Optimal Convex Combination Bounds of Root-Square and Harmonic Root-Square Means for Seiffert Mean

Shouwei Hou
School of Science, Hangzhou Normal University
Hangzhou 310012, P.R. China

Yuming Chu
Department of Mathematics, Huzhou Teachers College
Huzhou 313000, P.R. China
chuyuming@hutc.zj.cn

Abstract
In this paper, we find the greatest value α and least value β such that the double inequality $\alpha S(a, b) + (1 - \alpha) H(a, b) < T(a, b) < \beta S(a, b) + (1 - \beta) H(a, b)$ holds for all $a, b > 0$ with $a \neq b$. Here, $S(a, b) = \sqrt{\frac{a^2 + b^2}{2}}$, $H(a, b) = \sqrt{\frac{2ab}{a^2 + b^2}}$, and $T(a, b) = \frac{a - b}{2 \arctan((a - b)/(a + b))}$ denote the root-square, harmonic root-square, and Seiffert means of two positive numbers a and b with $a \neq b$.

Mathematics Subject Classification: 26E60

Keywords: root-square mean, harmonic root-square mean, Seiffert mean

1. Introduction
For $p \in \mathbb{R}$ the p-th power mean $M_p(a, b)$ and Seiffert mean $T(a, b)$ of two positive numbers a and b is defined by

$$M_p(a, b) = \begin{cases} \left(\frac{a^p + b^p}{2}\right)^\frac{1}{p}, & p \neq 0, \\ \sqrt{ab}, & p = 0 \end{cases}$$

(1.1)

and

$$T(a, b) = \begin{cases} \frac{a - b}{2 \arctan((\frac{a - b}{a + b})}\), & a \neq b, \\ \frac{a}{a}, & a = b. \end{cases}$$

(1.2)

\(^1\)The research is partly supported by the NSF of China under Grant No. 11071069.
respectively.

Recently, both mean values have been the subject of intensive research. In particular, many remarkable inequalities for $M_p(a, b)$ and $T(a, b)$ can be found in the literature [1-13]. It is well known that $M_p(a, b)$ is continuous and strictly increasing with respect to $p \in \mathbb{R}$ for fixed $a, b > 0$ with $a \neq b$, and many means are special cases of the power mean, for example,

$$M_{-2}(a, b) = \frac{\sqrt{2ab}}{\sqrt{a^2 + b^2}} = H(a, b),$$ \hspace{1cm} (1.3)

$$M_{-1}(a, b) = \frac{2ab}{a+b} = H(a, b), \quad M_0(a, b) = \sqrt{ab} = G(a, b), \quad M_1(a, b) = \frac{a+b}{2} = A(a, b), \text{ and}$$

$$M_2(a, b) = \sqrt{\frac{a^2 + b^2}{2}} = S(a, b)$$ \hspace{1cm} (1.4)

are the harmonic root-square, harmonic, geometric, arithmetic, and root-square means of a and b, respectively.

In [1], Seiffert proved that

$$M_1(a, b) < T(a, b) < M_2(a, b)$$

for all $a, b > 0$ with $a \neq b$.

Chu, Wang and Qiu [3] find the greatest value $p = \frac{\log(3)}{\log(\pi/2)} \approx 2.4328$ and least value $q = 5/2$ such that

$$H_p(a, b) < T(a, b) < H_q(a, b)$$

for all $a, b > 0$ with $a \neq b$. Here, $H_p(a, b) = \left(\frac{a^{p+(ab)} + b^{p+(ab)}}{3}\right)^{\frac{1}{p}}, (p \neq 0)$ and $H_0(a, b) = \sqrt{ab}$ is the p-th power-type Heron mean of two positive numbers a and b.

The following best possible Seiffert mean bounds in terms of Lehmer mean $L_p(a, b) = \frac{a^{p+1}+b^{p+1}}{a^p+b^p}$ are presented in [4]:

$$L_0(a, b) < T(a, b) < L_{1/3}(a, b)$$

for all $a, b > 0$ with $a \neq b$.

In [5], the authors prove that $\alpha = 3/5$ and $\beta = \pi/4$ are the best possible parameters such that the double inequality

$$\alpha T(a, b) + (1 - \alpha)G(a, b) < A(a, b) < \beta T(a, b) + (1 - \beta)G(a, b)$$

holds for all $a, b > 0$ with $a \neq b$.

The main purpose of this paper is to answer the question: what are the greatest value α and least value β such that the double inequality
\[
\alpha S(a, b) + (1 - \alpha) H(a, b) < T(a, b) < \beta S(a, b) + (1 - \beta) H(a, b)
\]
holds for all $a, b > 0$ with $a \neq b$.

2. Main Result

Theorem 2.1. The double inequality
\[
\alpha S(a, b) + (1 - \alpha) H(a, b) < T(a, b) < \beta S(a, b) + (1 - \beta) H(a, b)
\]
holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha \leq \frac{2\sqrt{2}}{\pi} = 0.900316 \cdots$ and $\beta \geq \frac{11}{12} = 0.916666 \cdots$.

Proof. Firstly, we prove that
\[
T(a, b) < \frac{11}{12} S(a, b) + \frac{1}{12} H(a, b)
\]
and
\[
T(a, b) > \frac{2\sqrt{2}}{\pi} S(a, b) + \frac{\pi - 2\sqrt{2}}{\pi} H(a, b)
\]
for all $a, b > 0$ with $a \neq b$.

Without loss of generality, we assume that $a > b$. Let $t = a/b > 1$ and $p \in \{11/12, 2\sqrt{2}/\pi\}$, then from (1.1)-(1.4) one has
\[
\begin{align*}
T(a, b) &- [pS(a, b) + (1 - p) H(a, b)] \\
&= b[p(1 + t^2) + 2(1 - p)t] \\
&= \frac{2 \arctan \left(\frac{1}{\sqrt{t^2 + 1}} \right)}{\sqrt{t^2 + 1}} \times \frac{(t - 1)\sqrt{t^2 + 1}}{p(1 + t^2) + 2(1 - p)t - \sqrt{2} \arctan \left(\frac{t - 1}{t + 1} \right)}.
\end{align*}
\]

Let
\[
f(t) = \frac{(t - 1)\sqrt{t^2 + 1}}{p(1 + t^2) + 2(1 - p)t - \sqrt{2} \arctan \left(\frac{t - 1}{t + 1} \right)},
\]
then simple computations lead to
\[
f(1) = 0,
\]
\[
\lim_{t \to +\infty} f(t) = \frac{1}{p} - \frac{\sqrt{2\pi}}{4}.
\]
\[f'(t) = \frac{f_1(t)}{(t^2 + 1)^{3/2}[p(t^2 + 1) + 2(1 - p)t]^2}, \quad (2.7) \]

where
\[
f_1(t) = (t + 1)(t^2 + 1)[(2 - p)t^2 + 2(p - 1)t + 2 - p] \]
\[
- \sqrt{2}[p(1 + t^2) + 2(1 - p)t]^2 \sqrt{t^2 + 1}. \quad (2.8)\]

We divide the proof into two cases.

Case 1. If \(p = 11/12 \), then we clearly see that
\[
(2 - p)t^2 + 2(p - 1)t + 2 - p = \frac{1}{12}(13t^2 - 2t + 13) > 0 \quad (2.9)\]

and
\[
\left\{ (t + 1)(t^2 + 1)[(2 - p)t^2 + 2(p - 1)t + 2 - p] \right\}^2 \\
- \left\{ \sqrt{2}[p(1 + t^2) + 2(1 - p)t]^2 \sqrt{t^2 + 1} \right\}^2 \\
= \frac{1}{10368}(t^2 + 1)(t - 1)^4[2421t^4 + 52(t - 1)t^3 + 4898t^2 \\
+ 52(t - 1)t + 2473] < 0 \quad (2.10)\]

for \(t > 1 \).

Equation (2.8) together with inequalities (2.9) and (2.10) imply that
\[
f_1(t) < 0 \quad (2.11)\]

for \(t > 1 \).

Therefore, inequality (2.1) follows from (2.3)-(2.5) and (2.7) together with (2.11).

Case 2. If \(p = 2\sqrt{2}/\pi = 0.900316 \cdots \), then simple computations lead to
\[
(2 - p)t^2 + 2(p - 1)t + 2 - p = 2(1 - \sqrt{2}/\pi)(t - 1)^2 + 2t > 0 \quad (2.12)\]

and
\[
\left\{ (t + 1)(t^2 + 1)[(2 - p)t^2 + 2(p - 1)t + 2 - p] \right\}^2 \\
- \left\{ \sqrt{2}[p(1 + t^2) + 2(1 - p)t]^2 \sqrt{t^2 + 1} \right\}^2 \\
= (t^2 + 1)(t - 1)^2 g(t). \quad (2.13)\]

where
\[
g(t) = (-2p^4 + p^2 - 4p + 4)t^6 + 4(3p^4 - 4p^3 - p + 2)t^5 + (-30p^4 + 64p^3 \\
- 49p^2 - 4p + 16)t^4 + 8(5p^4 - 12p^3 + 12p^2 - 9p + 4)t^3 \\
+ (-30p^4 + 64p^3 - 49p^2 - 4p + 16)t^2 + 4(3p^4 - 4p^3 - p + 2)t \\
- 2p^4 + p^2 - 4p + 4. \quad (2.14)\]
$$\begin{align*}
-2p^4 + p^2 - 4p + 4 &= -0.104741 \cdots < 0. \\
(2.15) \\
\text{It follows from (2.14) and (2.15) that} \\
g(1) &= 8(11 - 12p) = 1.569633 \cdots > 0, \\
(2.16) \\
\lim_{t \to +\infty} g(t) &= -\infty, \\
(2.17) \\
g'(t) &= 6(-2p^4 + p^2 - 4p + 4)t^5 + 20(3p^4 - 4p^3 - p + 2)t^4 + 4(-30p^4 \\
&+ 64p^3 - 9p^2 - 4p + 16)t^3 + 24(5p^4 - 12p^3 + 12p^2 - 9p + 4)t^2 \\
&+ 2(-30p^4 + 64p^3 - 49p^2 - 4p + 16)t + 12p^4 - 16p^3 - 4p + 8, \\
g'(1) &= 24(11 - 12p) > 0, \\
(2.18) \\
\lim_{t \to +\infty} g'(t) &= -\infty, \\
(2.19) \\
g''(t) &= 30(-2p^4 + p^2 - 4p + 4)t^4 + 80(3p^4 - 4p^3 - p + 2)t^3 + 12(-30p^4 \\
&+ 64p^3 - 9p^2 - 4p + 16)t^2 + 48(5p^4 - 12p^3 + 12p^2 - 9p + 4)t \\
&+ 2(-30p^4 + 64p^3 - 49p^2 - 4p + 16), \\
g''(1) &= 8(-10p^2 - 86p + 87) = 11.736817 \cdots > 0, \\
(2.20) \\
\lim_{t \to +\infty} g''(t) &= -\infty, \\
(2.21) \\
g'''(t) &= 120(-2p^4 + p^2 - 4p + 4)t^3 + 240(3p^4 - 4p^3 - p + 2)t^2 \\
&+ 24(-30p^4 + 64p^3 - 49p^2 - 4p + 16)t \\
&+ 48(5p^4 - 12p^3 + 12p^2 - 9p + 4), \\
g'''(1) &= 96(-5p^2 - 13p + 16) = 23.331892 \cdots > 0, \\
(2.22) \\
\lim_{t \to +\infty} g'''(t) &= -\infty, \\
(2.23) \\
g^{(4)}(t) &= 360(-2p^4 + p^2 - 4p + 4)t^2 + 480(3p^4 - 4p^3 - p + 2)t \\
&+ 24(-30p^4 + 64p^3 - 49p^2 - 4p + 16), \\
(2.24)
\end{align*}$$
\[
g^{(4)}(1) = 48(-17p^2 - 42p + 58 - 8p^3) = 27.306355\cdots > 0, \quad (2.24)
\]

\[
\lim_{t \to +\infty} g^{(4)}(t) = -\infty, \quad (2.25)
\]

\[
g^{(5)}(t) = 720(-2p^4 + p^2 - 4p + 4)t + 480(3p^4 - 4p^3 - p + 2), \quad (2.26)
\]

\[
g^{(5)}(1) = 240(3p^2 - 14p + 16 - 8p^3) = -2.609127\cdots < 0. \quad (2.27)
\]

From (2.15) and (2.26) we clearly see that \(g^{(5)}(t) < 0\) is strictly decreasing in \([1, +\infty)\), then (2.27) leads to the conclusion that \(g^{(4)}(t)\) is strictly decreasing in \([1, +\infty)\).

It follows from (2.24) and (2.25) together with the monotonicity of \(g^{(4)}(t)\) we clearly see that there exists \(\lambda_1 > 1\) such that \(g^{(4)}(t) > 0\) for \(t \in [1, \lambda_1)\) and \(g^{(4)}(t) < 0\) for \(t \in (\lambda_1, +\infty)\). Hence, \(g''(t)\) is strictly increasing in \([1, \lambda_1]\) and strictly decreasing in \([\lambda_1, +\infty)\).

From (2.22) and (2.23) together with the piecewise monotonicity of \(g''(t)\) we know that there exists \(\lambda_2 > 1\) such that \(g''(t)\) is strictly increasing in \([1, \lambda_2]\) and strictly decreasing in \([\lambda_2, +\infty)\).

Inequality (2.20) and equation (2.21) together with the piecewise monotonicity of \(g''(t)\) lead to the conclusion that there exists \(\lambda_3 > 1\) such that \(g'(t)\) is strictly increasing in \([1, \lambda_3]\) and strictly decreasing in \([\lambda_3, +\infty)\).

It follows from (2.18) and (2.19) together with the piecewise monotonicity of \(g'(t)\) that there exists \(\lambda_4 > 1\) such that \(g(t)\) is strictly increasing in \([1, \lambda_4]\) and strictly decreasing in \([\lambda_4, +\infty)\).

From (2.16) and (2.17) together with the piecewise monotonicity of \(g(t)\) we clearly see that there exists \(\lambda_5 > 1\) such that \(g(t) > 0\) for \(t \in [1, \lambda_5)\) and \(g(t) < 0\) for \(t \in (\lambda_5, +\infty)\). Then (2.7) and (2.8) together with (2.12)-(2.14) lead to the conclusion that \(f(t)\) is strictly increasing in \([1, \lambda_5]\) and strictly decreasing in \([\lambda_5, +\infty)\).

Note that (2.6) becomes

\[
\lim_{t \to +\infty} f(t) = 0. \quad (2.28)
\]

Equations (2.5) and (2.28) together with the piecewise monotonicity of \(f(t)\) imply that

\[
f(t) > 0 \quad (2.29)
\]

for \(t > 1\).

Therefore, inequality (2.2) follows from (2.3) and (2.4) together with (2.29).
Next, we prove that \(\alpha = 2\sqrt{2}/\pi = 0.900316 \cdots \) and \(\beta = 11/12 = 0.916666 \cdots \) are the best possible parameters such that the double inequality
\[
\alpha S(a, b) + (1 - \alpha)\overline{H}(a, b) < T(a, b) < \beta S(a, b) + (1 - \beta)\overline{H}(a, b)
\]
holds for all \(a, b > 0 \) with \(a \neq b \).

For any \(x > 0 \), \(\alpha > 2\sqrt{2}/\pi \) and \(\beta < 11/12 \), from (1.1)-(1.4) one has
\[
\lim_{x \to +\infty} \frac{\alpha S(1, x) + (1 - \alpha)\overline{H}(1, x)}{T(1, x)} = \frac{\sqrt{2\pi}}{4} - \alpha > 1 \tag{2.30}
\]
and
\[
\beta S(1, 1 + x) + (1 - \beta)\overline{H}(1, 1 + x) - T(1, 1 + x) = \beta [1 + \frac{1}{2}x + \frac{1}{8}x^2 + o(x^2)] + (1 - \beta) [1 + \frac{x}{2} - \frac{3}{8}x^2 + o(x^2)]
\]
\[= [1 + \frac{1}{2}x + \frac{1}{12}x^2 + o(x^2)] \tag{2.31}
\]
\[\leq -\frac{1}{2} \left(\frac{11}{12} - \beta \right)x^2 + o(x^2) \quad (x \to 0). \tag{2.32}
\]

Inequality (2.30) implies that for any \(\alpha > 2\sqrt{2}/\pi \) there exists \(X = X(\alpha) > 1 \) such that \(\alpha S(1, x) + (1 - \alpha)\overline{H}(1, x) > T(1, x) \) for \(x \in (X, +\infty) \), and equation (2.31) implies that for any \(\beta < 11/12 \) there exists \(\delta = \delta(\beta) > 0 \) such that \(\beta S(1, 1 + x) + (1 - \beta)\overline{H}(1, 1 + x) < T(1, 1 + x) \) for \(x \in (0, \delta) \).

References

Received: March, 2011