rgα-Closed and rgα-Open Maps

in Topological Spaces

A. Vadivel and K. Vairamanickam

Department of Mathematics, Annamalai University
Annamalainagar - 608 002, India
avmaths@gmail.com
kvaufeat@gmail.com

Abstract

A set A in a topological space (X, τ) is said to be a regular generalized α-closed if $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is regular α-open in X. In this paper, we introduce $rg\alpha$-closed map from a topological space X to a topological space Y as the image of every closed set is $rg\alpha$-closed, and also we prove that the composition of two $rg\alpha$-closed maps need not be $rg\alpha$-closed map. We also obtain some properties of $rg\alpha$-closed maps.

Mathematics Subject Classification: 54C10, 54C08, 54C05

Keywords: $rg\alpha$-closed maps, $rg\alpha^*$-closed maps and $rg\alpha$-open maps, $rg\alpha^*$-open maps

1 Introduction

Generalized closed mappings were introduced and studied by Malghan[18]. wg-closed maps and rwg-closed maps were introduced and studied by Nagavani[19]. Regular closed maps, gpr-closed maps and rg-closed maps have been introduced and studied by Long[12], Gnanambal[9] and Arockiarani[1] respectively. In this paper, a new class of maps called regular generalized α-closed (briefly, $rg\alpha$-closed) maps, $rg\alpha^*$-closed maps have been introduced and studied their relations with various generalized closed maps. We prove that the composition of two $rg\alpha$-closed maps need not be $rg\alpha$-closed map. We also obtain some properties of $rg\alpha$-closed maps.

Let us recall the following definition which we shall require later.
Definition 1.1. A subset A of a space (X, τ) is called
1) a preopen set\,[17] if $A \subseteq \text{intcl}(A)$ and a preclosed set if $\text{clint}(A) \subseteq A$.
2) a semiopen set\,[10] if $A \subseteq \text{clint}(A)$ and a semiclosed set if $\text{intcl}(A) \subseteq A$.
3) a α-open set\,[20] if $A \subseteq \text{intclint}(A)$ and a α-closed set if $\text{clintcl}(A) \subseteq A$.
4) a semi-preopen set\,[1] if $A \subseteq \text{clintcl}(A)$ and a semi-preclosed set if $\text{intclint}(A) \subseteq A$.
5) a regular open set\,[26] if $A = \text{intcl}(A)$ and a regular closed set if $A = \text{clint}(A)$.

The intersection of all semiclosed (resp. semiopen) subsets of (X, τ) containing A is called the semi-closure (resp. semi-kernal) of A and is denoted by $\text{scl}(A)$ (resp. $\text{sker}(A)$).

Definition 1.2. A subset A of a space (X, τ) is called
1) a generalized closed set (briefly, g-closed)\,[11] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2) a semi-generalized closed set (briefly, sg-closed)\,[5] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.
3) a generalized semi-closed set (briefly, gs-closed)\,[2] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
4) a generalized α-closed set (briefly, $g\alpha$-closed)\,[15] if $\alpha\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X.
5) an α-generalized closed set (briefly, αg-closed)\,[14] if $\alpha\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
6) a generalized semi-preclosed set (briefly, gsp-closed)\,[7] if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
7) a regular generalized closed set (briefly, rg-closed)\,[21] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
8) a generalized preclosed set (briefly, gp-closed)\,[16] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
9) a generalized preregular closed set (briefly, gpr-closed)\,[9] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
10) a weakely generalized closed set (briefly, wg-closed)\,[19] if $\text{clint}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
11) a strongly generalized semi-closed set\,[23] (briefly, g^*-closed) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
12) a π-generalized closed set (briefly, πg-closed)\,[8] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open in X.
13) a weakely closed set (briefly, w-closed)\,[25] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.
14) mildly generalized closed set (briefly, mildly g-closed)\cite{22} if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
15) semi weakly generalized closed set (briefly, swg-closed)\cite{19} if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
16) regular weakly generalized closed set (briefly, rwg-closed)\cite{19} if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
17) regular semiopen set\cite{6} if there is a regular open set U such that $U \subset A \subset \text{cl}(U)$.
18) regular α-open set (briefly, $\text{r}\alpha$-open)\cite{28} if there is a regular open set U such that $U \subset A \subset \alpha\text{cl}(U)$.
19) regular w-closed set (briefly, rw-closed)\cite{4} if $\text{cl}(A) \subset U$ whenever $A \subset U$ and U is regular semiopen in X.
20) regular generalized α-closed set (briefly, $\text{rg}\alpha$-closed)\cite{28} if $\alpha\text{cl}(A) \subset U$ whenever $A \subset U$ and U is regular α-open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 1.3. A map $f : (X, \tau) \to (Y, \sigma)$ is called
(i) g-continuous\cite{3} if $f^{-1}(V)$ is g-closed set of (X, τ) for every closed set V of (Y, σ),
(ii) rga-continuous\cite{30} if the inverse image of every closed set in (Y, σ) is rga-closed set in (X, τ).
(iii) rga-irresolute map\cite{30} if the inverse image of every rga-closed set in (Y, σ) is rga-closed in (X, τ).
(iv) strongly rga-continuous\cite{30} if the inverse image of every rga-open set in (Y, σ) is open in (X, τ).

Definition 1.4. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be
(i) g-closed\cite{18} if $f(F)$ is g-closed in (Y, σ) for every closed set F of (X, τ),
(ii) w-closed\cite{24} if $f(F)$ is w-closed in (Y, σ) for every closed set F of (X, τ),
(iii) wg-closed\cite{19} if $f(F)$ is wg-closed in (Y, σ) for every closed set F of (X, τ),
(iv) rwg-closed\cite{19} if $f(F)$ is rwg-closed in (Y, σ) for every closed set F of (X, τ),
(v) rg-closed\cite{1} if $f(F)$ is rg-closed in (Y, σ) for every closed set F of (X, τ),
(vi) gpr-closed\cite{9} if $f(F)$ is gpr-closed in (Y, σ) for every closed set F of (X, τ),
(vii) regular closed\cite{13} if $f(F)$ is closed in (Y, σ) for every regular closed set F of (X, τ).
Definition 1.5. A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be
(i) \(g \)-open[27] if \(f(U) \) is \(g \)-open in \((Y, \sigma) \) for every open set \(U \) of \((X, \tau) \),
(ii) \(w \)-open[24] if \(f(U) \) is \(w \)-open in \((Y, \sigma) \) for every open set \(U \) of \((X, \tau) \),
(iii) \(wg \)-open[19] if \(f(U) \) is \(wg \)-open in \((Y, \sigma) \) for every open set \(U \) of \((X, \tau) \),
(iv) \(rwg \)-open[19] if \(f(U) \) is \(rwg \)-open in \((Y, \sigma) \) for every open set \(U \) of \((X, \tau) \),
(v) \(rg \)-open[1] if \(f(U) \) is \(rg \)-open in \((Y, \sigma) \) for every open set \(U \) of \((X, \tau) \),
(vi) \(gpr \)-open[9] if \(f(U) \) is \(gpr \)-open in \((Y, \sigma) \) for every open set \(U \) of \((X, \tau) \),
(vii) regular open[13] if \(f(U) \) is open in \((Y, \sigma) \) for every regular open set \(U \) of \((X, \tau) \).

2 \(rg\alpha \)-closed Maps and \(rg\alpha \)-open Maps

We introduce the following definition
Definition 2.1. A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(regular \) \(generalized \) \(\alpha \)-\(closed \) (briefly, \(rg\alpha \)-\(closed \)) if the image of every closed set in \((X, \tau) \) is \(rg\alpha \)-closed in \((Y, \sigma) \).

Theorem 2.1. Every closed map is \(rg\alpha \)-\(closed \) map, but not conversely.

Proof. The proof follows from the definitions and fact that every closed set is \(rg\alpha \)-\(closed \).

The converse of the above Theorem need not be true, as seen from the following example.

Example 2.1 Consider \(X = Y = \{a, b, c\} \) with topologies \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \) and \(\sigma = \{Y, \phi, \{a\}\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity map. Then this function is \(rg\alpha \)-\(closed \) but not closed, as the image of closed set \(\{c\} \) in \(X \) is \(\{c\} \) which is not closed set in \(Y \).

Theorem 2.2. Every \(w \)-\(closed \) map is \(rg\alpha \)-\(closed \) map but not conversely.

Proof. The proof follows from the definitions and fact that every \(w \)-\(closed \) set is \(rg\alpha \)-\(closed \).

The converse of the above Theorem need not be true, as seen from the following example.

Example 2.2 Consider \(X = Y = \{a, b, c\} \) with topologies \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\sigma = \{Y, \phi, \{a\}\} \). Let the map \(f : (X, \tau) \rightarrow (Y, \sigma) \) be defined by \(f(a) = f(b) = b \) and \(f(c) = c \). Then this function is \(rg\alpha \)-\(closed \) but not \(w \)-\(closed \), as the image of closed set \(\{c\} \) in \(X \) is \(\{c\} \) which is not \(w \)-\(closed \) set in \(Y \).

Theorem 2.3. Every \(rw \)-\(closed \) map is \(rg\alpha \)-\(closed \) map but not conversely.
Proof. The proof follows from the definitions and fact that every rw-closed set is rga-closed.

The converse of the above Theorem need not be true, as seen from the following example.

Example 2.3 Consider $X = Y = \{a, b, c, d\}$ with topologies
\[\tau = \sigma = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.\]
Let the map $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = f(b) = b$, $f(c) = d$ and $f(d) = c$. Then this function is rga-closed but not rw-closed, as the image of closed set $\{d\}$ in X is $\{c\}$ which is not rw-closed set in Y.

Theorem 2.4. Every rga-closed map is rg-closed map but not conversely.

Proof. The proof follows from the definitions and fact that every rga-closed set is rg-closed.

The converse of the above Theorem need not be true, as seen from the following example.

Example 2.4 Consider $X = \{a, b, c\}$, $Y = \{a, b, c, d\}$ with topologies
\[\tau = \sigma = \{X, \phi, \{a\}, \{c\}, \{a, c\}\} and \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}.\]
Let the map $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = a$, $f(b) = c$ and $f(c) = d$. Then this function is rg-closed but not rga-closed, as the image of the closed set $\{a, b\}$ in X is $\{a, c\}$ which is not rga-closed set in Y.

Theorem 2.5. Every rga-closed map is rwg-closed map but not conversely.

Proof. The proof follows from the definitions and fact that every rga-closed set is rwg-closed.

The converse of the above Theorem need not be true, as seen from the following example.

Example 2.5 Consider $X = \{a, b, c\}$, $Y = \{a, b, c, d\}$ with topologies
\[\tau = \sigma = \{X, \phi, \{b, c\}\} and \sigma = \{Y, \phi, \{d\}, \{a, c\}, \{a, c, d\}\}.\]
Let the map $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = a$, $f(b) = b$ and $f(c) = d$. Then this function is rwg-closed but not rga-closed, as the image of the closed set $\{a\}$ in X is $\{a\}$ which is not rga-closed set in Y.

Theorem 2.6. Every rga-closed map is gpr-closed map but not conversely.

Proof. The proof follows from the definitions and fact that every rga-closed set is gpr-closed.

The converse of the above Theorem need not be true, as seen from the following example.
Example 2.6 Consider $X = Y = \{a, b, c, d\}$ with topologies
$
\tau = \sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.
$
Let the map $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = d$, $f(b) = b$, $f(c) = a$ and $f(d) = c$. Then this function is gpr-closed but not rgα-closed, as the image of the closed set $\{c, d\}$ in X is $\{a, c\}$ which is not rgα-closed set in Y.

Remark 2.1. The following examples show that the regular closed maps and rgα-closed maps are independent.

Example 2.7 Let $X = Y = \{a, b, c\}$, and a map $f : (X, \tau) \to (Y, \sigma)$ be the identity map with $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Then f is rgα-closed but not regular closed, as the image of the regular closed set $\{a, c\}$ in X is $\{a, c\}$ which is not closed set in Y.

Example 2.8 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Let a map $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = c$, $f(b) = b$ and $f(c) = a$. Then f is regular closed but not rgα-closed, as the image of the closed set $\{c\}$ in X is $\{a\}$ which is not rgα-closed in Y.

Remark 2.2. The following examples show that the g-closed maps and rgα-closed maps are independent.

Example 2.9 Let $X = Y = \{a, b, c\}$, and a map $f : (X, \tau) \to (Y, \sigma)$ be the identity map with $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Then f is rgα-closed but not g-closed, as the image of the closed set $\{a\}$ in X is $\{a\}$ which is not g-closed set in Y.

Example 2.10 Consider $X = \{a, b, c\}$, $Y = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = a$, $f(b) = d$ and $f(c) = c$. Then this function is g-closed but not rgα-closed, as the image of the closed set $\{a, b\}$ in X is $\{a, d\}$ which is not rgα-closed in Y.

Remark 2.3. The following examples show that the wg-closed maps and rgα-closed maps are independent.

Example 2.11 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let a map $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then this function is rgα-closed but not wg-closed, as the image of the closed set $\{a\}$ in X is $\{a\}$ which is not wg-closed set in Y.
Example 2.12 Consider $X = \{a, b, c\}$, $Y = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = c$, $f(b) = b$ and $f(c) = d$. Then this function is wg-closed but not $rg\alpha$-closed, as the image of the closed set $\{b, c\}$ in X is $\{b, d\}$ which is not $rg\alpha$-closed in Y.

Remark 2.4. From the above discussions and known results we have the following implications

In the following diagram, by $A \to B$ we mean A implies B but not conversely and $A \leftrightarrow B$ means A and B are independent of each other.

![Diagram]

Theorem 2.7. If a mapping $f : (X, \tau) \to (Y, \sigma)$ is $rg\alpha$-closed, then $rg\alpha$-cl$(f(A)) \subset f(cl(A))$ for every subset A of (X, τ).

Proof. Suppose that f is $rg\alpha$-closed and $A \subset X$. Then $cl(A)$ is closed in X and so $f(cl(A))$ is $rg\alpha$-closed in (Y, σ). We have $f(A) \subset f(cl(A))$, by Theorem 2.9 (iv) in [29], $rg\alpha$-cl$(f(A)) \subset rg\alpha$-cl$(f(cl(A))) \to (i)$. Since $f(cl(A))$ is $rg\alpha$-closed in (Y, σ), $rg\alpha$-cl$(f(cl(A))) = f(cl(A)) \to (ii)$, by the Theorem 2.10 in [29]. From (i) and (ii), we have $rg\alpha$-cl$(f(A)) \subset f(cl(A))$ for every subset A of (X, τ).

Remark 2.5. The converse of the above Theorem 2.7. is not true in general as seen from the following example

Example 2.13 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$, $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ Define $f : (X, \tau) \to (Y, \sigma)$ by $f(x) = x$ for every $x \in X$. Then $rg\alpha$-cl$(f(A)) \subset f(cl(A))$ for every subset A of (X, τ). But f is not $rg\alpha$-closed, since $f(\{b\}) = \{b\}$ is not $rg\alpha$-closed in (Y, σ).

Corollary 2.1. If a mapping $f : (X, \tau) \to (Y, \sigma)$ is $rg\alpha$-closed, then the image $f(A)$ of closed set A in (X, τ) is $\tau_{rg\alpha}$-closed in (Y, σ).
Proof. Let A be a closed set in (X, τ). Since f is rga-closed, by above Theorem 2.7, $\mathrm{rga-cl}(f(A)) \subset f(\mathrm{cl}(A)) \rightarrow (i)$. Also $\mathrm{cl}(A) = A$, as A is a closed set and so $f(\mathrm{cl}(A)) = f(A) \rightarrow (ii)$. From (i) and (ii), we have $\mathrm{rga-cl}(f(A)) \subset f(A)$. We know that $f(A) \subset \mathrm{rga-cl}(f(A))$ and so $\mathrm{rga-cl}(f(A)) = f(A)$. Therefore $f(A)$ is τ_{rga}-closed in (Y, σ).

Theorem 2.8. Let (X, τ) be any topological spaces and (Y, σ) be a topological space where "$\mathrm{rga-cl}(A) = w\mathrm{-cl}(A)$ for every subset A of Y" and $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map, then the following are equivalent.

(i) f is rga-closed map.
(ii) $\mathrm{rga-cl}(f(A)) \subset f(\mathrm{cl}(A))$ for every subset A of (X, τ).

Proof. $(i) \Rightarrow (ii)$ Follows from the Theorem 2.7.

$(ii) \Rightarrow (i)$ Let A be any closed set of (X, τ). Then $A = \mathrm{cl}(A)$ and so $f(A) = f(\mathrm{cl}(A)) \supset \mathrm{rga-cl}(f(A))$ by hypothesis. We have $f(A) \subset \mathrm{rga-cl}(f(A))$, by Theorem 2.9(ii) in [29]. Therefore $f(A) = \mathrm{rga-cl}(f(A))$. Also $f(A) = \mathrm{rga-cl}(f(A)) = w\mathrm{-cl}(f(A))$, by hypothesis. That is $f(A) = w\mathrm{-cl}(f(A))$ and so $f(A)$ is $w\mathrm{-closed}$ in (Y, σ). Thus $f(A)$ is rga-closed set in (Y, σ) and hence f is rga-closed map.

Theorem 2.9. A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is rga-closed if and only if for each subset S of (Y, σ) and each open set U containing $f^{-1}(S) \subset U$, there is a rga-open set V of (Y, σ) such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof. Suppose f is rga-closed. Let $S \subset Y$ and U be an open set of (X, τ) such that $f^{-1}(S) \subset U$. Now $X - U$ is closed set in (X, τ). Since f is rga-closed, $f(X - U)$ is rga-closed set in (Y, σ). Then $V = Y - f(X - U)$ is a rga-open set in (Y, σ). Note that $f^{-1}(S) \subset U$ implies $S \subset V$ and $f^{-1}(V) = X - f^{-1}(f(X - U)) \subset X - (X - U) = U$. That is $f^{-1}(V) \subset U$.

For the converse, let F be a closed set of (X, τ). Then $f^{-1}(f(F)^c) \subset F^c$ and F^c is an open in (X, τ). By hypothesis, there exists a rga-open set V in (Y, σ) such that $f(F)^c \subset V$ and $f^{-1}(V) \subset F^c$ and so $F \subset f^{-1}(V)^c$. Hence $V^c \subset f(F) \subset f((f^{-1}(V))^c) \subset V^c$ which implies $f(V) \subset V^c$. Since V^c is rga-closed, $f(F)$ is rga-closed. That is $f(F)$ is rga-closed in (Y, σ) and therefore f is rga-closed.

Remark 2.6. The composition of two rga-closed maps need not be rga-closed map in general and this is shown by the following example.

Example 2.14 Let $X = Y = Z = \{a, b, c\}$, $\tau = P(X)$, $\sigma = \{Y, \phi, \{e\}, \{a, b\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = a$, $f(b) = b$ and $f(c) = c$ and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be the identity map. Then
f and g are rga-closed maps, but their composition \(g \circ f : (X, \tau) \to (Z, \eta) \) is not rga-closed map, because \(F = \{ a \} \) is closed in \((X, \tau)\), but \(g \circ f(F) = g \circ f(\{ a \}) = g(f(\{ a \})) = g(\{ a \}) = \{ a \} \) which is not rga-closed in \((Z, \eta)\).

Theorem 2.10. If \(f : (X, \tau) \to (Y, \sigma) \) is closed map and \(g : (Y, \sigma) \to (Z, \eta) \) is rga-closed map, then the composition \(g \circ f : (X, \tau) \to (Z, \eta) \) is rga-closed map.

Proof. Let \(F \) be any closed set in \((X, \tau)\). Since \(f \) is closed map, \(f(F) \) is closed set in \((Y, \sigma)\). Since \(g \) is rga-closed map, \(g(f(F)) \) is rga-closed set in \((Z, \eta)\). That is \(g \circ f(F) = g(f(F)) \) is rga-closed and hence \(g \circ f \) is rga-closed map.

Remark 2.7. If \(f : (X, \tau) \to (Y, \sigma) \) is rga-closed map and \(g : (Y, \sigma) \to (Z, \eta) \) is closed map, then the composition need not be rga-closed map as seen from the following example.

Example 2.15 Consider \(X = Y = Z = \{ a, b, c \}, \ \tau = \{ X, \phi, \{ a \}, \{ b \}, \{ a, b \} \}, \ \sigma = \{ Y, \phi, \{ a \}, \{ b, c \} \} \) and \(\eta = \{ Z, \phi, \{ b \}, \{ c \}, \{ b, c \} \} \). Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity map and \(g : (Y, \sigma) \to (Z, \eta) \) is defined by \(g(a) = g(b) = a \) and \(g(c) = b \). Then \(f \) is rga-closed map and \(g \) is a closed map. But their composition \(g \circ f : (X, \tau) \to (Z, \eta) \) is not rga-closed map, since for the closed set \(\{ c \} \) in \((X, \tau)\), but \(g \circ f(\{ c \}) = g(f(\{ c \})) = g(\{ c \}) = \{ b \} \) which is not rga-closed in \((Z, \eta)\).

Theorem 2.11. Let \((X, \tau), (Z, \eta)\) be topological spaces, and \((Y, \sigma)\) be topological spaces where ”every rga-closed subset is closed”. Then the composition \(g \circ f : (X, \tau) \to (Z, \eta) \) of the rga-closed maps \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) is rga-closed.

Proof. Let \(A \) be a closed set of \((X, \tau)\). Since \(f \) is rga-closed, \(f(A) \) is rga-closed in \((Y, \sigma)\). Then by hypothesis, \(f(A) \) is closed. Since \(g \) is rga-closed, \(g(f(A)) \) is rga-closed in \((Z, \eta)\) and \(g(f(A)) = g \circ f(A) \). Therefore \(g \circ f \) is rga-closed.

Theorem 2.12. If \(f : (X, \tau) \to (Y, \sigma) \) is g-closed, \(g : (Y, \sigma) \to (Z, \eta) \) be rga-closed and \((Y, \sigma)\) is \(T_{1/2} \)-space then their composition \(g \circ f : (X, \tau) \to (Z, \eta) \) is rga-closed map.

Proof. Let \(A \) be a closed set of \((X, \tau)\). Since \(f \) is g-closed, \(f(A) \) is g-closed in \((Y, \sigma)\). Since \((Y, \sigma)\) is \(T_{1/2} \)-space, \(f(A) \) is closed in \((Y, \sigma)\). Since \(g \) is rga-closed, \(g(f(A)) \) is rga-closed in \((Z, \eta)\) and \(g(f(A)) = g \circ f(A) \). Therefore \(g \circ f \) is rga-closed.
Theorem 2.13. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two mappings such that their composition $g \circ f : (X, \tau) \to (Z, \eta)$ be $rg\alpha$-closed mapping. Then the following statements are true.

(i) If f is continuous and surjective, then g is $rg\alpha$-closed.

(ii) If g is $rg\alpha$-irresolute and injective, then f is $rg\alpha$-closed.

(iii) If f is g-continuous, surjective and (X, τ) is a $T_{1/2}$-space, then g is $rg\alpha$-closed.

(iv) If g is strongly $rg\alpha$-continuous and injective, then f is $rg\alpha$-closed.

Proof. (i) Let A be a closed set of (Y, σ). Since f is continuous, $f^{-1}(A)$ is closed in (X, τ) and since $g \circ f$ is $rg\alpha$-closed, $(g \circ f)(f^{-1}(A))$ is $rg\alpha$-closed in (Z, η). That is $g(A)$ is $rg\alpha$-closed in (Z, η), since f is surjective. Therefore g is $rg\alpha$-closed.

(ii) Let B be a closed set of (X, τ). Since $g \circ f$ is $rg\alpha$-closed, $g \circ f(B)$ is $rg\alpha$-closed in (Z, η). Since g is $rg\alpha$-irresolute, $g^{-1}(g \circ f(B))$ is $rg\alpha$-closed set in (Y, σ). That is $f(B)$ is $rg\alpha$-closed in (Y, σ), since f is injective. Therefore f is $rg\alpha$-closed.

(iii) Let C be a closed set of (Y, σ). Since f is g-continuous, $f^{-1}(C)$ is g-closed set in (X, τ). Since (X, τ) is a $T_{1/2}$-space, $f^{-1}(C)$ is closed set in (X, τ). Since $g \circ f$ is $rg\alpha$-closed, $(g \circ f)(f^{-1}(C))$ is $rg\alpha$-closed in (Z, η). That is $g(C)$ is $rg\alpha$-closed in (Z, η), since f is surjective. Therefore g is $rg\alpha$-closed.

(iv) Let D be a closed set of (X, τ). Since $g \circ f$ is $rg\alpha$-closed, $(g \circ f)(D)$ is $rg\alpha$-closed in (Z, η). Since g is strongly $rg\alpha$-continuous, $g^{-1}((g \circ f)(D))$ is closed set in (Y, σ). That is $f(D)$ is closed set in (Y, σ), since g is injective, Therefore f is closed. □

Theorem 2.14. If $f : (X, \tau) \to (Y, \sigma)$ is an open, continuous, $rg\alpha$-closed surjection and $cl(F) = F$ for every $rg\alpha$-closed set in (Y, σ), where X is regular, then Y is regular.

Proof. Let U be an open set in Y and $p \in U$. Since f is surjection, there exists a point $x \in X$ such that $f(x) = p$. Since X is regular and f is continuous, there is an open set V in X such that $x \in V \subset cl(V) \subset f^{-1}(U)$. Here $p \in f(V) \subset f(cl(V)) \subset U \to (i)$. Since f is $rg\alpha$-closed, $f(cl(V))$ is $rg\alpha$-closed set contained in the open set U. By hypothesis, $cl(f(cl(V))) = f(cl(V))$ and $cl(f(V)) = cl(f(cl(V))) \to (ii)$. From (i) and (ii), we have $p \in f(V) \subset cl(f(V)) \subset U$ and $f(V)$ is open, since f is open. Hence Y is regular. □

Theorem 2.15. If a map $f : (X, \tau) \to (Y, \sigma)$ is $rg\alpha$-closed and A is closed set of X, then $f_A : (A, \tau_A) \to (Y, \sigma)$ is $rg\alpha$-closed.
Proof. Let F be a closed set of A. Then $F = A \cap E$ for some closed set E of (X, τ) and so F is closed set of (X, τ). Since f is $rg\alpha$-closed, $f(F)$ is $rg\alpha$-closed set in (Y, σ). But $f(F) = f_A(F)$ and therefore $f_A : (A, \tau_A) \rightarrow (Y, \sigma)$ is $rg\alpha$-closed.

Analogous to $rg\alpha$-closed maps, we define $rg\alpha$-open map as follows.

Definition 2.2. A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called a $rg\alpha$-open map if the image $f(A)$ is $rg\alpha$-open in (Y, σ) for each open set A in (X, τ).

From the definitions we have the following results.

Theorem 2.16. (i) Every open map is $rg\alpha$-open but not conversely.
(ii) Every w-open map is $rg\alpha$-open but not conversely.
(iii) Every $rg\alpha$-open map is rg-open but not conversely.
(iv) Every $rg\alpha$-open map is rwg-open but not conversely.
(v) Every $rg\alpha$-open map is gpr-open but not conversely.

Theorem 2.17. For any bijection map $f : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:
(i) $f^{-1} : (Y, \sigma) \rightarrow (X, \tau)$ is $rg\alpha$-continuous.
(ii) f is $rg\alpha$-open map and (iii) f is $rg\alpha$-closed map.

Proof. (i) \Rightarrow (ii) Let U be an open set of (X, τ). By assumption, $(f^{-1})^{-1}(U) = f(U)$ is $rg\alpha$-open in (Y, σ) and so f is $rg\alpha$-open.
(ii) \Rightarrow (iii) Let F be a closed set of (X, τ). Then F^c is open set in (X, τ).

By assumption, $f(F^c)$ is $rg\alpha$-open in (Y, σ). That is $f(F^c) = f(F)^c$ is $rg\alpha$-open in (Y, σ) and therefore $f(F)$ is $rg\alpha$-closed in (Y, σ). Hence f is $rg\alpha$-closed.
(iii) \Rightarrow (i) Let F be a closed set of (X, τ). By assumption, $f(F)$ is $rg\alpha$-closed in (Y, σ). But $f(F) = (f^{-1})^{-1}(F)$ and therefore f^{-1} is continuous.

Theorem 2.18. If a map $f : (X, \tau) \rightarrow (Y, \sigma)$ is $rg\alpha$-open, then $f(int(A)) \subseteq rga-int(f(A))$ for every subset A of (X, τ).

Proof. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a open map and A be any subset of (X, τ). Then $int(A)$ is open in (X, τ) and so $f(int(A))$ is $rg\alpha$-open in (Y, σ). We have $f(int(A)) \subseteq f(A)$. Therefore by Theorem 2.2 (iii) in [29], $f(int(A)) \subseteq rga-int(f(A))$.

Remark 2.8. The converse of the above Theorem need not be true in general as seen from the following example.
Example 2.16 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let f be the identity map. In (Y, σ), $\mathrm{rga}\text{-}\mathrm{int}(f(A)) = f(A)$ for every subset A of (X, τ). So $f(\mathrm{int}(A)) \subset f(A) = \mathrm{rga}\text{-}\mathrm{int}(f(A))$ for every subset A of X. But f is not rga-open, since for the open set $\{a, c\}$ of (X, τ), $f(\{a, c\}) = \{a, c\}$ which is not rga-open in (Y, σ).

Theorem 2.19. If a map $f : (X, \tau) \to (Y, \sigma)$ is rga-open, then for each neighbourhood U of x in (X, τ), there exists a rga-neighbourhood W of $f(x)$ in (Y, σ) such that $W \subset f(U)$.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a rga-open map. Let $x \in X$ and U be an arbitrary neighbourhood of x in (X, τ). Then there exists an open set G in (X, τ) such that $x \in G \subset U$. Now $f(x) \in f(G) \subset f(U)$ and $f(G)$ is rga-open in (Y, σ), as f is a rga-open map. By Theorem 3.8 in [28], $f(G)$ is a rga-neighbourhood of each of its points. Taking $f(G) = W$, W is a rga-neighbourhood of $f(x)$ in (Y, σ) such that $W \subset f(U)$.

Theorem 2.20. A map $f : (X, \tau) \to (Y, \sigma)$ is rga-open if and only if for any subset S of (Y, σ) and any closed set of (X, τ) containing $f^{-1}(S)$, there exists a rga-closed set K of (Y, σ) containing S such that $f^{-1}(K) \subset F$.

Proof. Suppose f is rga-open map. Let $S \subset Y$ and F be a closed set of (X, τ) such that $f^{-1}(S) \subset F$. Now $X - F$ is an open set in (X, τ). Since f is rga-open map, $f(X - F)$ is rga-open set in (Y, σ). Then $K = Y - f(X - F)$ is a rga-closed set in (Y, σ). Note that $f^{-1}(S) \subset F$ implies $S \subset K$ and $f^{-1}(K) = X - f^{-1}(X - F) \subset X - (X - F) = F$. That is $f^{-1}(K) \subset F$.

For the converse, let U be an open set of (X, τ). Then $f^{-1}(f(U))^c \subset U^c$ and U^c is a closed set in (X, τ). By hypothesis, there exists a rga-closed set K of (Y, σ) such that $(f(U))^c \subset K$ and $f^{-1}(K) \subset U^c$ and so $U \subset (f^{-1}(K))^c$. Hence $K^c \subset f(U) \subset f((f^{-1}(K))^c) \subset K^c$ which implies $f(U) = K^c$. Since K^c is a rga-open, $f(U) \subset \mathrm{rga}$-open in (Y, σ) and therefore f is rga-open map.

Theorem 2.21. If a function $f : (X, \tau) \to (Y, \sigma)$ is rga-open, then $f^{-1}(\mathrm{rga}\text{-}\mathrm{cl}(B)) \subset \mathrm{cl}(f^{-1}(B))$ for each subset B of (Y, σ).

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a rga-open map and B be any subset of (Y, σ). Then $f^{-1}(B) \subset \mathrm{cl}(f^{-1}(B))$ and $\mathrm{cl}(f^{-1}(B))$ is closed set in (X, τ). By above Theorem 2.20., there exists a rga-closed set K of (Y, σ) such that $B \subset K$ and $f^{-1}(K) \subset \mathrm{cl}(f^{-1}(B))$. Now $\mathrm{rga}\text{-}\mathrm{cl}(B) \subset \mathrm{rga}\text{-}\mathrm{cl}(K) = K$, by Theorems 2.9 and 2.10 in [28], as K is rga-closed set of (Y, σ). Therefore $f^{-1}(\mathrm{rga}\text{-}\mathrm{cl}(B)) \subset f^{-1}(K)$ and so $f^{-1}(\mathrm{rga}\text{-}\mathrm{cl}(B)) \subset f^{-1}(K) \subset \mathrm{cl}(f^{-1}(B))$. Thus $f^{-1}(\mathrm{rga}\text{-}\mathrm{cl}(B)) \subset \mathrm{cl}(f^{-1}(B))$ for each subset of B of (Y, σ). ■
Remark 2.9. The converse of the above Theorem need not be true in general as seen from the following example.

Example 2.17 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let f be the identity map. In (Y, σ), $\text{rg}\alpha\text{-cl}(B) = B$ for every subset B of (Y, σ). So $f^{-1}(\text{rg}\alpha\text{-cl}(B)) = f^{-1}(B) \subset \text{cl}(f^{-1}(B))$ for every subset B of (Y, σ). But f is not $\text{rg}\alpha$-open map, since for the open set $\{b, c\}$ of (X, τ), $f(\{b, c\}) = \{b, c\}$ which is not $\text{rg}\alpha$-open in (Y, σ).

We define another new class of maps called $\text{rg}\alpha^*$-closed maps which are stronger than $\text{rg}\alpha$-closed maps.

Definition 2.3. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be $\text{rg}\alpha^*$-closed map if the image $f(A)$ is $\text{rg}\alpha$-closed in (Y, σ) for every $\text{rg}\alpha$-closed set A in (X, τ).

Theorem 2.22. Every $\text{rg}\alpha^*$-closed map is $\text{rg}\alpha$-closed map but not conversely.

Proof. The proof follows from the definitions and fact that every closed set is $\text{rg}\alpha$-closed.

The converse of the above Theorem is not true in general as seen from the following example.

Example 2.18 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then f is $\text{rg}\alpha$-closed map but not $\text{rg}\alpha^*$-closed map. Since $\{a\}$ is $\text{rg}\alpha$-closed set in (X, τ), but its image under f is $\{a\}$, which is not $\text{rg}\alpha$-closed in (Y, σ).

Theorem 2.23. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are $\text{rg}\alpha^*$-closed maps, then their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is also $\text{rg}\alpha^*$-closed.

Proof. Let F be a $\text{rg}\alpha$-closed set in (X, τ). Since f is $\text{rg}\alpha^*$-closed map, $f(F)$ is $\text{rg}\alpha$-closed set in (Y, σ). Since g is $\text{rg}\alpha^*$-closed map, $g(f(F))$ is $\text{rg}\alpha$-closed set in (Z, η). Therefore $g \circ f$ is $\text{rg}\alpha^*$-closed map.

Analogous to $\text{rg}\alpha^*$-closed map, we define another new class of maps called $\text{rg}\alpha^*$-open maps which are stronger than $\text{rg}\alpha$-open maps.

Definition 2.4. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be $\text{rg}\alpha^*$-open map if the image $f(A)$ is $\text{rg}\alpha$-open set in (Y, σ) for every $\text{rg}\alpha$-open set A in (X, τ).

Remark 2.10. Since every open set is a $\text{rg}\alpha$-open set, we have every $\text{rg}\alpha^*$-open map is $\text{rg}\alpha$-open map. The converse is not true in general as seen from the following example.
Example 2.19 Let \(X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\} \).
Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity map. Then \(f \) is \(rga\)-open map but not \(rga^*\)-open map, since for the \(rga\)-open set \(\{a, c\} \) in \((X, \tau) \), \(f(\{a, c\}) = \{a, c\} \) which is not \(rga\)-open set in \((Y, \sigma) \).

Theorem 2.24. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) are \(rga^*\)-open maps, then their composition \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) is also \(rga^*\)-open.

Proof. Proof is similar to the Theorem 2.23.

Theorem 2.25. For any bijection map \(f : (X, \tau) \rightarrow (Y, \sigma) \), the following statements are equivalent:
\((i) \) \(f^{-1} : (Y, \sigma) \rightarrow (X, \tau) \) is \(rga \) irresolute
\((ii) \) \(f \) is \(rga^*\)-open map
\((iii) \) \(f \) is \(rga^*\)-closed map.

Proof. Proof is similar to that of Theorem 2.17.

References

Received: June, 2009