Some Common Coupled Fixed Point Results in Cone Metric Spaces

W. Shatanawi

Dept. of Mathematics, Hashemite University
P.O. Box 150459, Zarqa 13115, Jordan
swasfi@hu.edu.jo

Abstract
We introduce the concept of a common coupled fixed point of the mappings $F, G : X \times X \to X$, and we obtain some results for contractive mappings in cone metric space with a cone having nonempty interior. Our results generalize well known results in the literature.

Mathematics Subject Classifications: 54H25, 47H10, 54E50

Keywords: Common fixed point, Coupled fixed point, Cone metric space

1 Introduction.

The concept of cone metric space has been investigated initially by Huang and Zhang [6]. They proved some fixed point theorems of contractive type mappings over cone metric spaces. Later, many authors generalized their fixed point theorems in different type. For a survey of coincidence point theory over cone metric spaces, we refer the reader (as examples) to [1-4,6-14]. While V. Bhaskar and Lakshmikantham [5] introduced the concept of a coupled fixed point of a mapping F from $X \times X$ into X and studied fixed point theorems in partially ordered metric spaces. Recently, Sabetghadam et al [13], studied some results of the coupled fixed point for mappings satisfying different contractive conditions on complete metric spaces. in this paper, we introduce the concept of a common coupled fixed point of the mappings $F, G : X \times X \to X$, and we obtain some results for nonlinear contractive mappings in cone metric space with a cone having nonempty interior.

2 Basic Concepts.

In the present paper, E stands for a real Banach space. Let P be a subset of E with $\text{Int}(P) \neq \emptyset$. Then P is called a cone if the following conditions are
satisfied:

1. P is closed and $P \neq \{\theta\}$.
2. $a, b \in \mathbb{R}^+, x, y \in P$ implies $ax + by \in P$.
3. $x \in P \cap -P$ implies $x = \theta$.

For a cone P, define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write $x < y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{Int}P$. It can be easily shown that $\lambda \text{Int}(P) \subseteq \text{Int}(P)$ for all positive scalar λ.

Definition 2.1 [6] Let X be a nonempty set. Suppose the mapping $d : X \times X \to E$ satisfies

1. $\theta < d(x, y)$ for all $x, y \in X$ and $d(x, y) = \theta$ if and only if $x = y$.
2. $d(x, y) = d(y, x)$ for all $x, y \in X$.
3. $d(x, y) \leq d(x, z) + d(y, z)$ for all $x, y \in X$.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.2 [6] Let (X, d) be a cone metric space. Let (x_n) be a sequence in X and $x \in X$. If for every $c \in E$ with $\theta \ll c$, there is an $N \in \mathbb{N}$ such that $d(x_n, x) \ll c$ for all $n \geq N$, then (x_n) is said to be convergent and (x_n) converges to x and x is the limit of (x_n). We denote this by $\lim_{n \to +\infty} x_n = x$ or $x_n \to x$ as $n \to +\infty$. If for every $c \in E$ with $\theta \ll c$ there is an $N \in \mathbb{N}$ such that $d(x_n, x_m) \ll c$ for all $n, m \geq N$, then (x_n) is called a Cauchy sequence in X. The space (X, d) is called a complete cone metric space if every Cauchy sequence is convergent.

The cone P in a real Banach space E is called normal if there is a number $k > 0$ such that for all $x, y \in E$,

$$\theta \leq x \leq y \text{ implies } ||x|| \leq k||y||.$$

Rezapour and Hamlbarani[12] proved that there are no normal cones with normal constant $k < 1$ and that for each $h > 1$ there are cones with normal constant $K > h$. Also, they omitting the assumption of normality they obtain generalizations of some results of [6].

Let (X, d) be a cone metric space with cone P not necessary to be normal. Then the following properties are useful in our subsequent arguments:

1. If $a \leq ha$ and $h \in [0, 1)$, then $a = 0$
2. If \(\theta \leq u \ll c \) for each \(\theta \ll c \), then \(u = \theta \).

3. If \(u \leq v \) and \(v \ll w \), then \(u \ll w \).

Definition 2.3 [5] An element \((x, y) \in X \times X\) is called a coupled fixed point of a mapping \(F : X \times X \rightarrow X\) if \(F(x, y) = x\) and \(F(y, x) = y\).

3 Main Results.

In order to proceed in our work and achieve our results we introduce the following definition.

Definition 3.1 Let \(X\) be a nonempty set. Then the point \((x, y)\) in \(X \times X\) is called a common coupled fixed point of the mapping \(F, G : X \times X \rightarrow X\) if

\[
F(x, y) = G(x, y) = x \quad \text{and} \quad F(y, x) = G(y, x) = y.
\]

Theorem 3.1 Let \((X, d)\) be a complete cone metric space with a cone \(P\) having nonempty interior. Let \(F, G : X \times X \rightarrow X\) be functions such that

\[
d(F(x, y), G(u, v)) \leq hw(x, y, u, v)
\]

for all \(x, y, u, v \in X\), where

\[
w(x, y, u, v) \in \left\{d(x, u), d(y, v), \frac{1}{2}(d(F(x, y), x) + d(G(u, v), u)), \frac{1}{2}(d(F(x, y), u) + d(G(u, v), x))\right\}.
\]

If \(0 \leq h < 1\), then \(F, G\) have a unique common coupled fixed point.

Proof. Let \(x_0, y_0\) be two arbitrary elements in \(X\). Choose \(x_1, y_1 \in X\) such that \(x_1 = F(x_0, y_0)\) and \(y_1 = F(y_0, x_0)\). Again choose \(x_2, y_2 \in X\) such that \(x_2 = G(x_1, y_1)\) and \(y_2 = G(y_1, x_1)\). Continuing this process, we can construct two sequences \((x_n)\) and \((y_n)\) in \(X\) such that \(x_{2n+1} = F(x_{2n}, y_{2n})\), \(y_{2n+1} = F(y_{2n}, x_{2n})\), \(x_{2n+2} = G(x_{2n+1}, y_{2n+1})\), and \(y_{2n+2} = G(y_{2n+1}, x_{2n+1})\). Let \(n \in \mathbb{N} \cup \{0\}\).

Case 1: \(u(x, y, u, v) = d(x, u)\). From

\[
d(x_{2n+1}, x_{2n+2}) = d(F(x_{2n}, y_{2n}), G(x_{2n+1}, y_{2n+1})) \leq hd(x_{2n}, x_{2n+1}),
\]

and

\[
d(y_{2n+1}, y_{2n+2}) = d(F(y_{2n}, x_{2n}), G(y_{2n+1}, x_{2n+1})) \leq hd(y_{2n}, y_{2n+1}),
\]

we have

\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq h(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})).
\]
Case 2: \(u(x, y, u, v) = d(y, v) \). Similar arguments to Case 1, we have
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq h(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})).
\]

Case 3: \(u(x, y, u, v) = \frac{1}{2}(d(F(x, y), x) + d(G(u, v), u) \). From
\[
d(x_{2n+1}, x_{2n+2}) \leq \frac{h}{2}((d(x_{2n+1}, x_{2n}) + d(x_{2n+2}, x_{2n+1})),
\]
we get
\[
d(x_{2n+1}, x_{2n+2}) \leq \frac{h}{2-h}(d(x_{2n+1}, x_{2n})).
\]
(1)

Similarly, we have
\[
d(y_{2n+1}, y_{2n+2}) \leq \frac{h}{2-h}(d(y_{2n+1}, y_{2n})).
\]
(2)

From Equation (1) and Equation (2), we get
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq \frac{h}{2-h}(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})).
\]
Case 4: \(u(x, y, u, v) = \frac{1}{2}(d(F(x, y), u) + d(G(u, v), x) \). As in Case 3, we get
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq \frac{h}{2-h}(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})).
\]

Let \(r = \max\{h, \frac{h}{2-h}\} \). Then in all case, we get
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq r(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1})).
\]

If we repeat all above arguments for the four cases, we get
\[
d(x_{2n+1}, x_{2n}) + d(y_{2n+1}, y_{2n}) \leq r(d(x_{2n}, x_{2n-1}) + d(y_{2n}, y_{2n-1})).
\]

Hence
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq r(d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}))
\]
\[
\leq r^2(d(x_{2n}, x_{2n-1}) + d(y_{2n}, y_{2n-1}))
\]
\[
\vdots
\]
\[
\leq r^{2n+1}(d(x_0, x_1) + d(y_0, y_1)).
\]

So for each \(n \in \mathbb{N} \), we have
\[
d(x_n, x_{n+1}) + d(y_n, y_{n+1}) \leq r^n(d(x_0, x_1) + d(y_0, y_1)).
\]
(3)
If \(d(x_0, x_1) + d(y_0, y_1) = \theta \), then \(y_0 = y_1 \) and \(x_0 = x_1 \). By inequality (3), we get that \(x_0 = x_n \) and \(y_0 = y_n \) for each \(n \in \mathbb{N} \). Hence \(x_0 = x_1 = F(x_0, y_0) \) and \(y_0 = y_1 = F(y_0, x_0) \). Now, we show that \(G(x_0, y_0) = x_0 \) and \(G(y_0, x_0) = y_0 \). Since
\[
 w(x_0, y_0, x_0, y_0) \in \{ d(x_0, x_0), d(y_0, y_0), \frac{1}{2}(d(x_0, x_0) + d(G(x_0, y_0), x_0)), \\
 \frac{1}{2}((x_0, x_0) + d(G(x_0, y_0), x_0)) \},
\]
we have
\[
 d(x_0, G(x_0, y_0)) = d(F(x_0, y_0), G(x_0, y_0)) \leq \frac{h}{2} d(x_0, G(x_0, y_0)).
\]
From the last inequality and the fact that \(h < 1 \), we get \(d(x_0, G(x_0, y_0)) = \theta \), and hence \(x_0 = G(x_0, y_0) \). Similarly, we may show that \(y_0 = G(y_0, x_0) \).

Therefore, \((x_0, y_0)\) is a common coupled fixed point of \(F \) and \(G \). Thus we may assume that \(d(x_0, x_1) + d(y_0, y_1) \neq \theta \). For \(m > n \) we get
\[
 d(x_n, x_m) \leq d(x_n, x_{n+1}) + \ldots + d(x_{m-1}, x_m) \text{ and } d(y_n, y_m) \leq d(y_n, y_{n+1}) + \ldots + d(y_{m-1}, y_m).
\]
By Inequality (3) and the fact that \(r < 1 \), we have
\[
 d(x_n, x_{n+1}) + d(y_n, y_{n+1}) \leq \frac{r^n}{1-r} (d(x_0, x_1) + d(y_0, y_1)) \rightarrow \theta \text{ as } n \rightarrow +\infty.
\]
Thus for \(c \gg \theta \), we can find \(k \in \mathbb{N} \) such that
\[
 \frac{r^n}{1-r} (d(x_0, x_1) + d(y_0, y_1)) \ll c
\]
for all \(n \geq k \). Hence \(d(x_n, x_{n+1}) + d(y_n, y_{n+1}) \ll c \) for all \(n \geq k \). Since
\[
 d(x_n, x_{n+1}) \leq d(x_n, x_{n+1}) + d(y_n, y_{n+1}) \text{ and } d(y_n, y_{n+1}) \leq d(x_n, x_{n+1}) + d(y_n, y_{n+1}),
\]
we conclude that \((x_n)\) and \((y_n)\) are Cauchy’s sequences in \((X, d)\). Since \(X \) is complete, we find \(x, y \) in \(X \) such that \(x_n \rightarrow x \) and \(y_n \rightarrow y \). Now, we prove that \(F(x, y) = G(x, y) = x \) and \(F(y, x) = G(y, x) = x \). For that
\[
 d(F(x, y), x) \leq d(F(x, y), x_{2n+2}) + d(x_{2n+2}, x). \quad (4)
\]
But \(d(F(x, y), x_{2n+2}) = d(F(x, y), G(x_{2n+1}, y_{2n+1})) \).

Case 1: If \(w(x, y, u, v) = d(x, u) \), then \(d(F(x, y), x_{2n+2}) \leq \theta d(x, x_{2n+1}) \). By Inequality (4), we have \(d(F(x, y), x) \leq \theta d(x, x_{2n+1}) + d(x_{2n+2}, x) \). Since \((x_{2n+1})\) and \((x_{2n+2})\) are subsequences of \((x_n)\), we get \((x_{2n+1})\) and \((x_{2n+2})\) converge to \(x \). Let \(c \gg \theta \). Then there are \(k_1, k_2 \in \mathbb{N} \) such that \(d(x, x_{2n+1}) \ll \frac{c}{2} \) for all \(n \geq k_1 \) and \(d(x_{2n+2}, x) \leq \frac{c}{2} \) for all \(n \geq k_2 \). Let \(k_0 = \max\{k_1, k_2\} \). Then
\[d(F(x, y), x_{2n+2}) + d(x_{2n+2}, x) \ll c \text{ for all } n \geq k_0. \text{ Hence } d(F(x, y), x) \ll c. \]

Therefore \(F(x, y) = x \).

Case 2: If \(w(x, y, u, v) = d(y, v) \), then \(d(F(x, y), x_{2n+2}) \leq hd(y, y_{2n+1}) \). By inequality (4), we have \(d(F(x, y), x) \leq hd(y, y_{2n+1}) + d(x_{2n+2}, x) \). Noting that the sequences \((y_{2n+1}) \) and \((x_{2n+2}) \) converge to \(y \) and \(x \) respectively. By similar argument to Case 1, we conclude that \(F(x, y) = x \).

Case 3: If \(w(x, y, u, v) = \frac{1}{2}(d(F(x, y), x) + d(G(u, v), u)) \), then

\[d(F(x, y), x_{2n+2}) \leq \frac{h}{2}(d(F(x, y), x) + d(x_{2n+2}, x_{2n+1})). \]

Since \(d(x_{2n+1}, x_{2n+2}) \leq d(x_{2n+1}, x) + d(x, x_{2n+2}) \), we have

\[d(F(x, y), x_{2n+2}) \leq \frac{h}{2}(d(F(x, y), x) + d(x_{2n+2}, x)) + d(x, x_{2n+1}). \]

By Inequality 4, we have

\[d(F(x, y), x) \leq \frac{2 + h}{2 - h}d(x_{2n+2}, x) + \frac{h}{2 - h}d(x, x_{2n+1}). \]

As similar arguments to Case 1, we get \(F(x, y) = x \).

Case 3: If \(w(x, y, u, v) = \frac{1}{2}(d(F(x, y), u) + d(F(u, v), x)) \), then

\[d(F(x, y), x_{2n+2}) \leq \frac{h}{2}(d(F(x, y), x_{2n+1}) + d(x_{2n+2}, x)). \]

Since \(d(F(x, y), x_{2n+1}) \leq d(F(x, y), x) + d(x, x_{2n+1}) \), by Inequality 4, we have

\[d(F(x, y), x) \leq \frac{2 + h}{2 - h}d(x_{2n+2}, x) + \frac{h}{2 - h}d(x, x_{2n+1}). \]

As similar arguments to Case 1, we get \(F(x, y) = x \). By the aid of following inequality:

\[d(x, G(x, y)) \leq d(x, x_{2n+1}) + d(x_{2n+1}, G(x, y)) = d(x, x_{2n+1}) + d(F(x_{2n}, y_{2n}), G(x, y)) \]

and repeat the above arguments for the four cases, we can show that \(G(x, y) = x \). Hence \(F(x, y) = G(x, y) = x \). Similarly, we get \(F(y, x) = G(y, x) = y \). Therefore \((x, y) \) is a common coupled fixed point of the mappings \(F \) and \(G \). Moreover, we show that \(x = y \). For that \(d(x, y) = d(F(x, y), G(y, x)) \leq hw(x, y, y, x) \). Since

\[w(x, y, y, x) \in \{d(x, y), d(y, x), \frac{1}{2}(d(x, x) + d(y, y)), \frac{1}{2}(d(x, y) + d(y, x))\}, \]

and \(h < 1 \), we conclude that \(d(x, y) = 0 \) and hence \(x = y \).

Our result is an improvement of the following results:
Corollary 3.1 [Theorem 2.5, 13] Let \((X, d)\) be a complete cone metric space. Suppose that the mapping \(F : X \times X \rightarrow X\) satisfies
\[
d(F(x, y), F(u, v)) \leq a d(F(x, y), x) + b d(F(u, v), u)
\]
for all \(x, y, u, v \in X\). If \(a, b\) are nonnegative real numbers and if \(a + b \in [0, 1)\), then \(F\) has a unique coupled fixed point.

Proof. Note that if
\[
d(F(x, y), F(u, v)) \leq a d(F(x, y), x) + b d(F(u, v), u),
\]
then
\[
d(F(x, y), F(u, v)) \leq a + b \frac{d(F(x, y), x) + d(F(u, v), u)}{2}.
\]
Thus the result follows from Theorem 3.1 by taking \(G = F\).

Corollary 3.2 [Theorem 2.6, 13] Let \((X, d)\) be a complete cone metric space. Suppose that the mapping \(F : X \times X \rightarrow X\) satisfies
\[
d(F(x, y), F(u, v)) \leq a d(F(x, y), u) + b d(F(u, v), x)
\]
for all \(x, y, u, v \in X\). If \(a, b\) are nonnegative real numbers \(a + b < 1\), then \(F\) has a unique coupled fixed point.

Proof. Note that if
\[
d(F(x, y), F(u, v)) \leq a d(F(x, y), u) + b d(F(u, v), x),
\]
then
\[
d(F(x, y), F(u, v)) \leq a + b \frac{d(F(x, y), u) + d(F(u, v), x)}{2}.
\]
Thus the result follows from Theorem 3.1 by taking \(G = F\).

References

Received: June, 2010