On the Best L^2–Approximation of Entire Functions with Index-Pair (p, q)

D. Kumar 1 and R. K. Vishnoi

Department of Mathematics
[Research and Post Graduate Studies]
M. M. H. College, Model Town, Ghaziabad, U.P., India
d_kumar001@rediffmail.com

Abstract

In this paper, we have generalized the results of Reddy [8] to any compact Jordan region of positive transfinite diameter for any weight function, positive and continuous on this region. Moreover, we have obtained (p, q)–order and (p, q)–type in terms of best L^2–approximation error.

Mathematics Subject Classification: 41A10

Keywords: Transfinite diameter, Hilbert space, complete orthonormal sequence, weight function, Jordan region

1 Introduction

Let E be compact Jordan region in complex plane with transfinite diameter $d > 0$. Let $w(z)$ be a positive, continuous function on E and let $H_2(E)$ denote the Hilbert space of functions analytic in E with inner product.

$$(f, g) = \int \int_E w(z)f(z)\overline{g(z)}dxdy \quad f, g \in H_2(E). \quad (1.1)$$

For any $f \in H_2(E)$, we have

$$\|f\| = \left[\int \int_E w(z)|f(z)|^2dxdy\right]^{1/2} < \infty. \quad (1.2)$$

1This work was done in the memory of Prof. H.S.Kasana, Senior Associate, ICTP, Trieste, Italy.
If \(A(E) \equiv \{ p_{n-1}(z) \}_{n=1}^{\infty}, p_n(z) \) being a polynomial of degree \(n \), is a complete orthonormal sequence in \(H_2(E) \). Such a sequence of polynomials always exists in \(H_2(E) \) as can be easily seen with the help of Faber polynomials ([2],[10]).

Let us define the \(L^2 \)-approximation error as follows:

\[
e_n(f) \equiv e_n(f, E) = \inf_{c_n}
\left[\int_E w(z) |f(z) - C_0 - C_1p_1(z) - \cdots - C_np_n(z)|^2 \, dx \, dy \right]^{1/2}
\]

\[
a_n \equiv a_n(f, E) = \int_E w(z) f(z)p_n(z) \, dx \, dy, \quad n = 0, 1, 2, \cdots \tag{1.4}
\]

\(e_n(f, E) \) is called the minimum error of \(f \) in \(L^2 \)-norm with respect to the system \(A(E) \) and \(a_n \) is called the \(n^{th} \) Fourier coefficients of \(f \) with respect to the system \(A(E) \). Goffman and Pedrick [3] showed that if \(D \) denotes the unit disc and \(w(z) \equiv 1 \), then \(A(D) = \{ \sqrt{\frac{\pi}{n}} z^{n-1} \}_{n=1}^{\infty} \) forms a complete orthonormal sequence in \(H_2(D) \) and that if \(f(z) = \sum_{n=0}^{\infty} b_n z^n (|z| < 1) \) is in \(H_2(D) \) then

\[
b_n = \frac{\sqrt{n + 1}}{\pi} a_n(f, D). \tag{1.5}
\]

In the consequence of (1.5) it follows that if \(f \) can be extended to an entire function of order \(\rho \), lower order \(\lambda \) and type \(T \), then in all the results that give \(\rho, \lambda, T \) in terms of the coefficients \(b_n \)s ([1],[4],[7]), one can replace \(b_n \) by \(a_n \).

Rizvi and Juneja [9] showed that if \(f \in H_2(E) \), the Fourier series \(\sum_{k=0}^{\infty} a_k p_k(z) \) converges uniformly to \(f(z) \) on \(E \) and \(f \) can be extended to an entire function if and only if

\[
\lim_{n \to \infty} |a_n(f, E)|^{1/n} = 0. \tag{1.6}
\]

If \(f \) is order \(\rho(0 < \rho < \infty) \), type \(T \) then

\[
\rho = \lim sup_{n \to \infty} \frac{n \log n}{\log |a_n| - 1}, \tag{1.7}
\]

\[
Td^\rho = \lim sup_{n \to \infty} (n/e \rho)|a_n|^\rho/n. \tag{1.8}
\]

Reddy [8] has obtained relations involving \(e_n(f, D) \) and the order and type of entire function \(f \). The aim of the present paper is to generalize the results of Reddy to any compact Jordan region \(E \) for any weight function \(w(z) \), positive and continuous on \(E \). Moreover, for inclusion of entire functions of slow
growth and fast growth, their results will also be extendend to the \((p, q)\)-scale introduced by Juneja et.al. ([5],[6]).

Now, we need the concept of \((p, q)\)-scale, \(p \geq q \geq 1\), and certain notations which will be frequently used in the test:

\[
P(L(p, q)) = \begin{cases}
L(p, q) & \text{if } q < p < \infty \\
1 + L(p, q) & \text{if } p = q = 2 \\
\max(1, L(p, q)) & \text{if } 3 \leq p = q \\
\infty & \text{if } p = q = \infty.
\end{cases}
\]

Let \(f(z) = \sum_{n=0}^{\infty} b_n z^n\) be an entire function. We set \(M(r, f) = \max_{|z|=r} |f(z)|\); \(M(r, f)\) is called the maximum modulus of \(f(z)\) on the circle \(|z|=r\).

Definition 1. An entire function \(f(z)\) is said to be of \((p, q)\)-order \(\rho(p, q)\) if it is of index-pair \((p, q)\) such that

\[
\limsup_{r \to \infty} \frac{\log^{[p]} M(r, f)}{\log^{[q]} r} = \rho(p, q)
\]

and the function \(f(z)\) having \((p, q)\)-order \(\rho(p, q)(b < \rho(p, q) < \infty)\) is said to be of \((p, q)\)-type \(T(p, q)\) if

\[
\limsup_{r \to \infty} \frac{\log^{[p-1]} M(r, f)}{\left(\log^{[q-1]} r\right)^{\rho(p, q)}} = T(p, q), \quad 0 \leq T(p, q) \leq \infty,
\]

where \(b = 1, \text{ if } p = q, b = 0 \text{ if } p > q\).

The coefficient characterizations are as follows:

\[
\rho(p, q) = \limsup_{n \to \infty} \frac{\log^{[p-1]} n}{\log^{[q-1]} |a_n|^{-1/n}}, \tag{1.9}
\]

\[
\frac{T(p, q)}{BM(p, q)} = \limsup_{n \to \infty} \frac{\log^{[p-2]} n}{\log^{[q-1]} |a_n|^{-1/n}}, \tag{1.10}
\]

where \(B = d^{-p(p,q)}\) for \(q = 1\) and \(B = 1\) for \(q > 1\) and

\[
M(p, q) = \begin{cases}
(p - 1)^{\rho-1}/\rho^\rho & \text{if } (p, q) = 2, 2 \\
1/e\rho & \text{if } (p, q) = 2, 1 \\
1 & \text{otherwise}.
\end{cases}
\]

These expression for \(\rho(p, q)\) and \(T(p, q)\) are due to Juneja et.al. ([5],[6]). The coefficients \(a_n\) can be replaced by \(b_n\) as shown previously.
2 Auxiliary Results

This section contains various results which we have proved to establish main theorems.

Proposition 1. Let $f \in H_2(E)$, then

$$e_n(f) = \left[\sum_{n+1}^{\infty} |a_k|^2 \right]^{1/2}, \quad n = 1, 2, 3, \ldots \quad (2.1)$$

Proof. We have

$$e_n(f) \leq \left[\int \int_E w(z) \left| f(z) - \sum_{k=0}^{n} a_k p_k(z) \right|^2 dx dy \right]^{1/2}$$

$$= \left[\int \int_E w(z) \left| \sum_{n+1}^{\infty} a_k p_k(z) \right|^2 dx dy \right]^{1/2}$$

due to convergence of $\sum_{k=0}^{\infty} a_k(z)$ to $f(z)$ on E, which gives

$$e_n(f) \leq \left[\sum_{n+1}^{\infty} |a_k|^2 \right]^{1/2}. \quad (2.2)$$

For any $(n+1)$ complex numbers $\{a'_0, a'_1, \ldots, a'_n\}$

$$\int \int_E w(z) \left| f(z) - a'_0 p_0(z) - a'_1 p_1(z) - \cdots - a'_n p_n(z) \right|^2 dx dy$$

$$= \int \int_E w(z) \left[\sum_{k=0}^{n} (a_k - a'_k) p_k(z) + \sum_{k=n+1}^{\infty} a_k p_k(z) \right]^2 dx dy$$

$$= \sum_{k=0}^{n} |a_k - a'_k|^2 + \sum_{k=n+1}^{\infty} |a_k|^2 \geq \sum_{k=n+1}^{\infty} |a_k|^2.$$

Since this is true for any $(n+1)$ complex numbers, we have

$$[e_n(f)]^2 \geq \sum_{n+1}^{\infty} |a_k|^2. \quad (2.3)$$

(2.2) and (2.3) together give (2.1).
Proposition 2. [11]. Let \(w = \varphi(\infty) = \infty \) and \(\varphi'(\infty) > 0 \) and let \(E_r = \{ z : |\varphi(z)|d = r \} \). Let \(M(r) = \max_{z \in E_r} |f(z)| \) and let \(f \) be an entire function of \((p, q)\)-order \(\rho \), \((p, q)(b < \rho(p, q) < \infty), (p, q)\)-type \(T(p, q) \) then

\[
\rho(p, q) = \limsup_{r \to \infty} \frac{\log[p] M(r)}{\log[q] r},
\]

(2.4)

\[
T(p, q) = \limsup_{r \to \infty} \frac{\log[p-1] M(r)}{\log[q-1] r^p(p,q)}.
\]

(2.5)

Proposition 3. Let \(f \) be an entire function, then for any \(\varepsilon > 0 \)

\[
e_n(f) \leq K \overline{M}(r) \left(\frac{de^\varepsilon}{r} \right)^n
\]

for \(r \geq r_0(\varepsilon) \), where \(K \) is a constant independent of \(n \) and \(r \).

Proof. Winiarski [11] has proved that there exist polynomials \(\{g_n(z)\}_{n=1}^\infty \) of respective degree less than or equal to \(n \), such that for all \(z \in E \)

\[
|f(z) - g_n(z)| \leq A \overline{M}(r) \left(\frac{de^\varepsilon}{r} \right)^n
\]

(2.6)

for \(n \geq n_0(\varepsilon, E) \) and \(r \geq r_0(\varepsilon) \) and where \(A \) is a constant independent of \(n \) and \(\varepsilon \) and \(E \). Since \(g_n(z) \) can be written as a linear combination of \(\{p_k(z)\}_{k=0}^n \), it follows that

\[
e_n(f) \leq \left[\int \int_E w(z)|f(z) - g_n(z)|^2dxdy \right]^{1/2}.
\]

Using (2.6), we get

\[
e_n(f) \leq K \overline{M}(r) \left(\frac{de^\varepsilon}{r} \right)^n,
\]

where \(K \) is independent of \(n \) and \(r \).

Proposition 4. Let \(f \in H_2(E) \). Then \(f \) can be extended to an entire function, if and only if

\[
\lim_{n \to \infty} e_n(f)^{1/n} = 0.
\]

(2.7)

Proof. Suppose \(f \) can be extended to an entire function. Then, by (1.6), we have

\[
\lim_{n \to \infty} a_n^{1/n} = 0.
\]
For any \(\varepsilon \) such that \(0 < \varepsilon < 1 \), there exists an \(n_0 = n_0(\varepsilon) \) such that

\[
a_n < \varepsilon^n \text{ for } n > n_0.
\]

In view of (2.1), we get

\[
e_n(f) \leq \frac{\varepsilon^n}{(1 - \varepsilon^2)^{1/2}} \Rightarrow \limsup_{n \to \infty} e_n(f)^{1/n} \leq \varepsilon
\]

or,

\[
\limsup_{n \to \infty} e_n^{1/n}(f) = 0.
\]

Conversely, if \(\lim_{n \to \infty} e_n(f)^{1/n} = 0 \), then by (2.1)

\[
e_n(f) > |a_{n+1}| \text{ for every } n.
\]

So,

\[
\lim_{n \to \infty} |a_n|^{1/n} = 0.
\]

Hence, in view of (1.6), \(f \) is entire.

3 Main Results

Theorem 1. Let \(f \in H_2(E) \), then \(f \) can be extended to an entire function of \((p, q) \) order \(\rho(p, q) \), if and only if

\[
\rho(p, q) = P(L^*(p, q)),
\]

where

\[
L^*(p, q) = \limsup_{n \to \infty} \frac{\log^{|p-1|} n}{\log^{|q|} e_n(f)^{-1/n}}.
\]

Proof. Let (3.1) holds. For any \(\varepsilon > 0 \), there exists \(n_0 = n_0(\varepsilon) \) such that

\[
\frac{\log^{|p-1|}}{\log^{|q|} e_n(f)^{-1/n}} < L^*(p, q) + \varepsilon \text{ for } n \geq n_0,
\]

or

\[
e_n(f) < \exp \left\{ -n \exp^{[q-1]} \frac{\log^{|p-1|} n}{L^*(p, q) + \varepsilon} \right\}.
\]

(3.2)

Now, first we consider the case for \((p, q) = (2, 1) \), (3.2) gives

\[
e_n(f) < n^{-n/L^*(2,1)+\varepsilon} \text{ for } n \geq n_0,
\]
or

\[\lim_{n \to \infty} e_n(f)^{1/n} = 0. \]

For \((p, q) = (2, 2)\), we have

\[e_n(f) < \exp \left\{ -n^{(L^*(2,2)+1+\varepsilon)/L^*(2,2)} \right\} \text{ for } n \geq n_0, \]

or

\[e_n(f)^{1/n} < \exp \left\{ -n^{1/L^*(2,2)} \right\}, \]

or

\[\lim_{n \to \infty} e_n(f)^{1/n} = 0. \]

Finally, for \((p, q) \neq (2, 1)\) and \((2, 2)\), i.e., for \(3 \leq q \leq p < \infty\), let \(p = q = 3\), we have

\[e_n(f) < \exp \left\{ -n \exp^{[2]} \left(\log \log n \right)^{1/(L^*(p,q)+\varepsilon)} \right\} \]

or

\[e_n(f)^{1/n} < \exp \left\{ -\exp(\log n)^{1/(L^*(p,q)+\varepsilon)} \right\}, \]

or

\[\lim_{n \to \infty} e_n(f)^{1/n} = 0. \]

Similarly, we can see easily that \(\lim_{n \to \infty} e_n(f)^{1/n} = 0\), for \(3 \leq q \leq p < \infty\).

Hence, \(\lim_{n \to \infty} e_n(f)^{1/n} = 0\), for all index-pair \((p, q)\). So, in view of Proposition 3, \(f\) can be extended to an entire function. Let its \((p, q)\)-order be \(\rho(p, q)\).

By (2.1), we have

\[e_n(f) > |a_{n+1}| \text{ for every } n, \]

which gives

\[\limsup_{n \to \infty} \frac{\log^{[p-1]} n}{\log^{[q]} e_n(f)^{-1/n}} \geq \limsup_{n \to \infty} \frac{\log^{[p-1]} n}{\log^{[q]} |a_n|^{-1/n}} \]
In view of (1.9), we get

$$\rho(p, q) \leq P(L^*(p, q)).$$

(3.3)

Conversely, suppose that f is an entire function of (p, q)—order $\rho(p, q)$, $(b < \rho(p, q) < \infty)$. Then (1.9) gives that for any $\varepsilon > 0$, there exists $n_0(\varepsilon)$ such that

$$|a_n| < \exp \left\{-n \exp^{q-1} \left(\frac{\log^{[p-1]} n}{L(p, q) + \varepsilon} \right) \right\}.$$

Using (2.1), we get

$$[e_n(f)]^2 \leq \sum_{k=n+1}^{\infty} \exp \left\{-2k \exp^{q-1} \left(\frac{\log^{[p-1]} k}{L(p, q) + \varepsilon} \right) \right\} \text{ for } n \geq n_0,$$

or

$$[e_n(f)]^2 \leq \exp \left\{-2(n + 1) \exp^{q-1} \left(\frac{\log^{[p-1]} (n + 1)}{L(p, q) + \varepsilon} \right) \right\} \left[1 + O(1) \right] \text{ as } n \to \infty.$$

i.e.,

$$\limsup_{n \to \infty} \frac{\log^{[p-1]} n}{\log^{[q]} e_n(f)^{-1/n}} \leq L(p, q) + \varepsilon.$$

Since ε is arbitrary, so we get

$$L^*(p, q) \leq L(p, q)$$

or

$$P(L^*(p, q)) \leq P(L(p, q)) = \rho(p, q).$$

(3.4)

Combining (3.3 and (3.4), we get required result.

Theorem 2. Let $f \in H_2^\rho(E)$. Then f can be extended to an entire function of (p, q)—order $\rho(p, q)(b < \rho(p, q) < \infty)$ and generalized (p, q)—type $T(p, q)(0 < T(p, q) < \infty)$ if and only if

$$\frac{T(p, q)}{BM} = \limsup_{n \to \infty} \frac{\log^{[p-2]} n}{\log^{[q-1]} e_n(f)^{-1/n}} \rho(p, q)^{-A},$$

(3.5)

where B, M and A are defined as earlier.
On the best L^2-approximation of entire functions

Proof. Let

$$\limsup_{n \to \infty} \frac{\log^{[p-2]} n}{\left(\log^{[q-1]} e_n(f) - 1/n \right) \rho(p, q) - A} = \alpha < \infty.$$

For given $\varepsilon > 0$ and for all $n > n(\varepsilon)$, we have

$$\log^{[q-2]} n < (\alpha + \varepsilon) \left(\log^{[p-1]} e_n(f) - 1/n \right)^{\rho(p,q) - A},$$

which gives

$$\frac{\log^{[p-1]} n}{\log^{[q]} e_n(f) - 1/n} \leq \rho(p, q) - A + O(1).$$

Proceeding to limits, we obtain

$$L^*(p, q) = - \limsup_{n \to \infty} \frac{\log^{[p-1]} n}{\log^{[q]} e_n(f) - 1/n} \leq \rho(p, q) - A.$$

Thus $P(L^*(p, q)) \leq \rho(p, q)$ and it follows by Theorem 1 that f is of (p, q)-order at most $\rho(p, q)$. Similarly, if $\alpha > 0$, f is of (p, q)-order at least $\rho(p, q)$.

Let f be of (p, q)-type $T(p, q) < \infty$. Then for any $\varepsilon, r_0 = r_0(\varepsilon)$ such that

$$\log M(r) < \exp^{[p-2]} \left\{ (T(p, q) + \varepsilon) \left(\log^{[q-1]} \rho(p,q) \right) \right\}$$

Using (2.6) and (3.6), we get

$$\log e_n(f) \leq \exp^{[p-2]} \left\{ (T(p, q) + \varepsilon) \left(\log^{[q-1]} r \right)^{\rho(p,q)} \right\}$$

$$-n \log r + n \log d + n \varepsilon + \log K, \text{ for } n \geq n_0 \text{ and } r \geq r_0. \quad (3.7)$$

Now for $(p, q) = (2, 1)$, choosing and such that

$$r = \left[\frac{n}{\rho(2,1)(T(2,1) + \varepsilon)} \right]^{1/\rho(2,1)},$$

Using (3.7), we get

$$\log e_n(f) \leq \frac{n}{\rho(2,1)} - \frac{n}{\rho(2,1)} \left[\log n - \log(T(2,1) + \varepsilon)\rho(2,1) \right] + n \log d + n \varepsilon + \log K,$$

or

$$ne_n(f)^{\rho(2,1)/n} \leq c\rho(2,1)d^{\rho(2,1)}(T(2,1) + \varepsilon)e^{\rho(2,1)\varepsilon} + 0(1).$$
Hence,

\[
\limsup_{n \to \infty} n e_n(f)^{\rho(2,1)/n} \leq e^{\rho(2,1)} \rho(2,1) T(p, q).
\]

(3.8)

For \((p, q) = (2, 2)\), choosing \(r\) as

\[
r = \exp\left(\frac{n}{\rho(2,2)(T(2,2) + \varepsilon)}\right)^{1/(\rho(2,2)-1)},
\]

(3.7) gives

\[
\log e_n(f) \leq (T(2,2) + \varepsilon) \left(\frac{n}{\rho(2,2)(T(2,2) + \varepsilon)}\right)^{\rho(2,2)/(\rho(2,2)-1)}
\]

\[
- n \left(\frac{n}{\rho(2,2)(T(2,2) + \varepsilon)}\right)^{1/(\rho(2,2)-1)} + n \log d + n \varepsilon + \log K,
\]

or

\[
\log e_n(f)^{-1/n} \geq \left(\frac{n}{\rho(2,2)(T(2,2) + \varepsilon)}\right)^{1/(\rho(2,2)-1)}
\]

\[
\left[\frac{-1}{\rho(2,2)} + 1 - \left(\frac{\rho(2,2)(T(2,2) + \varepsilon)}{n}\right)^{1/(\rho(2,2)-1)} \log d + O(1)\right],
\]

or

\[
T(2,2) \rho(2,2)^{(\rho(2,2)/(\rho(2,2)-1))} (\rho(2,2) - 1) \geq \limsup_{n \to \infty} \frac{n}{(\log e_n(f)^{-1/n})^{\rho(2,2)-1}}.
\]

Now for \(3 \leq q \leq p < \infty\). For \(r > r_0\) and for all \(n\), let

\[
r = \exp^{[q-1]} \left(\frac{1}{T(p,q) + \varepsilon} \log^{[p-2]} n / \rho(p,q)\right)^{1/\rho(p,q)}.
\]

Using (3.7), we have

\[
\log e_n(f) < \frac{n}{\rho(p,q)} - n \exp^{[q-2]} \left(\frac{1}{T(p,q) + \varepsilon} \log^{[p-2]} n / \rho(p,q)\right)^{1/\rho(p,q)}
\]

+ \(n \log d + n \varepsilon + \log K\),

which gives

\[
T(p, q) \geq \limsup_{n \to \infty} \frac{\log^{[p-2]} n}{(\log^{[q-1]} e_n(f)^{-1/n})^{\rho(p,q)}}.
\]

(3.9)

Combining (3.7),(3.8) and (3.9), we get

\[
\frac{T(p, q)}{BM} \geq \limsup_{n \to \infty} \frac{\log^{[p-2]} n}{(\log^{[q-1]} e_n(f)^{-1/n})^{\rho(p,q)-A}}.
\]

(3.10)
For reverse inequality, we observe that, since
\[e_n(f) \geq |a_{n+1}| \text{ for all } n. \]
So,
\[\limsup_{n \to \infty} \frac{\log^{[p-2]} n}{(\log^{[q-1]} |a_n|^{-1/n})^{\rho(p,q)-A}} \leq \limsup_{n \to \infty} \frac{\log^{[p-2]} n}{(\log^{[q-1]} e_n(f)^{-1/n})^{\rho(p,q)-A}}. \]

Using (3.10), we get
\[\frac{T(p,q)}{BM} \leq \limsup_{n \to \infty} \frac{\log^{[p-2]} n}{(\log^{[q-1]} e_n(f)^{-1/n})^{\rho(p,q)-A}}. \]
(3.11)

Inequalities (3.10) and (3.11) gives (3.4).

References

Received: June, 2009