On Cubic Derivations

M. Eshaghi Gordji

Dept. of Math. Semnan University, Semnan, Iran
madjid.eshaghi@gmail.com

S. Kaboli Gharetapeh

Dept. of Math. Payamenoor University, Mashhad Baranch, Mashhad, Iran

M. B. Savadkouhi

Dept. of Math. Semnan University, Semnan, Iran

M. Aghaei

Dept. of Math. Payamenoor University, Mashhad Baranch, Mashhad, Iran

T. Karimi

Dept. of Math. Payamenoor University, Fariman Baranch, Fariman, Iran

Abstract. We say a functional equation \((\xi)\) is stable if any function \(g\) satisfying the equation \((\xi)\) \(approximately\) is near to true solution of \((\xi)\). Also, we say that a functional equation is superstable if every approximately solution is an exact solution of it. In this paper, we investigate the stability and superstability of the system of functional equations

\[
\begin{align*}
 f(xy) &= x^3f(y) + f(x)y^3, \\
 f(2x + y) + f(2x - y) &= 2f(x + y) + 2f(x - y) + 12f(x)
\end{align*}
\]

on Banach algebras.

Mathematics Subject Classification: 46H25, 39B82, 39B52

Keywords: Banach algebra; cubic functional equation; derivation
1. Introduction

Jun and Kim [41] introduced the following functional equation

\[f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x) \] \hspace{1cm} (1.1)

and the established the general solution for this function equation. It is easy to see that the function \(f(x) = cx^3 \) is a solution of the functional equation (1.1). Thus, it is natural that (1.1) is called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

Let \(A \) be a normed algebra and let \(X \) be a Banach \(A \)-module. We say that a mapping \(D : A \to X \) is a cubic derivation if \(D \) is cubic function satisfies

\[D(ab) = D(a)b^3 + a^3D(b), \quad \text{for all} \ a, b \in A. \]

Example. Let \(A \) be a Banach algebra. Then we take

\[
T = \begin{bmatrix}
0 & A & A & A \\
0 & 0 & A & A \\
0 & 0 & 0 & A \\
0 & 0 & 0 & 0
\end{bmatrix},
\]

\(T \) is a Banach algebra equipped with the usual matrix-like operations and the following norm:

\[
\| \begin{bmatrix}
0 & a_1 & a_2 & a_3 \\
0 & 0 & a_4 & a_5 \\
0 & 0 & 0 & a_6 \\
0 & 0 & 0 & 0
\end{bmatrix} \| = \sum_{i=1}^{6} \| a_i \|. \quad (a_i \in A, 1 \leq i \leq 6)
\]

It is known that

\[
T^* = \begin{bmatrix}
o & A^* & A^* & A^* \\
0 & 0 & A^* & A^* \\
0 & 0 & 0 & A^* \\
0 & 0 & 0 & 0
\end{bmatrix},
\]

is the dual of \(T \) under the following norm:

\[
\| \begin{bmatrix}
0 & f_1 & f_2 & f_3 \\
0 & 0 & f_4 & f_5 \\
0 & 0 & 0 & f_6 \\
0 & 0 & 0 & 0
\end{bmatrix} \| = \max \{ \| f_i \| , 1 \leq i \leq 6 \} . \quad (f_i \in A^*, 1 \leq i \leq 6)
\]

Let the left module action of \(T \) on \(T^* \) be trivial and let the right module action of \(T \) on \(T^* \) is defined as follows.

\[
\langle \begin{bmatrix}
0 & f_1 & f_2 & f_3 \\
0 & 0 & f_4 & f_5 \\
0 & 0 & 0 & f_6 \\
0 & 0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & a_1 & a_2 & a_3 \\
0 & 0 & a_4 & a_5 \\
0 & 0 & 0 & a_6 \\
0 & 0 & 0 & 0
\end{bmatrix} \rangle = \sum_{i=1}^{6} f_i(a_i x_i) , \quad f_i \in A^*, \ a_i, x_i \in A \ (1 \leq i \leq 6),
\]

then \(T^* \) is a Banach \(T \)-module. Let
\[
\begin{bmatrix}
0 & f_1 & f_2 & f_3 \\
0 & f_4 & f_5 \\
0 & 0 & f_6 \\
0 & 0 & 0 & 0
\end{bmatrix} \in T^*. \text{ We define } D : T \rightarrow T^* \text{ by }
\]
\[
D(\begin{bmatrix}
0 & a_1 & a_2 & a_3 \\
0 & 0 & a_4 & a_5 \\
0 & 0 & 0 & a_6 \\
0 & 0 & 0 & 0
\end{bmatrix}) = \begin{bmatrix}
0 & f_1 & f_2 & f_3 \\
0 & 0 & f_4 & f_5 \\
0 & 0 & 0 & f_6 \\
0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
0 & 0 & 0 & a_1 a_4 a_6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},
\]
with \(a_i \in A \). Let now \(a_i, b_i, x_i \in A \ (1 \leq i \leq 6) \), then we have
\[
\langle \langle D(2 \begin{bmatrix}
0 & a_1 & a_2 & a_3 \\
0 & 0 & a_4 & a_5 \\
0 & 0 & 0 & a_6 \\
0 & 0 & 0 & 0
\end{bmatrix}) + D(2 \begin{bmatrix}
0 & a_1 & a_2 & a_3 \\
0 & 0 & a_4 & a_5 \\
0 & 0 & 0 & a_6 \\
0 & 0 & 0 & 0
\end{bmatrix}) \rangle, x \rangle
\]
\[
= \langle f_3, (2a_1 + b_1)(2a_4 + b_4)(2a_6 + b_6) \rangle + \langle f_3, (2a_1 - b_1)(2a_4 - b_4)(2a_6 - b_6) \rangle
\]
\[
= 2\langle f_3, (a_1 + b_1)(a_4 + b_4)(a_6 + b_6) \rangle + 2\langle f_3, (a_1 - b_1)(a_4 - b_4)(a_6 - b_6) \rangle
\]
\[
= 2\langle f_3, a_1 a_4 a_6 x_3 \rangle + 2.2 \langle f_3, a_1 a_4 a_6 x_3 \rangle
\]
\[
= 2\langle D(\begin{bmatrix}
0 & a_1 & a_2 & a_3 \\
0 & 0 & a_4 & a_5 \\
0 & 0 & 0 & a_6 \\
0 & 0 & 0 & 0
\end{bmatrix}) + D(\begin{bmatrix}
0 & a_1 & a_2 & a_3 \\
0 & 0 & a_4 & a_5 \\
0 & 0 & 0 & a_6 \\
0 & 0 & 0 & 0
\end{bmatrix}) \rangle, x \rangle
\]
This means that \(D \) is a cubic function. On the other hand it is easy to check that
The stability of functional equations had been first raised by S. M. Ulam [57] for what metric group \(G \) is it true that a \(\epsilon \)-automorphism of \(G \) is necessarily near to a strict automorphism? In 1941, D. H. Hyers [38] gave a positive answer to the question of Ulam for Banach spaces. Let \(f : E_1 \to E_2 \) be a mapping between Banach spaces such that

\[
\|f(x + y) - f(x) - f(y)\| \leq \delta
\]

for all \(x, y \in E_1 \) and for some \(\delta \geq 0 \). Then there exists a unique additive mapping \(T : E_1 \to E_2 \) satisfying

\[
\|f(x) - T(x)\| \leq \delta
\]

for all \(x \in E_1 \). Moreover, if \(f(tx) \) is continuous in \(t \) for each fixed \(x \in E_1 \), then the mapping \(T \) is linear. In 1950, T. Aoki [2] was the second author to treat this problem for additive mappings. Th. M. Rassias [55] succeeded in extending the result of Hyers’ Theorem by weakening the condition for the Cauchy difference controlled by \((\|x\|^p + \|y\|^p), p \in [0, 1)\) to be unbounded.

Taking into consideration a lot of influence of Ulam, Hyers and Rassias on the development of stability problems of functional equations, the stability phenomenon that was proved by Th. M. Rassias is called Hyers-Ulam-Rassias stability (see also [1, 4], [5]–[25], [26, 27, 39, 43], [50]–[52], [54] and [56]).

Jun and Kim [41] generalized Hyers-Ulam-Rassias stability problem for functional equation (1.1). It seems that approximate derivations was first investigated by K. W. Jun and D. W. Park [42]. Recently, the stability of derivations have been investigated by some authors; see [3, 42, 47] and references therein (see also [26, 39, 40, 44, 45, 46, 47, 49, 53, 54] and [56]).

In this paper we study the stability of cubic functional equation that satisfies

\[
f(xy) = x^3f(y) + f(x)y^3
\]

on Banach algebras. Indeed we establish the superstability of equation (1.3) by suitable control functions.
2. Main results

In the following we suppose that A is a commutative Banach algebra and X is a Banach A-module. For convenience, we use the following abbreviation for a given function $f : A \rightarrow X$

$$\Delta_f(x, y) := f(2x + y) + f(2x - y) - 2f(x + y) - 2f(x - y) - 12f(x)$$

for all $x, y \in A$.

Theorem 2.1. Let $f : A \rightarrow X$ be a mapping and let $\varphi_1 : A^2 \rightarrow \mathbb{R}^+$, $\varphi_2 : A^2 \rightarrow \mathbb{R}^+$ be maps such that

$$\|f(xy) - f(x)y^3 - x^3f(y)\| \leq \varphi_1(x, y), \quad (2.1)$$

and

$$\|\Delta_f(x, y)\| \leq \varphi_2(x, y) \quad (2.2)$$

for all $x, y \in A$. Assume that the series

$$\Psi(x, 0) = \sum_{i=0}^{\infty} \frac{\varphi_2(2^ix, 0)}{2^{3i}}$$

converges and that

$$\lim_{n \rightarrow \infty} \frac{\varphi_1(2^nx, 2^ny)}{2^{6n}} = \lim_{n \rightarrow \infty} \frac{\varphi_2(2^nx, 2^ny)}{2^{3n}} = 0,$$

and for all $x, y \in A$. Then there exists a unique cubic derivation $D : A \rightarrow X$ such that

$$\|D(x) - f(x)\| \leq \frac{1}{16} \Psi(x, 0) \quad (2.3)$$

for all $x \in A$.

Proof. Setting $y = 0$ in (2.2) yields

$$\|2f(2x) - 16f(x)\| \leq \varphi_2(x, 0), \quad (2.4)$$

and then result dividing by 2^4 in (2.4) to obtain

$$\|\frac{f(2x)}{2^3} - f(x)\| \leq \frac{\varphi_2(x, 0)}{2^4} \quad (2.5)$$

for all $x \in A$. In (2.5), replacing x by $2x$ and then result dividing by 2^3, we have

$$\|\frac{f(2^2x)}{2^6} - \frac{f(2x)}{2^3}\| \leq \frac{\varphi_2(2x, 0)}{2^7}. \quad (2.6)$$

(2.5) combining (2.6) by use of the triangle inequality, we get

$$\|\frac{f(2^2x)}{2^6} - f(x)\| \leq \frac{\varphi_2(2x, 0)}{2^7} + \frac{\varphi_2(x, 0)}{2^4}. \quad (2.7)$$

Now proceed this way to prove by induction that

$$\|\frac{f(2^nx)}{2^{3n}} - f(x)\| \leq \frac{1}{16} \sum_{i=0}^{n-1} \frac{\varphi_2(2^ix, 0)}{2^{3i}}. \quad (2.8)$$
In order to show that the functions $D_n(x) = \frac{f(2^n x)}{2^{3n}}$ is a convergent sequence, we use from the Cauchy convergence criterion. Indeed, replace x by $2^m x$ and divide by 2^{6m} in (2.8), where m is an arbitrary positive integer. We find that
\[
\frac{\| f(2^{n+m} x) - f(2^n x) \|}{2^{3(n+m)}} \leq \frac{1}{16} \sum_{i=0}^{n-1} \frac{\varphi_2(2^{i+m} x, 0)}{2^{3(i+m)}} = \frac{1}{16} \sum_{i=m}^{n+m-1} \varphi_2(2^i x, 0)
\]
for all positive integers m and n with $n \geq m$ and all $x \in X$. Hence by the Cauchy criterion the limit $D(x) = \lim_{n \to \infty} D_n(x)$ exists for each $x \in A$. By taking the limit as $n \to \infty$ in (2.8), we see that $\|D(x) - f(x)\| \leq \frac{1}{16} \sum_{i=0}^{\infty} \frac{\varphi_2(2^i x, 0)}{2^{3i}} = \frac{1}{16} \Psi(x, 0)$ and (2.3) holds for all $x \in A$. In order to show that D satisfies (1.2), replace x by $2^n x$ and y by $2^n y$ in (2.1) and divide by 2^{6n}, to get
\[
\frac{\| f(2^n x^2 y) - f(2^n x) f(2^n y) - (2^n x)^3 f(2^n y) \|}{2^{6n}} \leq \frac{\varphi_1(2^n x, 2^n y)}{2^{6n}}.
\]
Taking the limit as $n \to \infty$, we find that D satisfies (1.2). Now, suppose there is another such function $\hat{D} : A \to X$ satisfies $\Delta_{\hat{D}}(x, y) = 0$ and $\|D(x) - f(x)\| \leq \frac{1}{16} \Psi(x, 0)$. Then for all $x \in A$, we have
\[
\|D(x) - \hat{D}(x)\| = \frac{1}{2^{3n}} \|D(2^n x) - \hat{D}(2^n x)\|
\leq \frac{1}{2^{3n}} (\|D(2^n x) - f(2^n x)\| + \|\hat{D}(2^n x) - f(2^n x)\|)
\leq \frac{1}{2^{3n}} \left(\frac{1}{16} \Psi(2^n x, 0) + \frac{1}{16} \Psi(2^n x, 0) \right)
= \frac{1}{2^{3(n+1)}} \Psi(2^n x, 0) = \frac{1}{2^{3(n+1)}} \sum_{i=0}^{\infty} \frac{1}{2^{3i}} \varphi(2^{n+i} x, 0)
= \frac{1}{2^3} \sum_{i=0}^{\infty} \frac{1}{2^{3(n+i)}} \varphi(2^{n+i} x, 0) = \frac{1}{23} \sum_{i=n}^{\infty} \frac{1}{2^{3i}} \varphi(2^i x, 0).
\]
By $n \to \infty$ we get, $D(x) = \hat{D}(x)$. If we replace x by $2^n x$ and y by $2^n y$ in (2.2) and divide by 2^{6n}
\[
\frac{\| f(2^{2n} x + 2^n y) - f(2^n x - 2^n y) \|}{2^{3n}} + \frac{f(2^{2n} x - 2^n y)}{2^{3n}} - 2 \frac{f(2^n x + 2^n y)}{2^{3n}} - 2 \frac{f(2^n x - 2^n y)}{2^{3n}}
\leq \frac{\varphi_2(2^n x, 2^n y)}{2^{3n}}.
\]
Taking the limit as $n \to \infty$, we find that D satisfies (1.1).

Corollary 2.2. Let θ_1 and θ_2 be nonnegative real numbers, and let p be real number such that $0 < p < 3$. Suppose that a mapping $f : A \to X$ satisfies
\[
\| f(xy) - f(x) y^3 - x^3 f(y) \| \leq \theta_1,
\]
Now, we have the following Hyers-Ulam-Rassias stability of cubic derivations.
On cubic derivations

\[\|Δ_f(x, y)\| \leq θ_2(\|x\|^p + \|y\|^p) \]

for all \(x, y \in A \). Then there exists a unique cubic derivation \(D : A → X \) such that

\[\|D(x) - f(x)\| \leq \frac{1}{16} \frac{θ_2 \|x\|^p}{1 - 2^{p-3}} \]

holds for all \(x \in A \).

Proof. In theorem 2.1, let \(ϕ_1(x, y) = θ_1 \) and \(ϕ_2(x, y) = θ_2(\|x\|^p + \|y\|^p) \) for all \(x, y \in A \).

Corollary 2.3. Let \(θ_1 \) and \(θ_2 \) be nonnegative real numbers. Suppose that a mapping \(f : A → X \) satisfies

\[\|f(xy) - f(x)y^3 - x^3f(y)\| \leq θ_1 , \]

and

\[\|Δ_f(x, y)\| \leq θ_2 \]

for all \(x, y \in A \). Then there exists a unique cubic derivation \(D : A → X \) such that

\[\|D(x) - f(x)\| \leq \frac{θ_2}{14} \]

holds for all \(x \in A \).

Proof. In theorem 2.1, let \(ϕ_1(x, y) = θ_1 \) and \(ϕ_2(x, y) = θ_2 \) for all \(x, y \in A \).

Corollary 2.4. Let \(0 < p < 3 \) and \(θ \) be a positive real number. Suppose \(f : A → X, \varphi : A^2 → \mathbb{R}^+ \) be maps such that

\[\|f(xy) - f(x)y^3 - x^3f(y)\| \leq ϕ(x, y) , \]

and

\[\|Δ_f(x, y)\| \leq θ\|y\|^p \]

(2.9)

for all \(x, y \in A \). Then \(f \) is a cubic derivation.

Proof. Letting \(x = y = 0 \) in (2.9), we get that \(f(0) = 0 \). So by \(y = 0 \), in (2.9), we get \(f(2x) = 2^3f(x) \) for all \(x \in A \). By using induction we have

\[f(2^n x) = 2^{3n} f(x) \]

(2.10)

for all \(x \in A \) and \(n \in \mathbb{N} \). On the other hand by Theorem 2.1, the mapping \(D : A → X \) defined by

\[D(x) = \lim_{n→∞} \frac{f(2^n x)}{2^{3n}} , \]

is a unique cubic derivation. Therefore it follows from (2.10) that \(f = D \). So the mapping \(f : A → X \) is a cubic derivation.
Corollary 2.5. Let A be a unital Banach algebra with unit e, and X be an A-module. Let θ be a nonnegative real number. Suppose that a mapping $f : A \to X$ satisfies
\[
\|f(2xy + z) + f(2xy - z) - 2[f(xy + z) + f(xy - z)] - 12[f(x)y^3 + x^3f(y)]\| < \theta \tag{2.11}
\]
for all $x, y, z \in A$, and also $f(e) = f(0) = 0$. Then there exists a unique cubic derivation $D : A \to X$ such that
\[
\|D(x) - f(x)\| \leq \frac{\theta}{14}
\]
holds for all $x \in A$.

Proof. By setting $x = e$ in (2.11), we obtain
\[
\|f(2y + z) + f(2y - z) - 2f(y + z) - 2f(y - z) - 12f(y)\| < \theta ,
\]
replacing y by xy and putting $z = 0$, we get
\[
\|f(2xy) - 2^3f(xy)\| < \theta . \tag{2.12}
\]
By setting $z = 0$ in (2.11), we have
\[
\|f(2xy) - 2^3[f(x)y^3 + x^3f(y)]\| < \theta \tag{2.13}
\]
So by (2.12) and (2.13) we get
\[
\|f(xy) - [f(x)y^3 + x^3f(y)]\| < \theta .
\]
Now by applying Corollary 2.3, we obtain the result. \qed

Theorem 2.6. Let $f : A \to X$ be a mapping and let $\varphi_1 : A^2 \to \mathbb{R}^+$, $\varphi_2 : A^2 \to \mathbb{R}^+$ be maps such that
\[
\|f(xy) - f(x)y^3 - x^3f(y)\| \leq \varphi_1(x, y) , \tag{2.14}
\]
and
\[
\|\Delta f(x, y)\| \leq \varphi_2(x, y) \tag{2.15}
\]
for all $x, y \in A$. Assume that the series
\[
\Psi(x, 0) = \sum_{i=0}^{\infty} 2^{3i}\varphi_2\left(\frac{x}{2^i}, 0\right)
\]
converges and that
\[
\lim_{n \to \infty} 2^{6n}\varphi_1\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = \lim_{n \to \infty} 2^{3n}\varphi_2\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = 0 ,
\]
for all $x, y \in A$. Then there exists a unique cubic derivation $D : A \to X$ such that
\[
\|f(x) - D(x)\| \leq \frac{1}{16}\Psi(x, 0) \tag{2.16}
\]
for all $x \in A$.

Proof. Setting $y = 0$ in (2.15) yields
\[
\|2f(2x) - 16f(x)\| \leq \varphi_2(x, 0). \tag{2.17}
\]
Replacing x by $\frac{x}{2}$ in (2.17) and result divide by 2
\[
\|f(x) - 8f(\frac{x}{2})\| \leq \frac{1}{2}\varphi_2(\frac{x}{2}, 0) \tag{2.18}
\]
for all $x \in A$. Now proceed this way to prove by induction that
\[
\|f(x) - 2^{3n}f(\frac{x}{2^n})\| \leq \frac{1}{16}\sum_{i=1}^{n}2^{3i}\varphi_2(\frac{x}{2^i}, 0). \tag{2.19}
\]
In order to show that the functions $D_n(x) = 2^{3n}f(\frac{x}{2^n})$ is a convergent sequence, we use from the Cauchy convergence criterion. Indeed, replace x by $\frac{x}{2^n}$ and multiplier by 2^{3m} in (2.19), where m is an arbitrary positive integer. We find that
\[
\|2^{3m}f(\frac{x}{2^m}) - 2^{3(m+m)}f(\frac{x}{2^{m+m}})\| \leq \frac{1}{16}\sum_{i=1}^{n+m}2^{3i}\varphi_2(\frac{x}{2^i}, 0)
= \frac{1}{16}\sum_{i=1+m}^{n+m}2^{3i}\varphi_2(\frac{x}{2^i}, 0)
\]
for all positive integers m and n with $n \geq m$ and all $x \in X$. Hence by the Cauchy criterion the limit $D(x) = \lim_{n \to \infty} D_n(x)$ exists for each $x \in A$. By taking the limit as $n \to \infty$ in (2.19), we see that $\|f(x) - D(x)\| \leq \frac{1}{16}\sum_{i=1}^{\infty}2^{3i}\varphi_2(\frac{x}{2^i}, 0) = \frac{1}{16}\psi(x, 0)$ and (2.16) holds for all $x \in A$. The rest of proof is similar to the proof of Theorem 2.1.

Now, we investigate the superstability of cubic derivations as follows:

Corollary 2.7. Let $p > 3$ and θ be a positive real number. Let $f : A \to X$, $\varphi : A^2 \to \mathbb{R}^+$ be maps such that
\[
\|f(xy) - f(x)y^3 - x^3f(y)\| \leq \varphi(x, y),
\]
and
\[
\|\Delta f(x, y)\| \leq \theta\|y\|^p \tag{2.20}
\]
for all $x, y \in A$. Then f is a cubic derivation.

Proof. Letting $x = y = 0$ in (2.20), we get that $f(0) = 0$. So by $y = 0$, in (2.20), we get $f(2x) = 2^3f(x)$ for all $x \in A$. By using induction we have
\[
f(x) = 2^{3n}f(\frac{x}{2^n}) \tag{2.21}
\]
for all $x \in A$ and $n \in \mathbb{N}$. On the other hand by Theorem 2.8, the mapping $D : A \to X$ defined by
\[
D(x) = \lim_{n \to \infty} 2^{3n}f(\frac{x}{2^n})
\]
is a unique cubic derivation. Therefore it follows from (2.21) that $f = D$. So the mapping $f : A \to X$ is a cubic derivation. \qed
Corollary 2.8. Let \(p, q, \theta \) be a positive real numbers such that \(p + q > 3 \). Let \(f : A \rightarrow X, \varphi : A^2 \rightarrow X \) be maps such that
\[
\|f(xy) - f(x)y^3 - x^3f(y)\| \leq \varphi(x,y),
\]
and
\[
\|\Delta f(x)\| \leq \theta\|x\|^p\|y\|^p
\]
for all \(x, y \in A \). Then \(f \) is a cubic derivation.

Proof. If \(q = 0 \), then by Corollary 2.9 we get the result. Else by the same reasoning as in the proof of (2.15), the mapping \(f : A \rightarrow X \), is cubic derivation. \(\square \)

Corollary 2.9. Let \(p > 3 \) and \(\theta \) be a positive real number. Suppose mapping \(f : A \rightarrow X \) satisfies
\[
\|f(xy) - f(x)y^3 - x^3f(y)\| \leq \theta\|y\|^p,
\]
and
\[
\|\Delta f(x,y)\| \leq \theta\|y\|^p
\]
for all \(x, y \in A \). Then \(f \) is a cubic derivation.

Proof. Let \(\varphi(x,y) = \theta\|y\|^p \). Then by Corollary 2.9 and 2.10, we get the result. \(\square \)

Example 2.10. Let \(x \in X \) be fixed and \(x \neq 0 \). We define \(f : A \rightarrow X \) by \(f(a) := a^3x - xa^3 + x \) and
\[
\varphi_1(a,b) := \|f(ab) - a^3f(b) - f(a)b^3\| = \|x - a^3x - xb^3\|,
\]
and
\[
\varphi_2(a,b) := \|f(2a + b) + f(2a - b) - 2f(a + b) - 2f(a - b) - 12f(a)\| = 14\|x\|.
\]
Then we have
\[
\sum_{i=0}^{\infty} \frac{\varphi_2(2i^2a,2i^2b)}{2^{3i}} = \sum_{i=0}^{\infty} \frac{14\|x\|}{2^{3i}} = 16\|x\|,
\]
and
\[
\lim_{n \rightarrow \infty} \varphi_1(2^n a, 2^n b) = \lim_{n \rightarrow \infty} \frac{\|x - x2^n b^3 - 2^n a^3 x\|}{2^{6n}} = 0.
\]
Thus the limit \(D(a) = \lim_{n \rightarrow \infty} \frac{f(2^n a)}{2^n} = a^3x - xa^3 \) exists. Also,
\[
D(ab) = (ab)^3x - x(ab)^3 = a^3b^3 x - x a^3 b^3,
\]
and
\[
a^3 D(b) + D(a)b^3 = a^3(b^3x - xb^3) + (a^3x - xa^3)b^3 = a^3b^3x - xa^3b^3.
\]
Thus (1.3) holds. Furthermore,
\[
D(2a + b) + D(2a - b) = [(2a + b)^3x - x(2a + b)^3] + [(2a - b)^3x - x(2a - b)^3]
\]
\[
= 2.2^3a^3x + 6.2ab^2x - 2.2^3xa^3 - 6.2xab^2,
\]
on the other hand
\[2[D(a+b) + D(a-b)] + 12D(a)\]
\[= 2[((a+b)^3x - x(a+b)^3) + ((a-b)^3x - x(a-b)^3)] + 12[a^3x - xa^3]\]
\[= 2[2a^3x + 6ab^2x - 2xa^3 - 6xab^2] + 12[a^3x - xa^3]\]
\[= 2.2^3a^3x - 2.2^3xa^3 + 6.2ab^2x - 6.2xab^2.\]

Then \(D\) is cubic.

Also from this example it is clear that the superstability of the functional equation
\[f(2xy + z) + f(2xy - z) = 2[f(xy + z) + f(xy - z)] + 12(x^3f(y) + f(x)y^3)\]
with the control functions in Theorem 2.6, does not hold.

REFERENCES

On cubic derivations

Received: July, 2010