq z_0(t), \quad t \in J. \quad (18)
\]
Let \(v(t) = y_0(t) - y_1(t) \). By definition 2.1 of a lower solution of (1), we have
\[
v''(t) = y''_0(t) - y''_1(t) \geq Mv(t) + N(Tv(t)) + N_1(Sv(t)),
\]
and
\[
\begin{align*}
\Delta v(t_k) &= \Delta y_0(t_k) - \Delta y_1(t_k) = L_kv'(t_k), \quad k = 1, 2, \ldots, m, \\
\Delta v'(t_k) &= \Delta y'_0(t_k) - \Delta y'_1(t_k) \geq L_k^* v(t_k), \quad k = 1, 2, \ldots, m, \\
\omega v(a) &= \omega y_0(a) - \omega y_1(a) \leq v(\eta), \\
v'(b) &= y'_0(b) - y'_1(b) \leq 0.
\end{align*}
\]

Then, by Lemma 2.4, \(v(t) \leq 0 \), which implies \(y_0(t) \leq y_1(t) \), \(t \in J \). In similar way, we can show that \(z_0(t) \geq z_1(t) \), \(t \in J \).

Next, we will show that \(y_1(t) \leq z_1(t) \), \(t \in J \). Let \(v(t) = y_1(t) - z_1(t) \) then, we have
\[
v''(t) = y''_1(t) - z''_1(t) \\
= Fy_0(t) + M[y_1(t) - y_0(t) + N(T(y_1 - y_0))(t) + N_1(S(y_1 - y_0))(t)] \\
- Fz_0(t) - M[z_1(t) - z_0(t)] - N(T(z_1 - z_0))(t) - N_1(S(z_1 - z_0))(t) \\
\geq Mv(t) + N(Tv(t)) + N_1(Sv(t)),
\]
and
\[
\begin{align*}
\Delta v(t_k) &= \Delta y_1(t_k) - \Delta z_1(t_k) = L_kv'(t_k), \quad k = 1, 2, \ldots, m, \\
\Delta v'(t_k) &= \Delta y'_1(t_k) - \Delta z'_1(t_k) \geq L_k^* v(t_k), \quad k = 1, 2, \ldots, m, \\
\omega v(a) &= \omega y_1(a) - \omega z_1(a) = v(\eta), \\
v'(b) &= y'_1(b) - z'_1(b) = 0.
\end{align*}
\]

Still by Lemma 2.4, \(v(t) \leq 0 \), which implies \(y_1(t) \leq z_1(t) \), \(t \in J \).

Using mathematical induction, we can show that
\[
y_0(t) \leq y_1(t) \leq \cdots \leq y_n(t) \leq z_n(t) \leq \cdots \leq z_1(t) \leq z_0(t) \quad \text{for all} \quad t \in J,
\]
n = 1, 2, \ldots. Employing standard argument, we have
\[
\lim_{n \to \infty} y_n(t) = y(t), \quad \lim_{n \to \infty} z_n(t) = z(t),
\]
uniformly on \(t \in J \) and the limit functions \(y(t) \), \(z(t) \) satisfy problem (1). Moreover \(y(t), z(t) \in [y_0(t), z_0(t)] \).

Finally, we will show that \(y \) is the minimal solution and \(z \) is the maximal solution of (1), respectively. To prove it we assume that \(u \) is any solution of
problem (1) such that \(u \in [y_0, z_0] \). Let \(y_{n-1}(t) \leq u(t) \leq z_{n-1}(t), \ t \in J \), for some positive integer \(n \). Put \(v(t) = y_n(t) - u(t) \). Then

\[
v''(t) = Fy_{n-1}(t) + M[y_n(t) - y_{n-1}(t)] \\
+ N(T(y_n - y_{n-1}))(t) + N_1(S(y_n - y_{n-1}))(t) - Fu(t) \\
\geq Mv(t) + N(Tv(t) + N_1(Sv(t)),
\]

and

\[
\Delta v(t_k) = \Delta y_n(t_k) - \Delta u(t_k) = L_k v'(t_k), \quad k = 1, 2, \ldots, m,
\]

\[
\Delta v'(t_k) = \Delta y_n'(t_k) - \Delta u'(t_k) \geq L_k v(t_k), \quad k = 1, 2, \ldots, m,
\]

\[
\omega v(a) = \omega y_n(a) - \omega u(a) = v(\eta),
\]

\[
v'(b) = y_n'(b) - u'(b) = 0.
\]

Hence, \(y_n \leq u, \ t \in J \), by Lemma 2.4. Similarly, we can show that \(u(t) \leq z_n(t), \ t \in J \). This yields \(y_n(t) \leq u(t) \leq z_n(t), \ t \in J \). If \(n \to \infty \), then \(y_0(t) \leq y(t) \leq u(t) \leq z(t) \leq z_0(t), \ t \in J \). The proof is complete. \(\square \)

ACKNOWLEDGEMENTS. This research is supported by the Centre of Excellence in Mathematics, Thailand.

References

Received: April, 2011