On a Class of Banach Sequence Spaces Analogous to the Space of Popov

Vahid Parvaneh

Department of mathematics
Islamic Azad University-Gilan-E-Gharb Branch
Gilan-E-Gharb, Iran
vahid.parvaneh@kiau.ac.ir
zam.dalahoo@gmail.com

Abstract

Azimi and Ledari have introduced a class of hereditarily ℓ^p Banach spaces (Z_p) analogous to the space of Popov. We show that (i). The Banach space Z_1 contains asymptotically isometric copies of ℓ^1 and Z_p is not weakly sequentially complete. (ii). if $p \in \{0\} \cup [1, +\infty)$, then Z_p does not possess the Schur property. (iii) Let $p \in [1, +\infty)$. (a) If $\inf_n p_n < p$, then the natural operator from $X_{\alpha,p}$ to Z_p is unbounded. (b) If $\inf_n p_n \geq p$, then the natural operator from Z_p to $X_{\alpha,p}$ is unbounded.

Mathematics Subject Classification: 46B20, 46E30

Keywords: Banach spaces, Schur property

1 Introduction

The existence of hereditarily ℓ^1 Banach spaces failing the Schur property was shown first by Bourgain [7]. In 1986 a class of hereditarily ℓ^1 Banach sequence spaces was introduced by Hagler and Azimi which it does not possess the Schur property [4].

In [1], [3], [4] and [5] further geometric investigation of this spaces is carried out. In [1] A.D. Andrew investigated the question of whether those spaces are prime. (An infinite-dimensional Banach Space X is said to be prime if every infinite-dimensional subspace of X is isomorphic to X.) Specially, he showed that each complemented non weakly sequentially complete subspace of $X_{\alpha,1}$ contains a complemented isomorph of itself. In [3] P. Azimi studied further properties of the $X_{\alpha,1}$ spaces. In particular, he proved that the predual of any member X of this class contains asymptotically isometric copies of c_0 and consequently X contains asymptotically isometric copies of ℓ^1.
Then, in 2002 these spaces were extended to a new class of hereditarily \(\ell^p \) Banach spaces, \(X_{\alpha,p} \) [2]. In [2] Azimi showed that if \(X \) denote a specific \(X_{\alpha,p} \) space, then \(X \) contains \(\ell^p \) hereditarily complemented, \(X \) is a dual space and the predual of \(X \) contains complemented subspace isomorphic to \(\ell^q \) where \(\frac{1}{p} + \frac{1}{q} = 1 \). Excellent sources of information on the \(X_{\alpha,p} \) Banach spaces are [2, 3].

In 2005, Popov constructed a new class of hereditarily \(\ell^1 \) subspaces of \(L_1 \) without the Schur property ([10]) and generalized his result to a class of hereditarily \(\ell^p \) Banach spaces in [11]. Azimi and Ledari in 2006 have used of the spaces \(X_{\alpha,p} \) to introduce and study a new class of hereditarily \(\ell^p \) spaces, analogous to the space of Popov(\(Z_p \)) [6]. In particular, they have shown that for \(p = 1 \) the spaces are further examples of hereditarily \(\ell^1 \) Banach spaces which fail the Schur property and for the case \(p = 0 \) the spaces are hereditarily \(c_0 \).

In this article, we show that for \(p \in \{0\} \cup [1, +\infty) \), \(Z_p \) does not possess the Schur property and under some conditions for \(p \in [1, +\infty) \) the natural operator from \(X_{\alpha,p} \) to \(Z_p \) is unbounded, also the natural operator from \(Z_p \) to \(X_{\alpha,p} \) is unbounded.

\section{Preliminary Notes}

In this section the definition of the \(X_{\alpha,p} \) spaces is given. First, by a block we mean an interval \(F \) (finite or infinite) of integers. For a block \(F \) and \(x = (t_1, t_2, \ldots) \) a sequence of scalars such that \(\sum_j t_j \) converges, define \(<x, F> = \sum_{j \in F} t_j \). To define the norm, we consider special sequences of blocks and special sequences of nonnegative reals. Specifically, we call a sequence (finite or infinite) \(F_1, F_2, \ldots, F_n, \ldots \) (where each \(F_i \) is a finite block) admissible if \(\max F_i < \min F_{i+1} \) for \(i = 1, 2, 3, \ldots \).

Let us now consider a sequence \((\alpha_i) \) of nonnegative reals (whose terms are used as weighting factors in the definition of the norm) which satisfies the following properties:

1. \(\alpha_1 = 1 \) and \(\alpha_{i+1} \leq \alpha_i \) for \(i = 1, 2, 3, \ldots \),
2. \(\lim_{i \to \infty} \alpha_i = 0 \),
3. \(\sum_{i=1}^{\infty} \alpha_i = \infty \).

For \(x = (t_1, t_2, t_3, \ldots) \) a finitely nonzero sequence of scalars, define

\[
||x|| = \max (\sum_{i=1}^{n} \alpha_i <x, F_i> |^p)^{\frac{1}{p}}
\]

where the max is taken over all \(n \), and all admissible sequences \(F_1, F_2, \ldots, F_n \).

Let \(X_{\alpha,p} \) be the completion of the finitely of non zero sequences of scalars \(x = (t_1, t_2, \ldots) \) in this norm.
Now we go through the construction of the Z_p spaces.

Before we define the new spaces, let (α_i) be a fixed sequence, and (X_{α,p_n}) be a sequence of Banach spaces as above with $\infty > p_1 > p_2 > ... > 1$. The direct sum of these spaces in the sense of ℓ^p is defined as the linear space

$$X_p = (\sum_{n=1}^\infty \bigoplus X_{\alpha,p_n})_p$$

with $p \in [1, \infty)$, which is the space of all sequences $x = (x^1, x^2, ...)$, where $x^n \in X_{\alpha,p_n}$ for $n = 1, 2, ...$ and $\|x\|_p = (\sum_{n=1}^\infty \|x^n\|_{\alpha,p_n}^p)^{\frac{1}{p}} < \infty$.

The direct sum of these spaces in the sense of c_0 is defined as the linear space

$$X_0 = (\sum_{n=1}^\infty \bigoplus X_{\alpha,p_n})_0$$

which is the space of all sequences $x = (x^1, x^2, ...)$, where $x^n \in X_{\alpha,p_n}$ for $n = 1, 2, ...$ for which $\lim_n \|x^n\|_{\alpha,p_n} = 0$ and the norm $\|x\|_0 = \max_n \|x^n\|_{\alpha,p_n} < \infty$.

Now, fix a sequence (α_i) of reals which satisfies the above conditions and a sequence (p_n) of reals with $\infty > p_1 > p_2 > ... > 1$. Consider the sequence space X_{α,p_n} as above. For each $n \geq 1$, denote by $(\overline{e}_{i,n})$ the unit vector basis of X_{α,p_n} and by $(e_{i,n})$ its natural copy in X_{α,p_n}, i.e. $e_{i,n} = (0, ..., 0, e_{i,n}, 0, ...) \in X_{\alpha,p_n}$.

Let $\delta_n > 0$ and $\Delta = (\delta_n)$ such that $\sum_{n=1}^\infty \delta_n^p = 1$, if $p \geq 1$ and $\lim_n \delta_n = 0$ and $\max_n \delta_n = 1$, if $p = 0$. For each $i \geq 1$ put $z_i = \sum_{n=1}^\infty \delta_n e_{i,n}$. Let Z_p be the closed linear span of $(z_i)_{i=1}^\infty$.

We recall the main properties of Z_p spaces (theorem 1 of [6]).

Theorem 2.1 (i) the Banach space Z_p is hereditarily ℓ^p for $p > 1$.

(ii) for $p = 1$ the space Z_1 is hereditarily ℓ^1 and fails the Schur property.

(iii) The space Z_0 is hereditarily c_0.

Definition 2.2 Let X be an arbitrary Banach space. Then

a) X has the nowhere Schur property if X contains no infinite dimensional closed subspace with the Schur property.

b) X has the nowhere dual Schur property if X contains no infinite dimensional closed subspace such that its dual has the Schur property.

Definition 2.3 A Banach space X has the Schur property if every weak convergent sequence is norm convergent.

The above theorem and theorem 1.3 of [9] have the following consequence.

Theorem 2.4 Z_1 possesses the nowhere dual Schur property.

3 Main Results

Remark 3.1 For each integer n,

$$\| \sum_{n=1}^k (e_{2n} - e_{2n-1}) \|_{\alpha,p_n} = (\sum_{n=1}^{2k} \alpha_n)^{\frac{1}{p_n}}.$$
This follows from the obvious selection of the admissible sequence \(F_i = \{ i \} \) for \(i = 1, 2, ..., 2n \) and the definition of the norm on \(X_{\alpha, p} \) or more precisely see Corollary 2.3. of [5].

Theorem 3.2 \(Z_p \) is not weakly sequentially complete.

Proof 3.3 We prove that the sequence \((z_i) \) is a weak Cauchy sequence in \(Z_p \) with no weak limit in \(Z_p \). If the sequence \((z_i) \) were not weak Cauchy, we could find \(n_1 < m_1 < n_2 < m_2 < ..., \) a \(\delta > 0 \) and an \(f \in Z_p^* \) with \(\| f \| = 1 \) and \(f(z_{n_i} - z_{m_i}) \geq \delta \) for all \(i \). Thus,

\[
\left\| \frac{1}{N} \sum_{i=1}^{N} (z_{n_i} - z_{m_i}) \right\|_p^p > \delta,
\]

for all \(N \), but

\[
\left\| \frac{1}{N} \sum_{i=1}^{N} (z_{n_i} - z_{m_i}) \right\|_p^p = \frac{1}{N} \sum_{n=1}^{\infty} \delta_n^p (\sum_{i=1}^{2N} \alpha_i)^\frac{p}{\sigma_m} \\
\leq \sum_{n=1}^{\infty} \delta_n^p \frac{1}{N} (\sum_{i=1}^{2N} \alpha_i)^\frac{p}{\sigma_m} \to 0,
\]

which is a contradiction. Thus, the sequence \((z_i) \) is weak Cauchy.

Suppose that this sequence has a weak limit \(x \in Z_1 \). If \(x = (x^1, x^2, x^3, ...) \), then \(x_j^i = < x^i, \{ j \} > = \lim_{i \to \infty} < \delta_n \varphi_{i,n}, \{ j \} > = 0 \), so \(x = 0 \).

On the other hand, \(< x^i, N > = \lim_{i \to \infty} < \delta_n \varphi_{i,n}, N > = \delta_n \), which is a contradiction.

The following lemma is due to Parviz Azimi (Lemma 3.14. of [3]).

Lemma 3.4 Let \((x_n) \) be a sequence of vectors in a Banach space \(X \) such that for every increasing sequence \((n_k) \) of integers,

\[
\lim_{k \to \infty} \left\| \frac{x_{n_1} + x_{n_2} + ... + x_{n_k}}{k} \right\| = 0
\]

then \(x_n \to 0 \) weakly.

Theorem 3.5 Let \(p \in \{ 0 \} \cup [1, +\infty) \), then \(Z_p \) does not possess the Schur property.

Proof 3.6 The case \(p = 1 \) is lemma 2.8 of [6]. For each \(i \geq 1 \), put \(z_i = \sum_{n=1}^{\infty} \delta_n e_{i,n} \). Let \(u_i = z_{2i} - z_{2i-1} \). Therefore, if we assume that \(p \in [1, +\infty) \),

\[
\left\| \sum_{i=1}^{k} u_{n_i} \right\|_p^p = \left\| \sum_{i=1}^{k} (z_{2n_i} - z_{2n_i-1}) \right\|_p^p = \left\| \sum_{m=1}^{\infty} \delta_m (e_{2m-n_i} - e_{2m-n_i}) \right\|_p^p \\
= \sum_{m=1}^{\infty} \delta_m \left(\sum_{i=1}^{k} \left(e_{2m-n_i} - e_{2m-n_i-1} \right) \right)^\frac{p}{\sigma_m} \\
= \sum_{m=1}^{\infty} \delta_m \left(\sum_{i=1}^{2k} \alpha_i \right)^\frac{p}{\sigma_m}.
\]
since $\alpha_i \to 0$, we have

$$\lim_{k \to \infty} \frac{||u_1 + u_2 + \ldots + u_k||_0}{k} = \lim_{k \to \infty} \frac{(\sum_{m=1}^{\infty} \delta_m ((\sum_{i=1}^{2k} \alpha_i) \frac{1}{p^m})^\frac{1}{p})}{k} = 0.$$

On the other hand,

$$||u_i||_p^p = ||z_{2i} - z_{2i-1}||_p^p = \left(\sum_{m=1}^{\infty} \delta_m (1 + \alpha_2)^\frac{1}{p^m} \right)^p \leq \sum_{m=1}^{\infty} \delta_m^p = 1.$$

When $p = 0$, we have

$$\frac{\sum_{i=1}^{k} u_n_i}{k}||_0 = \frac{\sum_{i=1}^{k} (z_{2n_i} - z_{2n_i-1})}{k}||_0 = \frac{\sum_{i=1}^{k} (\sum_{m=1}^{\infty} \delta_m (e_{2n_i,m} - e_{2n_i-1,m}))}{k}||_0 = \max_m \delta_m ||(\sum_{i=1}^{\infty} (e_{2n_i,m} - e_{2n_i-1,m})||_\alpha,p^m.$$

Again since $\alpha_i \to 0$, we have

$$\lim_{k \to \infty} \frac{||u_1 + u_2 + \ldots + u_k||_0}{k} = \lim_{k \to \infty} \frac{\max_m \delta_m ((\sum_{i=1}^{2k} \alpha_i) \frac{1}{p^m})}{k} = 0.$$

But,

$$||u_i||_0 = ||z_{2i} - z_{2i-1}||_0 = \max_m \delta_m (1 + \alpha_2)^\frac{1}{p^m} \geq \max_m \delta_m = 1.$$

Hence, if $p \in \{0\} \cup [1, +\infty)$, the sequence (u_i) is a weakly null sequence in Z_p but not in norm.

Definition 3.7 Let X and Y be any of the spaces $X_{\alpha,p}(1 \leq p < \infty)$, $Z_p(1 \leq p < \infty)$ with their natural bases $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ respectively. The formal (maybe, unbounded) operator $T : X \to Y$ which extends by linearity and continuity the equality $Tx_n = y_n$ is called the natural operator from X to Y.

Theorem 3.8 Let $p \in [1, +\infty)$.

(i) If $\inf_n p_n < p$, then the natural operator from $X_{\alpha,p}$ to Z_p is unbounded.

(ii) If $\inf_n p_n \geq p$, then the natural operator from Z_p to $X_{\alpha,p}$ is unbounded.
Proof 3.9 (i) We have
\[\sum_{n=1}^{\infty} \delta_n^p k_{\frac{\mu}{p_n}} = \sum_{n=1}^{\infty} \delta_n^p \| \sum_{i=1}^{k} e_{i,n} \|_{p_n,\alpha}^p = \| \sum_{n=1}^{\infty} \delta_n^p (\sum_{i=1}^{k} e_{i,n}) \|_{p_n,\alpha}^p \]
\[= \| \sum_{i=1}^{k} \sum_{n=1}^{\infty} \delta_n^p (e_{i,n}) \|_{p_n,\alpha}^p = \| \sum_{i=1}^{k} z_i \|_{p_n}^p = \| \sum_{i=1}^{k} T e_i \|_{p_n}^p \]
\[= \| T (\sum_{i=1}^{k} e_i) \|_{p_n}^p \leq \| T \|_{p_n}^p \sum_{i=1}^{k} e_i \|_{p_n,\alpha}^p = \| T \|_{p_n}^p k. \]

Therefore,
\[\| T \|_{p_n}^p \geq \sum_{n=1}^{\infty} \frac{\delta_n^p k_{\frac{\mu}{p_n}}}{k} = \sum_{n=1}^{\infty} \delta_n^p k_{\frac{\mu}{p_n}}^{-1} \]

If \(\inf_n p_n < p \), then there exists an \(n_0 \) such that \(p_{n_0} < p \) and hence
\[\| T \|_{p_n}^p \geq \sum_{n=1}^{\infty} \delta_n^p k_{\frac{\mu}{p_{n_0}}}^{-1} \geq \delta_n^p k_{\frac{\mu}{p_{n_0}}}^{-1} \rightarrow \infty, \]
as \(k \rightarrow \infty \).

(ii) Suppose now \(\inf_n p_n \geq p \). In this case \(\frac{\mu}{p_n} - 1 < 0 \) for each \(n \). Let \(\varepsilon > 0 \) is arbitrary, choose \(n_0 \) so that \(\sum_{n=1}^{n_0} \delta_n^p < \frac{\varepsilon}{2} \). Then choose \(k_0 \) such that
\[\max_{1 \leq n \leq n_0} \delta_n^p k_{\frac{\mu}{p_{n_0}}}^{-1} < \frac{\varepsilon}{2n_0} \]
for \(m > m_0 \). Then for such \(m \) we have
\[\| T \|_{p_n}^p \geq \frac{1}{\sum_{n=1}^{\infty} \delta_n^p k_{\frac{\mu}{p_n}}^{-1}} = \frac{1}{\sum_{n=1}^{n_0} \delta_n^p k_{\frac{\mu}{p_{n_0}}}^{-1} + \sum_{n=n_0+1}^{\infty} \delta_n^p k_{\frac{\mu}{p_n}}^{-1}} \]
\[\geq \frac{1}{\sum_{n=1}^{n_0} (\max_{1 \leq n \leq n_0} \delta_n^p k_{\frac{\mu}{p_{n_0}}}^{-1}) + \sum_{n=n_0+1}^{\infty} \delta_n^p k_{\frac{\mu}{p_n}}^{-1}} \]
\[\geq \frac{1}{\frac{\varepsilon}{2} + \frac{\varepsilon}{2}} \rightarrow \infty, \]
as \(k \rightarrow \infty \).

Definition 3.10 Let \(X \) be a Banach space. We say that \(X \) contains asymptotically isometric copy of \(\ell^1 \) if for any \(\varepsilon_n \downarrow 0 \) \((0 < \varepsilon_n \leq 1)\), \(X \) contains a norm-one sequence \((x_n) \) such that for all \(m \) and scalars \(\{a_n : 1 \leq n \leq m\} \)
\[\sum_{n=1}^{m} (1 - \varepsilon_n) |a_n| \leq || \sum_{n=1}^{m} a_n x_n || \leq \sum_{n=1}^{m} (1 + \varepsilon_n) |a_n|. \]

Theorem 3.11 The Banach space \(Z_1 \) contains asymptotically isometric copies of \(\ell^1 \).
Proof 3.12 Let E_0 be an infinite dimensional subspace of Z_1 and choose a sequence of positive numbers ε_s such that $\frac{\delta_s}{4} \leq \varepsilon_s$, for all $s \in \mathbb{N}$ and satisfy the conditions of Lemma 2.4 of [11], where (δ_s) is as in definition of Z_1.

Using Lemma 2.3 of [11], we construct inductively sequences $(x_s)_{s=1}^{\infty} \subseteq E_0$ and $(z_s)_{s=1}^{\infty} \subseteq Z_1 - \{0\}$ of the form $u_s = \sum_{i=j_s+1}^{j_{s+1}} a_i z_i$ where $j_1 < j_2 < ...$ and $||u_s|| = 1$ so that $||u_s - x_s|| \leq \varepsilon_s$.

To see that this can be done, let $j_1 = 1$. Choose by Lemma 2.3 of [11] an $x_1 \in Z_1 - \{0\}$ and $u_1 = \sum_{i=j_1+1}^{j_1+1} a_i z_i$ such that $||u_1|| = 1$ and $||u_1 - x_1|| \leq \frac{\delta_1}{4}$. Continuing the procedure in the obvious manner, we construct the desired sequences.

Therefore, for each scalars $(a_s)_{s=1}^{m}$ one has

$$
\sum_{n=1}^{m} (1 - \varepsilon_n)|a_n| \leq \sum_{n=1}^{m} (|a_n||u_n|| - ||u_n - x_n||) \leq \sum_{n=1}^{m} |a_n||u_n|| \\
\leq \sum_{n=1}^{m} |a_n||(||u_n|| + ||u_n - x_n||) \leq \sum_{n=1}^{m} (1 + \varepsilon_n)|a_n|.
$$

therefore, Z_1 contains asymptotically isometric copies of ℓ^1

The following theorem is an immediate consequence of theorem 2 of [8] and above theorem.

Theorem 3.13 (i) The dual Z_1^* of Z_1 contains subspaces isometrically isomorphic to $C[0,1]^*$.

(ii) $C(\Delta)$ is isometric to a quotient space of Z_1 where Δ is the Cantor set.

(iii) L_1 is linearly isometric to a subspace of Z_1.

Remark 3.14 The identity operator from $X_{\alpha,p}$ to $X_{\alpha,q}$ is unbounded, where $p > q$ (Theorem 2.4 of [5]). Obviously, the identity operator from Z_1 to Z_0 is bounded. Since we have

$$
||I(\sum_{i=1}^{k} t_i z_i)||_0 = ||\sum_{i=1}^{k} t_i z_i||_0 = \max_{n} \delta_n ||\sum_{i=1}^{k} t_i e_{i,n}||_{\alpha,p_n} \\
\leq \sum_{n=1}^{\infty} \delta_n ||\sum_{i=1}^{k} t_i e_{i,n}||_{\alpha,p_n} = ||\sum_{i=1}^{k} t_i z_i||_1.
$$

So, $||I|| \leq 1$.

There is still a further question concerning the structure of Z_p.

Problem 3.15 (i) Is the identity operator from Z_0 to $Z_p (1 \leq p < \infty)$ bounded?

(ii) Is the identity operator from $Z_p (1 < p < \infty)$ to Z_0 bounded?
Problem 3.16 Is the Banach space $Z_p(1 < p < \infty)$ contains asymptotically isometric copies of ℓ^p?

Problem 3.17 Let $p \in \{0\} \cup [1, +\infty)$. Is then Z_p possess the Dunford-Pettis property (DPP)?

References

Received: December, 2010