A Common Fixed Point Theorem in Menger Probabilistic Metric Spaces Using Compatibility

K. P. R. Sastry1, G. A. Naidu2, P. V. S. Prasad3 and S. S. A. Sastri4

1 8-28-8/1, Tamil Street, Chinna Waltair Visakhapatnam-530 017, India
kprsastry@hotmail.com

2 3 Department of Mathematics, Andhra University Visakhapatnam-530 003, India
drgolivean@yahoo.com, pvsprasad10@yahoo.in

4 Department of Basic Science and Humanities Coastal Institute of Technology and Management Narapatam, Vizianagaram-535 183, India
sambharasas@yahoo.co.in

Abstract

In this paper, we show that a result of Servet Kutukcu and Sushil Sharma of \cite{6} is not valid and provide also modifications Theorem 2.6 and corollary 2.7. For this we introduce the notion of a strict Menger space. We also give supporting examples. Two open problems also are given.

Mathematics Subject Classification: 47H10, 54H25

Keywords: common fixed point, compatible maps, Menger space, strict Menger space, triangular norm

1 Introduction

In this paper we show that Corollary 1 and hence Theorem 1 of \cite{6} is not valid, through an example and obtains necessary modifications to the above theorem.
We start with

Definition 1.1 \cite{4} A function $F: \mathbb{R} \to [0, 1]$ is called a distribution function if
(i) \(F \) is non-decreasing,
(ii) \(F \) is left continuous,
(iii) \(\inf_{x \in \mathbb{R}} F(x) = 0 \) and \(\sup_{x \in \mathbb{R}} F(x) = 1 \)

Definition 1.2: [2] A triangular norm \(* : [0, 1] \times [0, 1] \to [0, 1] \) is a function satisfying the following conditions
 (i) \(a * 1 = a \quad \forall a \in [0, 1] \)
 (ii) \(a * b = b * a \quad \forall a, b \in [0, 1] \)
 (iii) \(c * d \geq a * b \quad \forall a, b, c, d \in [0, 1] \) with \(c \geq a \) and \(d \geq b \)
 (iv) \((a * b) * c = a * (b * c) \quad \forall a, b, c \in [0, 1] \)

A triangular norm is also denoted by t-norm.

For any \(a, b \in [0, 1] \), if we define \(a * b = \min\{a, b\} \), then * is a t-norm and is denoted by ‘min’.

We observe that if \(a * a \geq a \quad \forall a \in [0, 1] \), then * is min t-norm.

Definition 1.3: [4] Let \(X \) be a non-empty set and let \(F : X \times X \to \mathcal{D} \) (The set of distribution functions). For \(p, q \in X \), we denote the image of the pair \((p, q) \) by \(F_{p,q} \) which is a distribution function so that \(F_{p,q}(x) \in [0, 1] \), for every real \(x \).

Suppose \(F \) satisfies:
 (i) \(F_{p,q}(x) = 1 \) for all \(x > 0 \) if and only if \(p = q \)
 (ii) \(F_{p,q}(0) = 0 \)
 (iii) \(F_{p,q}(x) = F_{q,p}(x) \)
 (iv) If \(F_{p,q}(x) = 1 \) and \(F_{q,r}(y) = 1 \) then \(F_{p,r}(x + y) = 1 \) where \(p, q, r \in X \).

Then \((X, F) \) is called a probabilistic metric space.

Definition 1.4: [2] Let \(X \) be a non-empty set, * be a t-norm and \(F : X \times X \to \mathcal{D} \) be a function satisfying
 (i) \(F_{p,q}(0) = 0 \)
 (ii) \(F_{p,q}(x) = 1 \) for all \(x > 0 \) if and only if \(p = q \)
 (iii) \(F_{p,q}(x) = F_{q,p}(x) \)
 (iv) \(F_{p,q}(x + y) \geq F_{p,q}(x) \ast F_{q,r}(y) \) for all \(x, y \geq 0 \) and \(p, q, r \in X \).

Then the triplet \((X, F, *) \) is called a Menger space.

Definition 1.5: [5]
 (i) Let \((X, F, *) \) be a Menger space and \(p \in X \). For \(\epsilon > 0, 0 < \lambda < 1 \), the \((\epsilon, \lambda)\)-neighborhood of \(p \) is defined as \(U_{p} (\epsilon, \lambda) = \{ q \in X: F_{p,q}(\epsilon) > 1 - \lambda \} \).

It may be observed that, if * is continuous, then the topology induced by the family \(\{U_{p} (\epsilon, \lambda): p \in X, \epsilon > 0, 0 < \lambda < 1 \} \) is a Hausdorff topology on \(X \) and is known as the \((\epsilon, \lambda)\)-topology.

(ii) A sequence \(\{x_{n}\} \) in \(X \) is said to converge to \(p \in X \) in the \((\epsilon, \lambda)\)-topology, if for any \(\epsilon > 0 \) and \(0 < \lambda < 1 \) there exists a positive integer \(N = N (\epsilon, \lambda) \) such that \(F_{x_{n},p}(\epsilon) > 1 - \lambda \) where \(n > N \).

(iii) A sequence \(\{x_{n}\} \) in \(X \) is said to be a Cauchy sequence in the \((\epsilon, \lambda)\)-topology, if for \(\epsilon > 0 \) and \(0 < \lambda < 1 \) there exists a positive integer \(N = N (\epsilon, \lambda) \) such that \(F_{x_{m},x_{n}}(\epsilon) > 1 - \lambda \) for all \(m, n > N \).
(iv) A Menger space \((X, F, \ast)\) where \(\ast\) is continuous, is said to be complete if every Cauchy sequence in \(X\) is convergent in \((\epsilon, \lambda)\)-topology.

Definition 1.6:[6] Two self mappings \(A\) and \(B\) of a Menger space \((X, F, \ast)\) are said to be

(i) compatible of type \((P)\) if

\[F_{ABx_n, BBx_n}(t) \to 1 \text{ and } F_{BAx_n, AAx_n}(t) \to 1 \text{ for all } t > 0 \]

where \(\{x_n\}\) is a sequence in \(X\) such that \(Ax_n, Bx_n \to z\) for some \(z\) in \(X\) as \(n \to \infty\).

(ii) compatible of type \((P_1)\) if \(F_{ABx_n, BBx_n}(t) \to 1\) for all \(t > 0\)

where \(\{x_n\}\) is a sequence in \(X\) such that \(Ax_n, Bx_n \to z\) for some \(z\) in \(X\) as \(n \to \infty\).

(iii) compatible of type \((P_2)\) if \(F_{BAx_n, AAx_n}(t) \to 1\) for all \(t > 0\)

where \(\{x_n\}\) is a sequence in \(X\) such that \(Ax_n, Bx_n \to z\) for some \(z\) in \(X\) as \(n \to \infty\).

Lemma 1.7:[3] Let \(\{x_n\}_{n=0}^{\infty}\) be a sequence in a Menger space \((X, F, \ast)\) with Hadzic-type \(t\)-norm \(\ast\). If there exists \(k \in (0, 1)\) such that

\[F_{x_n,x_{n+1}}(kt) \geq F_{x_{n-1},x_n}(t) \text{ for all } t > 0, \]

then \(\{x_n\}\) is a Cauchy sequence.

We observe that ‘min’ \(t\)-norm is of Hadzic type.

Lemma 1.8:[7] Let \((X, F, \ast)\) be a Menger space. If there exists \(k \in (0, 1)\) such that

\[F_{x,y}(kt) \geq F_{x,y}(t) \text{ for all } x, y \in X \text{ and } t > 0, \]

then \(x = y\).

2 Main Results

Now we state below Theorem 1 of [6], which we show to be not valid (Example 2.3) and obtain modifications (Theorem 2.6 and Corollary 2.7).

Theorem 2.1 ([6], Theorem 1): Let \(A, B, P, Q, S, T\) be self mappings of a complete Menger space \((X, F, \ast)\) with continuous \(t\)-norm \(\ast\) such that \(t \ast t \geq t \forall t \in [0, 1]\) (i.e. \(\ast\) is the ‘min’ \(t\)-norm), satisfying:

(i) \(P(X) \subseteq ST(X), Q(X) \subseteq AB(X)\)

(ii) there exists a constant \(k \in (0, 1)\) such that

\[F_{Pz,Qy}(kt) \geq F_{ABz, STy}(t) \ast F_{Pz, ABx}(t) \ast F_{Qy, STy}(t) \ast F_{Pz, STy}(\alpha t) \ast F_{Qy, ABx}((2-\alpha)t) \]

for all \(x, y \in X, t > 0\) and \(\alpha \in (0, 2)\)

(iii) either \(P\) or \(C\) is continuous

(iv) the pairs \((P, C)\) and \((Q, R)\) are both compatible of type \((P_1)\) or type \((P_2)\)

(v) \(AB = BA, ST = TS, PB = BP, QT = TQ\)

Then \(A, B, P, Q, S, T\) have a unique common fixed point. The following Corollary of Theorem 2.1 is given in [6].
Corollary 2.2 ([6], Corollary 1): Let P, Q be self maps on Menger space (X, F, \ast) with continuous t-norm and $t \ast t \geq t \forall t \in [0, 1]$. If there exists a constant $k \in (0, 1)$ such that

$$F_{Px,Qy}(kt) \geq F_{x,y}(t) \ast F_{P,x}(t) \ast F_{Q,y}(t) \ast F_{P,x}((2 - \alpha)t) \ast F_{Q,y}((2 - \alpha)t)$$

for all $x, y \in X, t > 0$ and $\alpha \in (0, 2)$,

then P and Q have a unique common fixed point.

Corollary 2.2 is not valid in view of the following example.

Example 2.3: Let $X = Z^+$ and the function F by for any $m, n \in Z^+$

$$F_{m,n}(t) = \begin{cases} 0 & \text{if } t \leq \max\{m, n\} \\ 1 & \text{if } t > \max\{m, n\} \end{cases}$$

Define the functions P and Q on Z^+ by $P_n = n + 1$ and $Q_n = 1$ for all $n \in Z^+$.

Let $k \in (0, 1)$ and take $\alpha = k$

Then for every $x, y \in X, t > 0$, we have

$$F_{x+1,1}(kt) \geq F_{x,y}(t) \ast F_{x+1,x}(t) \ast F_{1,y}(t) \ast F_{x+1,y}(at) \ast F_{1,x}((2 - \alpha)t) ... (1)$$

This is so, because $F_{x+1,1}(kt) = 1$ if $kt > x + 1$ and (1) is satisfied and if $kt < x + 1$, then $F_{x+1,1}(kt) = 0$ and $F_{x+1,1}(at) = 0$ ($\because \alpha = k$)

So that (1) is again satisfied. In either case the inequality (1) holds, but P and Q fail to have a common fixed point.

Hence Theorem 2.1 needs modification which we give below. In this connection it may be observed that $F_{m,n}(t)$ is not strictly increasing in $(0, \infty)$. We make use of this observation in obtaining the necessary modifications to Theorem 2.1.

Definition 2.4: Let (X, F, \ast) be a Menger space such that $F_{x,y}(t)$ is strictly increasing in t when ever $x \neq y$. Then (X, F, \ast) is called a strict Menger space.

Example 2.5: Let (X, d) be a metric space. Define $F_{x,y}(t) = \frac{t}{t + d(x,y)} \forall t > 0$ and $x, y \in X$. If t-norm \ast is $a \ast b = \min\{a, b\} \forall a, b \in [0, 1]$, then (X, F, \ast) is a strict Menger space.

The following Theorem 2.6 and Corollary 2.7 may be regards as modifications to Theorem 2.1.

Theorem 2.6: Let P, Q, R and C be self mappings of a complete strict Menger space (X, F, \ast) where \ast is the min t-norm, satisfying:

(i) $P(X) \subseteq R(X), Q(X) \subseteq C(X)$

(ii) there exists a constant $k \in (0, 1)$ such that

$$F_{P,x,Qy}(kt) \geq F_{C,x,Ry}(t) \ast F_{P,x,Cx}(t) \ast F_{Q,y,Ry}(t) \ast F_{P,x,Ry}(2t) \ast F_{Q,y,Cx}(2t)$$

for all $x, y \in X, t > 0$

(iii) either P or C is continuous
(iv) the pairs (P,C) and (Q,R) are both compatible of type (P₁) or type (P₂)

Then P, Q, R and C have a unique common fixed point.

Proof: Let \(x_0 \in X \). By (i), there exist sequences \(\{x_n\} \) and \(\{y_n\} \) in X such that

\[
P_{x_{2n}} = R_{x_{2n+1}} = y_{2n} \quad \text{and} \quad Q_{x_{2n+1}} = C_{x_{2n+2}} = y_{2n+1} \quad \text{for} \quad n = 0, 1, 2, \ldots
\]

By taking \(x = x_{2n}, \ y = x_{2n+1} \) for all \(t > 0 \) in (ii), we get

\[
F_{P_{x_{2n}}, Q_{x_{2n+1}}}(kt) \geq F_{C_{x_{2n}}, R_{x_{2n+1}}}(t) * F_{P_{x_{2n}}, C_{x_{2n}}}(t) * F_{Q_{x_{2n+1}}, R_{x_{2n+1}}}(t) *
\]

\[
F_{P_{x_{2n}}, R_{x_{2n+1}}}(2t) * F_{Q_{x_{2n+1}}, C_{x_{2n}}}(2t)
\]

\[
\Rightarrow F_{y_{2n}, y_{2n+1}}(kt) \geq F_{y_{2n-1}, y_{2n}}(t) * F_{y_{2n}, y_{2n-1}}(t) * F_{y_{2n-1}, y_{2n}}(2t) *
\]

\[
F_{y_{2n-1}, y_{2n}}(2t)
\]

Similarly, we can prove that \(F_{y_{2n+1}, y_{2n+2}}(kt) \geq F_{y_{2n}, y_{2n+1}}(t) * F_{y_{2n+1}, y_{2n+2}}(t) \)

Hence \(F_{y_n, y_{n+1}}(kt) \geq F_{y_{n-1}, y_n}(t) * F_{y_n, y_{n+1}}(t) \)

Consequently \(F_{y_n, y_{n+1}}(kt) \geq F_{y_{n-1}, y_n}(t) \) for all \(t > 0, \ k \in (0, 1), \ n \in N \)

which is obvious if \(y_n = y_{n+1} \) and follows from the strictly increasing nature of \(F_{y_n, y_{n+1}}(t) \) when \(y_n \neq y_{n+1} \).

By Lemma [1.7], \(\{y_n\} \) is a Cauchy sequence.

Since \((X, F, *) \) is complete, it converges to a point \(z \) in X. Also its sub sequences

\(\{P_{x_{2n}}\} \rightarrow z, \ \{C_{x_{2n}}\} \rightarrow z, \ \{Q_{x_{2n+1}}\} \rightarrow z \) and \(\{R_{x_{2n+1}}\} \rightarrow z \)

Case (i): C is continuous, (P,C) and (Q,R) are compatible of type (P₂)

\[
CC_{x_{2n}} \rightarrow Cz, \ CP_{x_{2n}} \rightarrow Cz \quad (\because \ C \text{ is continuous})
\]

\[
PP_{x_{2n}} \rightarrow Cz \quad (\because \ (P,C) \text{ is compatible of type (P₂)})
\]

Now by taking \(x = P_{x_{2n}}, \ y = x_{2n+1} \) in (ii), we get \(Cz = z \).

Similarly by taking \(x = z, \ y = x_{2n+1} \) in (ii), we get \(Pz = z \).

Since \(P(X) \subseteq R(X) \), there exists \(w \in X \) such that \(z = Pz = Rw \)

By taking \(x = x_{2n}, \ y = w \) in (ii), we get \(Qw = z \)

\[
\therefore Rw = Qw = z
\]

Since \((Q,R) \) is compatible of type \((P₂) \), we have \(RQw = QQw \).

Therefore \(Rz = Qz \).

Now by taking \(x = x_{2n}, \ y = z \) in (ii), we get \(Qz = z \).

\[
\therefore Pz = Qz = Cz = Rz = z.
\]

i.e. \(z \) is a common fixed point for P, Q, R and C.

Case (ii): P is continuous and \((P,C), (Q,R) \) are both compatible of type (P₂)

\[
PP_{x_{2n}} \rightarrow Pz, \ PC_{x_{2n}} \rightarrow Pz \quad (\because \ P \text{ is continuous})
\]

\[
CP_{x_{2n}} \rightarrow Pz \quad (\because \ (P,C) \text{ is compatible of type (P₂)})
\]

By taking \(x = P_{x_{2n}}, \ y = y_{2n+1} \) in (ii), we get \(Pz = z \).

we have \(z = Qz = Rz \).
Since $Q(X) \subseteq C(X)$, there exists $w \in X$ such that $z = Qz = Cw$.

By taking $x = w$, $y = x_{2n+1}$ in (ii), we get $z = Pw$.

Since $z = Qz = Cw$, hence $Pw = Cw$.

(P, C) is compatible of type (P_2), we have $CPw = PPw$

i.e. $Cz = Pz$.

:. $z = Pz = Cz = Qz = Rz$

i.e. z is a common fixed point for P, Q, R and C.

:. z is a common fixed point for P, Q, R and C when C is continuous (or P is continuous) and (P, C), (Q, R) are compatible of type P_2 (or P_1).

For uniqueness, let v be a common fixed point for P, Q, R and C.

Take $x = z$, $y = v$ in the condition (ii), then we get $v = z$.

Therefore P, Q, R and C have a unique common fixed point.

Corollary 2.7: Let A, B, P, Q, S and T be self mappings of a complete strict Menger space (X, F, \ast) where \ast is the min t-norm, satisfying:

(i) $P(X) \subseteq ST(X), Q(X) \subseteq AB(X)$

(ii) there exists a constant $k \in (0, 1)$ such that

\[F_{P_x, Q_y}(kt) \geq F_{AB_x, ST_y}(t) * F_{P_x, AB_x}(t) * F_{Q_y, ST_y}(2t) * F_{P_x, ST_y}(2t) * F_{Q_y, AB_x}(2t) \]

for all $x, y \in X$, $t > 0$

(iii) either P or ST is continuous

(iv) the pairs (P, ST) and (Q, AB) are both compatible of type (P_1) or type (P_2)

(v) $AB = BA, ST = TS, PB = BP, QT = TQ$

Then A, B, P, Q, S and T have a unique common fixed point.

Proof: Write $C = ST$ and $R = AB$

Then, by Theorem 2.6, there exists $z \in X$ such that $z = Pz = Rz = Qz = Cz$.

Hence $z = Pz = Rz = STz = Qz = Cz = ABz$.

Now $STz = z \Rightarrow T(STz) = Tz \Rightarrow TSTz = Tz \Rightarrow STTz = Tz$

:. Tz is a fixed point for ST.

Since $ABz = z \Rightarrow BABz = Bz \Rightarrow ABBz = Bz$

i.e. Bz is a fixed point for AB.

Similarly, $ABz = z \Rightarrow AABz = Az \Rightarrow ABAz = Az$

i.e. Az is a fixed point for AB.

Therefore Az and Bz are fixed points for AB.

Now $Pz = z \Rightarrow BPz = Bz \Rightarrow PBz = Bz$

i.e. Bz is a fixed point for P.

Since $Qz = z \Rightarrow TQz = Tz \Rightarrow QTz = Tz$

i.e. Tz is a fixed point for Q.

By taking $x = Bz$, $y = Tz$ in (b), we get $Bz = Tz$

:. Bz is a common fixed point for P, Q, AB, ST.

By Theorem 2.6, $Bz = z = Tz$ is a common fixed point for P, Q, AB, ST.

Since $ABz = z \Rightarrow Az = z$ and $STz = z \Rightarrow Sz = z$
Common fixed point theorem

∴ z is a common fixed point for A, B, S, T, P and Q.
For uniqueness, let v be a common fixed point for A, B, S, T, P and Q.
By taking \(x = z, y = v \) in condition (ii), we get \(z = v \).

We provide the following example in support of Theorem 2.6.
Example 2.8: \((\mathbb{R}, F, *)\) is a strict Menger space where \(\mathbb{R}\) is a real line with the usual metric, and \(F : \mathbb{R} \rightarrow [0, 1]\) is defined by \(F_{x,y}(t) = \frac{t}{t+d(x,y)}\) \(\forall x, y \in \mathbb{R}\) and * is the min t-norm, i.e. \(* = \min\{a, b\}\).

Let \(P, Q, R\) and \(C\) be the self maps on \(\mathbb{R}\), defined by
\[
P x = \begin{cases}
0 & \text{if } x \leq 3 \\
1 & \text{if } x > 3
\end{cases}
\]
\(Q x = 0, R x = x^2\) and \(C x = I\) \(\forall x \in \mathbb{R}\).

Then clearly \(P, Q, R\) and \(C\) satisfy the hypothesis of Theorem 2.6. It is clear that 0 is the only common fixed point of \(P, Q, R\) and \(C\).

It may be noted that \(P\) is discontinuous and \(C\) is continuous.

The following example is supporting Corollary 2.7.
Example 2.9: Let \((\mathbb{R}, F, *)\) be as in Example 2.8.

Let \(A, B, P, Q, S\) and \(T\) be the self maps on \(\mathbb{R}\), defined by
\[
P x = \begin{cases}
0 & \text{if } x \leq 3 \\
1 & \text{if } x > 3
\end{cases}
\]
\(Q x = 0, A x = x^4, B x = \sqrt{|x|}\) and \(S x = -x = T x\) \(\forall x \in \mathbb{R}\).

Clearly \(A, B, P, Q, S\) and \(T\) satisfy the hypothesis of Corollary 2.7. It is clear that 0 is the only common fixed point of \(A, B, P, Q, S\) and \(T\).

We conclude the paper with two open problems.
Open problem 2.10: Is Theorem 2.6 valid if \(2t\) in condition (ii) is replaced by \(\alpha t\) where \(\alpha \in (1, 2)\)?

Open problem 2.11: Is Theorem 2.6 valid if \((X, F, *)\) is not necessarily strict?

References:

[3]. **K.P.R. Sastry, G.V.R. Babu and M.L. Sandhya:** Weak contractions

Received: July, 2010